
9/12/18

1

CS 525: Advanced Database
Organization

Boris Glavic

06: Even more index
structures

Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

CS 525 Notes 6 - More Indices 1

Recap

• We have discussed
– Conventional Indices
– B-trees
– Hashing
– Trade-offs
–Multi-key indices
–Multi-dimensional indices
• … but no example

CS 525 Notes 6 - More Indices 2

Today

• Multi-dimensional index structures
– kd-Trees (very similar to example before)
– Grid File (Grid Index)
– Quad Trees
– R Trees
– Partitioned Hash
– ...

• Bitmap-indices
• Tries

CS 525 Notes 6 - More Indices 3 CS 525 Notes 5 - Hashing 4

Grid Index
Key 2
X1 X2 …… Xn

V1
V2

Key 1

Vn

To records with key1=V3, key2=X2

CS 525 Notes 5 - Hashing 5

CLAIM

• Can quickly find records with
– key 1 = Vi Ù Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

CS 525 Notes 5 - Hashing 6

CLAIM

• Can quickly find records with
– key 1 = Vi Ù Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

• And also ranges….
– E.g., key 1 ³ Vi Ù key 2 < Xj

http://www-db.stanford.edu/~hector/cs245/notes.htm
http://infolab.stanford.edu/people/hector.html

9/12/18

2

• How do we find entry i,j in linear structure?

CS 525 Notes 5 - Hashing 7

0, 0
0, 1
0, 2
0, 3
1, 0
1, 1
1, 2
1, 3
2, 0
2, 1
2, 2
2, 3
3, 0

i, j position S+0

position S+1
position S+2
position S+3
position S+4

position S+9

pos(i, j) =

max number of
i values N=4

• How do we find entry i,j in linear structure?

CS 525 Notes 5 - Hashing 8

0, 0
0, 1
0, 2
0, 3
1, 0
1, 1
1, 2
1, 3
2, 0
2, 1
2, 2
2, 3
3, 0

i, j position S+0

position S+1
position S+2

position S+3
position S+4

position S+9

pos(i, j) = S + iN + j

max number of
i values N=4

Issue: Cells must be same size,
and N must be constant!

Issue: Some cells may overflow,
some may be sparse...

CS 525 Notes 5 - Hashing 9

Solution: Use Indirection

Buckets
V1
V2
V3 *Grid only
V4 contains

pointers to
buckets

Buckets
--

--

--

--

--

X1 X2 X3

CS 525 Notes 5 - Hashing 10

With indirection:

• Grid can be regular without wasting space
• We do have price of indirection

CS 525 Notes 5 - Hashing 11

Can also index grid on value ranges

Salary Grid

Linear Scale

1 2 3

Toy Sales Personnel

0-20K 1

20K-50K 2

50K- 38

CS 525 Notes 5 - Hashing 12

Grid files

Good for multiple-key search
Space, management overhead

(nothing is free)

Need partitioning ranges that evenly
split keys

+

-

-

9/12/18

3

CS 525 Notes 5 - Hashing 13

Idea:

Key1 Key2

Partitioned hash function

h1 h2

010110 1110010

CS 525 Notes 5 - Hashing 14

<Fred,toy,10k>,<Joe,sales,10k>
<Sally,art,30k>

EX:

Insert

000
001
010
011
100
101
110
111

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.

CS 525 Notes 5 - Hashing 15

EX:

Insert

000
001
010
011
100
101
110
111

<Fred>

<Joe><Sally>

<Fred,toy,10k>,<Joe,sales,10k>
<Sally,art,30k>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.

CS 525 Notes 5 - Hashing 16

EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.
Find Emp. with Dept. = Sales Ù Sal=40k

<Fred>

<Mary>

<Tom><Bill>
<Andy>

CS 525 Notes 5 - Hashing 17

EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.
Find Emp. with Dept. = Sales Ù Sal=40k

<Fred>

<Mary>

<Tom><Bill>
<Andy>

CS 525 Notes 5 - Hashing 18

EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>
<Andy>

9/12/18

4

CS 525 Notes 5 - Hashing 19

EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>
<Andy>

CS 525 Notes 5 - Hashing 20

EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>
<Andy>

CS 525 Notes 5 - Hashing 21

EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>
<Andy>

R-tree

• Nodes can store up to M entries
–Minimum fill requirement (depends on variant)

