
Name CWID

Exam
1

Oct 21th, 2020

CS525 - Midterm Exam
Solutions

Please leave this empty! 1 2 3 4 Sum

Instructions
• Things that you are not allowed to use

– Personal notes
– Textbook
– Printed lecture notes
– Phone

• The exam is 75 minutes long

• You will have another 15 minutes for uploading the exam

• There are 4 parts in this exam

1. SQL
2. Relational Algebra
3. Index Structures
4. I/O Estimation

DB - Fall 2020: Page 2 (of 16)

Part 1 SQL (Total: 32 Points)

Consider the following database schema and instance storing information about orders issued by customers.
Orders consist of one or more lineitems — each of which records a particular item that was order with a given
quantity. For instance, in the example database the order with oid 1 consists of two line time: 2 TVs and 1
coffee table.

customer
ssn name creditcard accbalance

111-111-1111 Aisha Visa 300.5
444-111-4444 Venkata Mastercard 200
777-777-8888 Yi Visa 0

order
oid date cust
1 2020-10-18 111-111-1111
2 2020-10-20 111-111-1111
3 2020-10-20 777-777-8888

lineitem
oid linenumber item quantity
1 1 1 2
1 2 3 1
2 1 1 5

item
iid desc price
1 TV 400
2 bookshelf 120
3 coffee table 250

Hints:

• When writing queries do only take the schema into account and not the example data given here. That
is your queries should return correct results for all potential instances of this schema.

• Attributes with black background form the primary key of an relation. For example, ssn is the primary
key of relation customer.

• The attribute cust of relation orders is a foreign key to relation customer.

• The attribute oid of relation lineitem is a foreign key to relation orders.

• The attribute item of relation lineitem is a foreign key to relation items.

DB - Fall 2020: Page 3 (of 16)

Question 1.1 (6 Points)

Write an SQL query that computes the total cost of each order (return two columns: oid and the total cost).
The cost of a lineitem is computed as the price of the ordered item multiplied by the quantity. The total cost
of an order is the sum of the cost of its lineitems. For instance, for the order with oid 1 from the example
database, the total cost is:

400 · 2 + 250 · 1 = 1, 050

Solution

SELECT oid , sum (p r i c e ∗ quant i ty) AS t o t a l c o s t
FROM l i n e i t em l , i tems i
WHERE l . item = i . i i d
GROUP BY o id ;

DB - Fall 2020: Page 4 (of 16)

Question 1.2 (8 Points)

Write a query that returns the ssn and name of customers which have not ordered any items that cost more
than $300 (the cost of an item is stored in its price attribute). Make sure that each such customer is only
returned once.

Solution

SELECT ssn , name
FROM customers c
WHERE ssn NOT IN (SELECT cust

FROM order o , l i n e i t ems l , i tems i
WHERE o . o id = l . o id

AND l . item = i . item
AND i . p r i c e > 300) ;

DB - Fall 2020: Page 5 (of 16)

Question 1.3 (9 Points)

Write an SQL query that returns for each creditcard type (attribute creditcard of relation customer) and the
item that was ordered the most with this creditcard type. Note that the quantity of lineitems should be taken
into account for calculating the number of times an item was ordered with a particular creditcard type. For
instance, in the example database, item 1 (a TV) was ordered seven time (the first lineitem of order 1 is item
TV with quantity 2 and the first lineitem of order 2 is item TV with quantity 5).

Solution

WITH t imesordered AS (
SELECT i i d , c r ed i t ca rd , sum (quant i ty) AS numordered
FROM customer c , order o , l i n e i t ems l , i tems i
WHERE c . ssn = o . cust AND o . o id = l . o id AND l . item = i . i i d
GROUP BY i i d , c r ed i t c a rd
) ,

maxordered AS (
SELECT max(numordered) AS maxordered , c r ed i t c a rd
FROM t imesordered
GROUP BY c r ed i t c a rd
)

SELECT c r ed i t ca rd , i i d
FROM t imesordered t , maxordered m
WHERE t . numordered = m. maxordered

AND t . c r ed i t c a rd = m. c r ed i t c a rd

DB - Fall 2020: Page 6 (of 16)

Question 1.4 (9 Points)

Write a SQL query that returns the name of the customer with the greatest total order cost. The total order
cost is the sum of the cost of all orders from this customer. The cost of an order is computed as explained in
Question 1.1.

Solution

WITH cu s t c o s t AS (
SELECT name , sum (p r i c e ∗ quant i ty) AS t t l c o s t
FROM customer c , order o , l i n e i t em l , item i
WHERE c . ssn = o . cust AND o . o id = l . o id AND l . item = i . i i d
) ,

maxcust AS (
SELECT max(t t l c o s t) AS maxcost
FROM cu s t c o s t
)

SELECT name
FROM cu s t c o s t WHERE t t l c o s t = (SELECT maxcost FROM maxcust)

DB - Fall 2020: Page 7 (of 16)

Part 2 Relational Algebra (Total: 26 Points)

Question 2.1 Relational Algebra (8 Points)

Write a relational algebra expression over the schema from the SQL part that returns for the number of orders
which contain both a TV and a bookshelf. Use the bag semantics version of relational algebra.

