
Name CWID

Quiz
2

Due April 10th, 2023

CS525 - Advanced Database
Organization

Please leave this empty! 1 2 3 4 5 6 7

Sum

Instructions
• Multiple choice questions are graded in the following way: You get points for correct answers and points

subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 3 parts in this quiz

1. Disk Organization and Buffering
2. Index Structures
3. Result Size Estimations
4. I/O Cost Estimation
5. Schedules
6. ARIES (Optional)
7. Physical Optimization (Optional)

DB - Spring 2023: Page 2 (of 22)

Part 1 Disk Organization and Buffer Management (Total: 14 Points)

Question 1.1 Page Replacement Clock (14 Points)

Consider a buffer pool with 4 pages using the Clock page replacement strategy. Initially the buffer pool is in
the state shown below. We use the following notation flag[page]dirty

fix to denote the state of each buffer frame.
page is the number of the page in the frame, fix is its fix count, dirty is indicating with an Asterix that the
page is dirty, and flag is the reference bit used by the Clock algorithm. E.g., 1[5]∗2 denotes that the frame stores
page 5 with a fix count 2, that the page is dirty, and that the reference bit is set to 1. Recall that Clock uses a
pointer S that points to the current page frame (the one to be checked for replacement next). The page frame
S is pointing to is indicated by by ↓.
The solution should be provided in the file q1_1_clock.txt. In this file you need to write down the buffer pool
state after each operation. In this file comments start with --. A buffer pool state starts with the keyword
POOL: followed by the states of each page frame. The clock points is written as a prefix for the page frame it
is pointing too as ->. A frame’s state 1[17]∗0 is written as [17, fix: 0, dirty: 1, clockflag: 1]. For
example, consider the example buffer state shown below:

Example Buffer State
↓

1[17]1 , 1[1]0 , 1[12]∗1 , 0[16]∗0

Corresponding Textual Representation

POOL:
-> [17, fix: 1, dirty: 0, clockflag: 1],

[1, fix: 0, dirty: 0, clockflag: 1],
[12, fix: 1, dirty: 1, clockflag: 1],
[16, fix: 0, dirty: 1, clockflag: 0]

Current Buffer State

↓
0[11]2 , 1[13]1 , 0[16]∗0 , 1[14]1

Execute the following requests and write down state of the buffer pool after each request.

• p stands for pin

• u for unpin

• d for marking a page as dirty

pin(12),unpin(12),unpin(13),pin(18),unpin(11),unpin(11),pin(8)

DB - Spring 2023: Page 3 (of 22)

Part 2 B-Trees Structures (Total: 18 Points)

This part is autograded. You have to provide the solutions for the two questions as files q2_1_btree_inserts.txt
and q2_2_btree_operations.txt. In these files comments are lines that start with --. A btree starts with
the keyword BTREE. Each node needs to be written on a separate line and consists of comma-separated list of
keys. Key slots that are empty have to be written as NULL. The depth of a node in the tree is indicated by
prefixing the node with a number of tabs (\t) equal to its depth. Note that the depth of a node is solely
determined by the number of tab characters that precede it, spaces are ignored! The children of a
node immediately follow that node. As an example, consider the B+-tree shown below.

8

4 10 50

1 3 4 7 8 9 10 13 50 56

BTREE
[8,NULL,NULL]

[4,NULL,NULL]
[1,3,NULL]
[4,7,NULL]

[10,50,NULL]
[8,9,NULL]
[10,13,NULL]
[50,56,NULL]

Question 2.1 Construction (9 Points)

Assume that you have the following table:

Student
name points credits

Andrea Huggler 24 7.9
Kitty Hammoud 29 1.2
Aydan Blomstedt 3 5.8

Lola Platel 9 1.1
Lyle Dement 20 8.6
Tod Bangma 6 2.6

Scarlett Menconi 14 9.1
Merrill Norland 8 5.8
Floyd Mitera 16 0.8

Create a B+-tree for table Student over attribute points with n = 2 (up to two keys per node). You should start
with an empty B+-tree and insert the keys in the order shown in the table above. Write down the resulting
B+-tree after each step.

When splitting or merging nodes follow these conventions:

DB - Spring 2023: Page 4 (of 22)

• Leaf Split: In case a leaf node needs to be split during insertion and n is even, the left node should get
the extra key. E.g, if n = 2 and we insert a key 4 into a node [1,5], then the resulting nodes should be
[1,4] and [5]. For odd values of n we can always evenly split the keys between the two nodes. In both
cases the value inserted into the parent is the smallest value of the right node.