• Each node rectangle in n-dimensional space
–Minimum Bounding Rectangle (MBR) of its

children
• MBRs of siblings are allowed to overlap
– Different from B-trees

• balanced

CS 525 Notes 6 - More Indices 22

CS 525 Notes 6 - More Indices 23

Data Space

[5-7] [9-15] [13-19]

[20-24] [12-16] [2-4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

R-tree - Search

• Point Search
– Search for p = <xi, yi>
– Keep list of potential nodes
• Needed because of overlap

– Traverse to child if MBR of
child contains p

CS 525 Notes 6 - More Indices 24

9/12/18

5

R-tree - Search

• Point Search
– Search for points in region =

<[xmin- xmax], [ymin -ymax]>
– Keep list of potential nodes
– Traverse to child if MBR of

child overlaps with query
region

CS 525 Notes 6 - More Indices 25 CS 525 Notes 6 - More Indices 26

Data Space

[5-7] [9-15] [13-19]

[20-24] [12-16] [2-4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

Search <5,24>

R-tree - Insert

• Similar to B-tree, but more complex
– Overlap -> multiple choices where to add entry
– Split harder because more choice how to split

node (compare B-tree = 1 choice)

• 1) Find potential subtrees for current node
– Choose one for insert (heuristic, e.g., the one the

would grow the least)
– Continue until leaf is found

CS 525 Notes 6 - More Indices 27

R-tree - Insert

• 2) Insert into leaf
• 3) Leaf is full? -> split
– Find best split (minimum overlap between new

nodes) is hard (O(2M))
– Use linear or quadratic heuristics (original paper)

• 4) Adapt parents if necessary

CS 525 Notes 6 - More Indices 28

R-tree - Delete

• 1) Find leaf node that contains entry
• 2) Delete entry
• 3) Leaf node underflow?
– Remove leaf node and cache entries
– Adapt parents
– Reinsert deleted entries

CS 525 Notes 6 - More Indices 29

Bitmap Index

• Domain of values D = {d1, …, dn}
– Gender {male, female}
– Age {1, …, 120?}

• Use one vector of bits for each value
– One bit for each record
• 0: record has different value in this attribute
• 1: record has this value

CS 525 Notes 6 - More Indices 30

9/12/18

6

Bitmap Index Example

CS 525 Notes 6 - More Indices 31

Name Age Gender
Peter 1 male
Gertrud 2 female
Joe 1 male
Marry 3 female

male female
1 0
0 1
1 0
0 1

1 2 3
1 0 0
0 1 0
1 0 0
0 0 1

Age GenderTodlers

Bitmap Index Example

CS 525 Notes 6 - More Indices 32

Name Age Gender
Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female
1 0

0 1

1 0

0 1

1 2 3
1 0 0

0 1 0

1 0 0

0 0 1

Age GenderTodlers

Find all todlers with age 2 and sex female:
Bitwise-and between vectors

0

1

0

0

Bitmap Index Example

CS 525 Notes 6 - More Indices 33

Name Age Gender
Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female
1 0

0 1

1 0

0 1

1 2 3
1 0 0

0 1 0

1 0 0

0 0 1

Age GenderTodlers

Find all todlers with age 2 or sex female:
Bitwise-or between vectors

0

1

0

1

Compression

• Observation:
– Each record has one value in indexed attribute
– For N records and domain of size |D|
• Only 1/|D| bits are 1

– -> waste of space
• Solution
– Compress data
– Need to make sure that and and or is still fast

CS 525 Notes 6 - More Indices 34

Run length encoding (RLE)

• Instead of actual 0-1 sequence encode length
of 0 or 1 runs

• One bit to indicate whether 0/1 run + several
bits to encode run length

• But how many bits to use to encode a run
length?
– Gamma codes or similar to have variable number

of bits

CS 525 Notes 6 - More Indices 35

RLE Example

CS 525 Notes 6 - More Indices 36

• 0001 0000 1110 1111 (2 bytes)
• 3, 1,4, 3, 1,4 (6 bytes)
• -> if we use one byte to encode a run we have

7 bits for length = max run length is 128(127)

9/12/18

7

Elias Gamma Codes

CS 525 Notes 6 - More Indices 37

• X = 2N + (x mod 2N)
–Write N as N zeros followed by one 1

–Write (x mod 2N) as N bit number

• 18 = 24 + 2 = 000010010

• 0001 0000 1110 1111 (2 bytes)
• 3, 1,4, 3, 1,4 (6 bytes)
• 0111 0010 0011 1001 00 (3 bytes)