Solution

linewithitem = πoid,desc(lineitem ./item=iid item)
tvandtable = δ(πoid(σdesc=T V (linewithitem))./πoid(σdesc=T V (linewithitem)))

q = γcount(∗)(tvandtable)

DB - Fall 2020: Page 8 (of 16)

Question 2.2 Relational Algebra (6 Points)

Write a relational algebra expression over the schema from the SQL part that returns items which have not been
ordered yet (there is no order with a lineitem with that item). Use the bag semantics version of relational
algebra.

Solution

ordered = πiid(item ./iid=item lineitem)
q = πiid(item)− ordered

DB - Fall 2020: Page 9 (of 16)

Question 2.3 Relational Algebra (12 Points)

Write a relational algebra expression over the schema from the SQL part that returns customers (their ssn)
whose account balance (attribute accbalance) is larger than the cost of each of the customers orders. For
example, if a customer has an account balance of $300 and has issued two orders with cost $250 and $50, then
this customer should be returned because 300 > 250 and 300 > 50. Use the bag semantics version of relational
algebra.

Solution

bal = πssn,accbalance(customer)
ocost = γoid;sum(lcost)→ocost(πoid,price×quantity→lcost(lineitem ./item=iit item))

maxorder = γssn;max(ocost)→maxcost(ocost ./oid=oid orders)
q = πssn(bal ./ssn=ssn∧accbalance>maxcost maxorder)

DB - Fall 2020: Page 10 (of 16)

Part 3 Index Structures (Total: 24 Points)

Question 3.1 B+-tree Operations (24 Points)

Consider the B+-tree shown below (n = 3). Execute the following operations and write down the resulting
B+-tree after each step:

insert(2),insert(3),insert(4),delete(103)

When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split, the left node should get the extra key if the keys cannot
be split evenly.

• Non-Leaf Split: In case a non-leaf node is split evenly, the “middle” value should be taken from the
right node.

• Node Underflow: In case of a node underflow you should first try to redistribute and only if this fails
merge. Both approaches should prefer the left sibling.

20 25 100

1 15 19 20 21 23 25 70 103 500

Solution

DB - Fall 2020: Page 11 (of 16)

insert(2)
25

15 20 100

1 2 15 19 20 21 23 25 70 103 500

insert(3)
25

15 20 100

1 2 3 15 19 20 21 23 25 70 103 500

insert(4)

25

3 15 20 100

1 2 3 4 15 19 20 21 23 25 70 103 500

delete(103)
20

3 15 25

1 2 3 4 15 19 20 21 23 25 70 500

DB - Fall 2020: Page 12 (of 16)

Part 4 I/O Estimation (Total: 18 Points)

Question 4.1 I/O Cost Estimation (12 = 4 + 4 + 4 Points)

Consider two relations R and S with B(R) = 100, 000 and B(S) = 400, 000. You have M = 101 memory pages
available. Compute the number of I/O operations needed to join these two relations using block-nested-loop
join,merge-join (the inputs are not sorted), and hash-join. You can assume that the hash function distributes
keys evenly across buckets. Justify you result by showing the I/O cost estimation for each join method.

Solution
Block Nested-loop:
Use smaller table R as the outer. We get have 1, 000 chunks of size 100. Thus, we get 1, 000× (100 +B(S)) =
400, 100, 000 I/Os.
Merge-join:
Relation R can be sorted with two merge phases resulting in 3∗2∗B(R) = 600, 000 I/Os merging 10 runs in the
last phase. Relation S requires two merge phases, merging 40 runs in the last phase: 3× 2×B(S) = 2, 400, 000
I/Os. The last merge phase of relation S can be combined with the last merge phase of R (10 + 40 = 50 ≤ 100
blocks of memory required). The merge join can be execute during these merge phases avoiding on read of
relations R and S. Without optimizations we get 7∗B(R)+7∗B(S) = 3, 500, 000. If we execute the merge-join
during the last merge phases we get 5 ∗B(R) + 5 ∗B(S) = 2, 500, 000.
Hash-join:
We need two partitioning phases for the partitions of relation R to fit into memory. Thus, the hash-join requires
5 ∗ (B(R) +B(S)) = 2, 500, 000 I/Os.

Question 4.2 External Sorting (6 Points)

Consider a relation R with B(R) = 2, 000, 000. Assume that M = 401 memory pages are available for sorting.
How many I/O operations are needed to sort this relation using no more than M memory pages.

Solution

External sorting requires 2× (1 + dlogM−1(B(R)
M)e)×B(R) = 2× 3× 2, 000, 000 = 12, 000, 000 I/Os.

DB - Fall 2020: Page 13 (of 16)

DB - Fall 2020: Page 14 (of 16)

DB - Fall 2020: Page 15 (of 16)

DB - Fall 2020: Page 16 (of 16)