• Non-Leaf Split: In case a non-leaf node needs to be split and n is odd, we cannot split the node evenly
(one of the new nodes will have one more key). In this case the “middle” value inserted into the parent
should be taken from the right node. E.g., if n = 3 and we have to split a non-leaf node [1,3,4,5], the
resulting nodes would be [1,3] and [5]. The value inserted into the parent would be 4.

• Node Underflow: In case of a node underflow you should first try to redistribute values from a sibling
and only if this fails merge the node with one of its siblings. Both approaches should prefer the left sibling.
E.g., if we can borrow values from both the left and right sibling, you should borrow from the left one.

DB - Spring 2023: Page 5 (of 22)

Question 2.2 Operations (9 Points)

Given is the B+-tree shown below (n = 4). Execute the following operations and write down the resulting
B+-tree after each operation:

insert(15),delete(79),delete(29),insert(72),insert(37),delete(15),delete(58),insert(93),delete(82)
Use the conventions for splitting and merging introduced in the previous question.

40 69 79 97

2 3 13 29 40 46 58 69 77 79 82 96 97 100

DB - Spring 2023: Page 6 (of 22)

DB - Spring 2023: Page 7 (of 22)

DB - Spring 2023: Page 8 (of 22)

Part 3 Extensible Hashing (Total: 18 Points)

Question 3.1 Extensible Hashing (18 Points)

Solutions for this question have to be written in the provided text file extensible_hashing.txt and uploaded
to diderot. The format of the file is a list of extensible hash tables (the state of the hash table after each of the
operations. A hash table starts with the key word EHASH on a separate line. Buckets are written on separate
lines starting with a list of directory entries that the buckets belongs to, followed by the depth of the bucket
(e.g., depth:1), and finally the list of entries (hash values and keys) stored in the bucket (e.g., [0000: 3,
0001: 5]). Comments start with --. For example, the code below defines a hash table with directory depth
of 1 (one bit) and two buckets, one with key 6 and 5 (hash 0101 and 0100) and a second one with key 4 (hash
1100). Note that for overflow buckets you list all overflow buckets for a bucket on the same line.

EHASH
[0] depth: 1 [0101:6, 0100: 5]
[1] depth: 1 [1100:4]

Consider the extensible Hash index shown below that is the result of inserting values 0,6,11. Each page holds
two keys. Execute the following operations
insert(5),insert(7),insert(9),insert(12),insert(4),insert(8),insert(2)

and write down the resulting index after each operation. Assume the hash function is defined as:
x h(x)
0 1110
1 1100
2 1100
3 0010
4 0000
5 1001
6 0100
7 0001
8 0011
9 1011
10 1001
11 1010
12 0001

0 1

0100 1110 1010

DB - Spring 2023: Page 9 (of 22)

DB - Spring 2023: Page 10 (of 22)

DB - Spring 2023: Page 11 (of 22)

Part 4 Result Size Estimations (Total: 20 Points)

Consider the city connection database shown below and the following statistics:

T (city) = 200 T (road) = 4000 T (train) = 3000
V (city, name) = 200 V (road, from) = 200 V (train, from) = 200
V (city, state) = 50 V (road, to) = 200 V (train, to) = 200

V (city, population) = 200 V (road, distance) = 2000 V (train, distance) = 600

The min and max values for some of the columns are:

min(city, population) = 100, 000 max(city, population) = 3, 000, 000
min(road, distance) = 1 max(road, distance) = 530

min(train, distance) = 1 max(train, distance) = 1200

Question 4.1 Estimate Result Size (4 Points)

Estimate the number of result tuples for the query q = σstate=IL∧population=200000(city) using the first assump-
tion presented in class (values used in queries are uniformly distributed within the active domain).

Question 4.2 Estimate Result Size (5 Points)

Estimate the number of result tuples for the query q = σfrom=Chicago∨distance<100(road) using the first assump-
tion presented in class.

DB - Spring 2023: Page 12 (of 22)

Question 4.3 Estimate Result Size (5 Points)

Estimate the number of result tuples for the query q = σ(from=Chicago∨(to=Chicago∧distance>800)(train) using
the first assumption presented in class.

Question 4.4 Estimate Result Size (6 Points)

Estimate the number of result tuples for the query

q = πname,sto(city ▷◁name=from road ▷◁to=tname ρtcity,tstate,tpopulation(city) ▷◁tname=sfrom ρsfrom,sto,sdistance(road))

using the first assumption presented in class.