Hybrid Encoding

CS 525 Notes 6 - More Indices 38

• Run length encoding
– Can waste space
– And/or run length not aligned to byte/word

boundaries

• Encode some bytes of sequence as is and only
store long runs as run length
– EWAH
– BBC (that’s what Oracle uses)

Extended Word aligned Hybrid (EWAH)

CS 525 Notes 6 - More Indices 39

• Segment sequence in machine words (64bit)
• Use two types of words to encode
– Literal words, taken directly from input sequence
– Run words
• ½ word is used to encode a run
• ½ word is used to encode how many literals follow

0000 0000 0000 0000 0010 1000 1111 1111 1100 0010

0010 0001 0010 1000 1001 0001 1100 0010

Bitmap Indices

CS 525 Notes 6 - More Indices 40

• Fast for read intensive workloads
– Used a lot in datawarehousing

• Often build on the fly during query processing
– As we will see later in class

Trie

• From Retrieval
• Tree index structure
• Keys are sequences of values from a domain D
– D = {0,1}
– D = {a,b,c,….,z}

• Key size may or may not be fixed
– Store 4-byte integers using D = {0,1} (32 elements)
– Strings using D={a,…,z} (arbitrary length)

CS 525 Notes 6 - More Indices 41

Trie

• Each node has pointers to |D| child nodes

– One for each value of D

• Searching for a key k = [d1, …, dn]

– Start at the root

– Follow child for value di

CS 525 Notes 6 - More Indices 42

9/12/18

8

Trie Example

CS 525 Notes 6 - More Indices 43

b

a

r l

l

i

n

Words: bar, ball, in

1

2

3

Search for bald

Fail !

Tries Implementation

• 1) Each node has an array of child pointers
• 2) Each node has a list or hash table of child

pointers
• 3) array compression schemes derived from

compressed DFA representations

CS 525 Notes 6 - More Indices 44

Index structures in the Main Memory
DBMS era

• Larger and large portions of the data fit into
main memory
– Disk I/O no longer the (only) bottleneck
– Highly optimized and specialized operator code
• Difference of the constant factor for full scan versus

index increase
– Increasing amounts of parallelism
• Traditional methods for parallel access to indexes no

longer effective enough
• => Do not use indexes anymore?

CS 525 Notes 6 - More Indices 45

Index structures in the Main Memory
DBMS era

• Solutions
–More Light-weight and coarse-grained data

structures
– Use data-structures that have less parallelization

bottle-necks

CS 525 Notes 6 - More Indices 46

Index structures in the Main Memory
DBMS era

• Solutions
–More Light-weight and coarse-grained data

structures, e.g.:
• Data skipping (small materialized aggregates)
• Database cracking

– Use data-structures that have less parallelization
bottle-necks, e.g.,
• Skip lists
• Bw-trees

CS 525 Notes 6 - More Indices 47

Data skipping
• Consider a relation stored in an unsorted

page file
– Regular DBMS
– HDFS parquet file
– …

• Main idea of data skipping
– For each page store min/max values of

each attribute
• To evaluate a selection predicate on

attribute A say c1 <= A <= c2
– if for page P: Amax < c1 or Amin > c2 then

none of the tuples on that page will qualify
and we can skip reading this page

CS 525 Notes 6 - More Indices 48

R
A B C
a 1 10
b 5 20
c 2 10
d 2 35
e 3 45
f 4 40

9/12/18

9

Database cracking
• Main rationale
– Originally designed for columnar databases
– The amount of indexing effort we spend for a part of the

key space should be based on how frequently this part of
the keyspace is accessed

• Basic idea
– Start with an unsorted file
– Whenever a query applies a selection condition on a

column A, say A< 50, then split the current partition
containing 50 into two fragments one with data < 50 and
one with the remaining data (partial sort)

– Keep a small in-memory tree index for these fragments

CS 525 Notes 6 - More Indices 49

Database cracking

CS 525 Notes 6 - More Indices 50

From Database Cracking – CIDR 2007

Skip lists

• Probabilistic datastructure

– Behavior depends on randomization

– Gives only probabilistic guarantees

• => with high probability will guarantee good
performance

– Approximates a search tree using the much

simpler (and easier to parallelize linked list
datastructure)

