\square

Midterm Exam

October 12, 2023 10:00-11:15

CS520 - Data Integration, Warehousing, and Provenance
 Results

Instructions

- Try to answer all the questions using what you have learned in class. Keep hard questions until the end.
- When writing a query, write the query in a way that it would work over all possible database instances and not just for the given example instance!
- The exam is closed book and closed notes! No calculator, smartphones, or similar allowed!

Consider the following database schema and example instance about buyers, credit cards, orders, and products.

buyer

name	age	gender
alice	20	female
bob	21	male
carol	18	female

product

pname	type	price	weight
pen	office	3	5
pencil	office	2	3
notebook	office	10	400
camera	electronic	300	600
bike	transport	100	15000
skateboard	transport	50	1500
pan	kichen	25	700

card

cardNum	owner	limit
1111	alice	50
1234	bob	10
4321	bob	30
9999	carol	1000

order

buyer	product	count
alice	pen	4
alice	notebook	2
bob	bike	1
alice	pan	1
carol	camera	1
carol	skateboard	1

Hints:

- Attributes with black background form the primary key of a relation
- The attribute buyer of relation order is a foreign key to relation buyer. The attribute product of relation order is a foreign key to relation product.
- The attribute owner of relation card is a foreign key to relation buyer.

Part 1.1 Datalog (Total: 38 Points)

Recall that Datalog applies set semantics. All Datalog questions use the schema shown above.

Question 1.1.1 (5 Points)

Write a Datalog program that returns the pname and price of products of type office which weight more than 100 (lb).

Solution

```
q(N,P) :- product(N,office,P,W), W > 100
```


Question 1.1.2 (6 Points)

Write a Datalog program that returns pairs of buyer names and the names of products the buyer has brought. Only include products that cost more than $\$ 100$ or weight more than 200 (lb).

Solution

```
heavy_or_expensive(N) :- product(N,_,P,_), P > 100.
heavy_or_expensive(N) :- product(N,_,_,W), W > 200.
q(N,P) :- buyer(N,_,_), order(N,P,_), heavy_or_expensive(P).
```


Question 1.1.3 (8 Points)

Write a Datalog program that returns the names of buyers that have only brought products of type transport.

Solution

has_non_transport(B) :- buyer (B,_,_), order (B,P,_), product(P,T,_,_), T <> transport. q(B) :- buyer (B,_,_), not has_non_transport(B).

Question 1.1.4 (10 Points)

Write a Datalog program that returns pname and price for products that have been bought by every buyer younger than 20 years.

Solution

```
young_buyer(B) :- buyer(B,A,_), A < 20.
product_names(P,R) :- product(P,_,R,_).
possible_order(B,P) :- young_buyer(B), product_names(P).
actual_order(B,P) :- order(B,P,_).
missing_order(P) :- possible_order(B,P), not actual_order(B,P).
q(P,R) :- product_names(P,R), not missing_order(P).
```


Question 1.1.5 (9 Points)

Consider the following graph $G=(V, E)$ where V is the set of buyers and there is an edge $\left(b_{1}, b_{2}\right)$ from buyer b_{1} to buyer b_{2} if the orders of b_{1} and b_{2} have at least one product in common. Write a Datalog program that returns pairs of buyers that are connected in this graph by some path. Note that the graph is not given as input, but needs to be computed by your query based on the relations in the database.

Solution

```
e(X,Y) :- buyer(X,_,_), buyers(Y,_,_), order(X,P,_), order(Y,P,_).
path(X,Y) :- e(X,Y).
path(X,Y) :- path(X,Z), e(Z,Y).
```


Part 1.2 Constraints (Total: 26 Points)

Question 1.2.1 Expressing Constraints in First-Order Logic (13 Points)

Recall the representation of constraints as universally quantified first-order logic implications as introduced in class. Write down the following constraints over the example schema as universally quantified formulas in first-order logic:

- The foreign key from attribute buyer of relation order to relation buyer.
- The following functional dependency for relation product: price, weight \rightarrow type.
- No office products can cost more than $\$ 250$ and weight less than 5 lb at the same time.
- Customers cannot order products that cost more then the limit of any of their credit cards.