DB - Spring 2023: Page 13 (of 22)

DB - Spring 2023: Page 14 (of 22)

Part 5 I/O Cost Estimation (Total: 20 Points)

Question 5.1 External Sorting (4 Points)

You have M = 65 memory pages available and should sort a relation R with B(R) = 3, 500, 000, 000 blocks.
Compute the number of I/Os necessary to sort R using the external merge sort algorithm introduced in class.

Question 5.2 External Sorting (4 Points)

You have M = 5 memory pages available and should sort a relation R with B(R) = 4, 500 blocks. Compute the
number of I/Os necessary to sort R using the external merge sort algorithm introduced in class.

Question 5.3 I/O Cost Estimation (6 = 2+2+2 Points)

Consider two relations R and S with B(R) = 30, 000 and B(S) = 1, 200, 000. You have M = 101 memory
pages available. Estimate the minimum number of I/O operations needed to join these two relations using
block-nested-loop join, merge-join (the inputs are not sorted), and hash-join. You can assume that the
hash function evenly distributes keys across buckets. Justify you result by showing the I/O cost estimation for
each join method.

DB - Spring 2023: Page 15 (of 22)

Question 5.4 I/O Cost Estimation (6 = 2+2+2 Points)

Consider two relations R and S with B(R) = 150, 000 and B(S) = 200, 000. You have M = 65 memory pages
available. Compute the minimum number of I/O operations needed to join these two relations using block-
nested-loop join, merge-join (the inputs are not sorted), and hash-join. You can assume that the hash
function evenly distributes keys across buckets. Justify you result by showing the I/O cost estimation for each
join method.

DB - Spring 2023: Page 16 (of 22)

Part 6 Schedules (Total: 20 Points)

Multiple choice questions are autograded. The solutions for this question should be submitted in a file
q6_schedules.txt. For your convenience the questions are already in the file, Just mark correct answers
using [X] and keep wrong answers empty ([]).

[X] this is a yes answer
[] this is a wrong answer

Question 6.1 Schedule Classes (20 Points)

Indicate which of the following schedules belong to which class. Recall transaction operations are modelled as
follows:

w1(A) transaction 1 wrote item A
r1(A) transaction 1 read item A

c1 transaction 1 commits
a1 transaction 1 aborts

S1 = w1(C), r4(D), w4(B), w4(D), r4(A), w2(A), w4(E), r1(B), w2(A), w4(E), r1(B), w1(A), w2(B), c2, w3(D), c3, c4, c1

S2 = r1(B), r3(C), w3(A), w2(B), r1(A), c1, c3, r4(B), r4(A), w4(C), c4, c2

S3 = w4(B), w3(D), r2(C), w1(A), w2(A), c2, r4(D), c4, w3(C), c3, w1(B), c1

S4 = w3(C), w3(D), w4(A), w4(B), w1(A), w2(C), w4(E), w1(B), w2(D), w1(E), c1, c2, c3, c4

DB - Spring 2023: Page 17 (of 22)

Part 7 Optional: ARIES (Total: 10 Optional Points)

Question 7.1 Recovery (10 Points)

Consider the state of the log and pages on disk shown below. For simplicity we do not show the actual undo/redo
actions for updates, but instead show only the affected page. Assume a crash occurred after the last log entry.
Answer the following questions:

1. Analysis: Write down the result of the analysis phase (RedoLSN, Transaction Table, Dirty Page Table)

2. Redo: Which pages will be loaded from disk during redo? Which pages will be modified during redo?

3. Undo: Write down the additional log entries that will be written during undo.

The solution should be provided in a file q7_aries. In this file comments start with --. The results of the
three phases are prefixed by ANALYSIS, REDO, and NEWLOG. An example is shown below.

ANALYSIS: For the results of the analysis phase, write down the redo LSN (RedoLSN: X). The transaction table
is given as a comma-separated list of entries of the form <Tx, STATE, PrevLSN, UndoNxtLSN> (missing entries
are represented as empty strings). The dirty page table is written as a comma-separated list of entries of the
form <page, RecLSN>.

REDO: For the redo phase provide the pages to be loaded and the pages that will get modified as separate lists
of the form [NUMBER, ...].

NEWLOG: The new log entries are a list of entries (space separated) of the form [LSN: lsn, Type: recordtype, TID: transaction_id, PrevLSN: NUMBER, UndoNxtLSN: NUMBER?, DataPage: NUMBER?].
As above missing entries should be written using whitespace.