CS 525 Notes 6 - More Indices 51

Skip lists

CS 525 Notes 6 - More Indices 52

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Skip lists

CS 525 Notes 6 - More Indices 53

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 54

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Search 5

9/12/18

10

Skip lists

CS 525 Notes 6 - More Indices 55

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 56

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 57

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 58

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 59

• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists

CS 525 Notes 6 - More Indices 60

• Insert:
• Use search to find insertion position at the lowest level (keep pointers at the

higher levels)
• Insert element in the lowest list
• Then for every level throw a dice and insert key with probability p (typically

½)

Observation: in expectation each level has p as many nodes as the next lower
level

9/12/18

11

Skip lists

• Characteristics
– O(log(n)) expected performance (insert, delete,

search)
– Easy to parallelize (linked lists)
– Simpler to implement (also less CPU ops) than B-trees

• Example implementations
– MemSQL (main memory database system)
– Lucene
– leveldb

CS 525 Notes 6 - More Indices 61

Improving insert/update performance

• B-tree
– O(log(n)) I/O

• Hash-index
– O(1) I/O, but potential reorg cost

• Consider Key-value store (e.g., Cassandra)
application
– Need fast write-throughput
– Need fast point-lookup

CS 525 Notes 6 - More Indices 62

One Solution: LSM-trees
• Log-structured merge (LSM) trees

– Have small index that is memory resident (memtable)
– When memtable exceeds a size threshold write it as one sorted run to

disk (will explain algorithm when talking about query execution)
• Sequential I/O!
• Runs are immutable after being written (exception compaction)
• Runs may contain outdated values for keys that exist in newer runs of the

memtable
• Over time me we have multiple sorted runs

– Inserts/Updates
• Always applied to memtable

– Lookup
• If we find a key in the memtable then return it
• Otherwise lookup keys in the sorted runs in reverse chronological order

CS 525 Notes 6 - More Indices 63

LSM-trees

• Performance
– Inserts/Updates
• O(1)!

– Lookup
• O(#runs)
• => want to make sure the number of runs does not

grow indefinitely

• Compaction
–Merge sorted runs on disks to reduce #runs =>

improve lookup performance

CS 525 Notes 6 - More Indices 64

Basic Compaction

CS 525 Notes 6 - More Indices 65

• Have levels
– Once there are more then x runs on a level these

are merged into one larger run
– Run sizes increase exponentially per level

• E.g., threshold is 4 runs
– first level: runs are of same size as memtable
– 2nd level: 4 * size of memtable
– 3rd level: 4 * 4 * size of memtable
– …

LSM-trees

• Other lookup improvements
– Block index in memory (similar to sparse index)
– Bloomfilters
• A bloom filter is a small over-approximation of set

– Can be used to test if a key K is contained in a set S
» Returns yes, then the key may be in the set
» Returns no, then the key is guaranteed to not be in the

set

• => fast way to avoid looking a runs that are guaranteed
to not contain a key

CS 525 Notes 6 - More Indices 66

9/12/18

12

Bw-trees

• Motivation
– Improve concurrency properties of B-trees
– Improve cache effectiveness of B-trees
– Designed for flash-storage
• Fast random/sequential reads
• Fast sequential writes
• Comparably slower random writes (albeit smaller factor

CS 525 Notes 6 - More Indices 67

Bw-trees

• Overview
– Updateable B-tree without latches
• Threads almost never block

– => Improved instruction cache performance

– Backed up by log-structured storage
– Updates never modify pages but append deltas to

a page
• Deltas are “installed” using CAS (atomic compare and

swap)

CS 525 Notes 6 - More Indices 68

Bw-trees
• Mapping table

• Pages are logical identified by a LPID which is stable
• Locations and size of pages can change over time
• Updates create a delta record that points to the previous

address of the page
• The delta record’s address is swapped for the current

address in the mapping table using CAS

CS 525 Notes 6 - More Indices 69

Bw-trees
• Making page splits atomic

CS 525 Notes 6 - More Indices 70

CS 525 Notes 5 - Hashing 71

Discussion:
- Conventional Indices
- B-trees
- Hashing (extensible, linear)
- SQL Index Definition
- Index vs. Hash
- Multiple Key Access
- Multi Dimensional Indices

Variations: Grid, R-tree,
- Partitioned Hash
- Bitmap indices and compression
- Tries
- Database cracking
- Data skipping (small materialized aggregates/zone maps)
- Skip-lists
- Log-structured merge trees (LSM)

Summary