Solution

$$
\begin{aligned}
\text { FK }_{\mathbf{1}} & : \forall b, p, c: \operatorname{order}(b, p, c) \rightarrow \exists x_{1}, x_{2}: \operatorname{buyer}\left(b, x_{1}, x_{2}\right) \\
\text { FD }: & \forall n_{1}, t_{1}, p, w, n_{2}, w: \operatorname{product}\left(n_{1}, t_{2}, p, w\right) \wedge \operatorname{product}\left(n_{2}, t_{2}, p, w\right) \rightarrow t_{1}=t_{2} \\
\text { light_expensive }: & \forall n, t, p, w: \operatorname{product}(n, t, p, w) \rightarrow p \leq 250 \vee w \geq 5 \\
\text { less_than_limit }: & \forall b_{1}, b_{2}, b_{3}, o_{1}, o_{2}, c_{1}, c_{2}, p_{1}, p_{2}, p_{3}: \operatorname{buyer}\left(b_{1}, b_{2}, b_{3}\right) \\
& \wedge \operatorname{order}\left(b_{1}, o_{1}, o_{2}\right) \\
& \wedge \operatorname{card}\left(c_{1}, b_{!}, c_{2}\right) \\
& \wedge \operatorname{product}\left(o_{1}, p_{1}, p_{2}, p_{3}\right) \\
& \rightarrow c_{2} \leq p_{2}
\end{aligned}
$$

Question 1.2.2 Creating Denial Constraints (13 Points)

Create denial constraints over the example schema based on the following descriptions.

- Products of category transport have to weight more than 1000 lb
- Translate the functional dependency cardNum \rightarrow owner, limit on relation card into one or more denial constraints
- Buyers cannot place two orders for the same product with different counts.

Solution

$$
\begin{aligned}
& d_{1}: \forall n, t, p, w: \neg(\operatorname{product}(n, t, p, w) \wedge t=\operatorname{transport} \wedge w \leq 1000) \\
& d_{21}: \forall c, o_{1}, l_{1}, o_{2}, l_{2}: \neg\left(\operatorname{card}\left(c, o_{1}, l_{1}\right) \wedge \operatorname{card}\left(c, o_{2}, l_{2}\right) \wedge o_{1} \neq o_{2}\right) \\
& d_{22}: \forall c, o_{1}, l_{1}, o_{2}, l_{2}: \neg\left(\operatorname{card}\left(c, o_{1}, l_{1}\right) \wedge \operatorname{card}\left(c, o_{2}, l_{2}\right) \wedge o_{1} \neq o_{2}\right) \\
& d_{3}: \forall n, p, c_{1}, c_{2}, x_{1}, x_{2}: \neg\left(\operatorname{buyer}\left(n, x_{1}, x_{2}\right) \wedge \operatorname{order}\left(n, p, c_{1}\right) \wedge \operatorname{order}\left(n, p, c_{2}\right) \wedge c_{1} \neq c_{2}\right)
\end{aligned}
$$

Part 1.3 Query Containment And Equivalence (Total: 36 Points)

Question 1.3.1 (36 Points)

Consider the queries shown below. Check all possible containment relationships. If there exists a containment mapping from Q_{i} to Q_{j} then write down the mapping. Otherwise, state explicitly that no containment mapping exists.
$Q_{1}(\mathrm{X}):-\mathrm{R}(\mathrm{X}, \mathrm{X}), \mathrm{S}(\mathrm{X}, \mathrm{Y}), \mathrm{R}(\mathrm{Y}, \mathrm{X})$.
$Q_{2}(\mathrm{C}):-\mathrm{R}(\mathrm{A}, \mathrm{B}), \mathrm{R}(\mathrm{B}, \mathrm{C}), \mathrm{R}(\mathrm{A}, \mathrm{A}), \mathrm{S}(\mathrm{C}, \mathrm{A})$.
$Q_{3}(Y):-R(A, B), R(B, Y), S(Y, A)$.
$Q_{4}(\mathrm{~A}):-\mathrm{R}(\mathrm{B}, \mathrm{D}), \mathrm{S}(\mathrm{A}, \mathrm{B})$.

Solution

$\underline{Q_{1} \rightarrow Q_{2}}:$ no containment mapping exists	$\underline{Q_{1} \rightarrow Q_{3}}:$ no containment mapping exists	$\underline{Q_{1} \rightarrow Q_{4}}:$ no containment mapping exists
$Q_{2} \rightarrow Q_{1}:$ no containment mapping exists	$Q_{2} \rightarrow Q_{3}:$ no containment mapping exists	$\underline{Q_{2} \rightarrow Q_{4}}:$ no containment mapping exists
$\underline{Q_{3} \rightarrow Q_{1}}:$	$\underline{Q_{3} \rightarrow Q_{2}}:$	
$\begin{gathered} Y \rightarrow X \\ A \rightarrow Y \\ B \rightarrow X \end{gathered}$	$\begin{aligned} & Y \rightarrow C \\ & A \rightarrow A \\ & B \rightarrow B \end{aligned}$	$\underline{Q_{3} \rightarrow Q_{4}}:$ no containment mapping exists
$\underline{Q_{4} \rightarrow Q_{1}}:$	$\underline{Q_{4} \rightarrow Q_{2}}:$	$\underline{Q_{4} \rightarrow Q_{3}}:$
$D \rightarrow X$	$D \rightarrow A$	$D \rightarrow B$
$A \rightarrow X$	$A \rightarrow C$	$A \rightarrow Y$
$B \rightarrow Y$	$B \rightarrow A$	$B \rightarrow A$