As an example consider the following analysis result and the corresponding file content:

(Analysis):
RedoLSN: 2
Transaction Table: < T2, u, 6, − >, < T3, u, 8, − >, < T4, u, 12, − >
Dirty Page Table: < 1, 2 >, < 3, 5 >

(Redo):
Pages 1 and 3 have to be loaded from disk.
Only page 1 will be modified based on redo info from log entries 2, 3, 6, 7, and 12.

(New log entries):
Transactions T2, T3, and T4 will be rolled back. The CLRs written during undoing these transactions’ updates
is shown below.

LSN Type TID PrevLSN UndoNxtLSN Data
13 CLR 4 12 - Page 1
14 CLR 2 6 - Page 1

DB - Spring 2023: Page 18 (of 22)

-- **
-- ANALYSIS RESULT
-- **

ANALYSIS
RedoLSN: 2
TransactionTable: <T2, u, 6, > <T3, u, 8, > <T4, u, 12, >
DirtyPageTable: <1,2> <3,5>

-- **
-- REDO
-- **

REDO
load pages: [1, 3]
modified pages: [2, 3, 6, 7, 12]

-- **
-- NEW LOG ENTRIES GENERATED DURING RECOVERY
-- **

NEWLOG
[LSN: 13, Type: CLR, TID: 4, PrevLSN: 12, UndoNxtLSN: , DataPage: 1]
[LSN: 14, Type: CLR, TID: 2, PrevLSN: 6, UndoNxtLSN: , DataPage: 1]

Log

LSN Type TID PrevLSN UndoNxtLSN
Data

1 begin 1 - - -
2 update 1 1 - Page 1
3 update 1 2 - Page 1
4 begin 2 - - -
5 update 3 - - Page 3
6 update 2 4 - Page 1
7 update 3 5 - Page 1
8 begin 4 - - -
9 begin_cp - - - -
10 commit 3 7 - -
11 update 4 8 - Page 4
12 update 4 11 - Page 1

Disk

PageID PageLSN
1 3
2 0
3 0
4 11
5 0

DB - Spring 2023: Page 19 (of 22)

DB - Spring 2023: Page 20 (of 22)

Part 8 Bonus: Physical Optimization (Total: 10 Bonus Points)

Consider the following relations R(A, B), S(C, D), T (E, F) with S = 1
10 (10 tuples fit on each page). The sizes

and value distributions are:

T (R) = 10, 000 V (R, A) = 10, 000 V (R, B) = 50
T (S) = 50, 000 V (S, C) = 100 V (S, D) = 25, 000
T (T) = 30 V (T, E) = 10 V (T, F) = 3

Question 8.1 Greedy Join Enumeration (10 Points)

Use the greedy join enumeration algorithm to find the cheapest plan for the join R ▷◁B=C S ▷◁D=E T . Assume
that nested-loop (not the block based version) is the only available join implementation with the left input
being the “outer” (for each tuple from the outer we have to scan the whole inner relation). Furthermore, there
are no indicies defined on any of the relations (that is you have to use sequential scan for each of the relations).
As a cost model consider the total number of I/O operations. For example, if you join two relations with
5, 000 and 10, 000 tuples with S = 1

10 , where the 5, 000 tuple relation is the outer, then the cost would be
5, 000, 000 (scan the inner 5000 times) + 500 to scan the other once. The total cost is then 5, 000, 500 I/Os.
Assume that the system supports pipelining for the outer input of a join. That is if you join the result of a
join with a relation where the join result is the outer, then there is no I/O cost for scaning the outer. Also
under these assumptions you never have to store join results to disk. Hint: You will have to estimate the size
of intermediate results. Use the estimation based on the number of values and not the one based on the size of
the domain. Use the assumption that the number of values in a join attribute of a join result is the minimum
of the number of values in the join attribute of each input.
Write down the state (the current plans) after each iteration of the algorithm in file q8_joinenum.txt. In this
file comments start with --. The state for an iteration starts with the keyword ITERATION. A plan consists of
three parts: an algebra tree (separated by : from the next part), the expected number of result tuples (separated
by ; from the next part) and the expected total cost (I/Os) for the plan. An algebra tree (expression) uses the
key word JOIN to indicate joins and uses parentheses to indicate the order of joins, e.g., R JOIN (S JOIN T)
represents the plan which joins R with the result of joining S with T. An example result is shown below.

-- FIRST ITERATION

ITERATION

R: 300; 30
S: 100; 10
T: 100; 10

-- SECOND ITERATION

ITERATION

(R JOIN S): 3000; 300
T: 100; 10

-- THIRD ITERATION

ITERATION
((R JOIN S) JOIN T): 30; 100543

DB - Spring 2023: Page 21 (of 22)

DB - Spring 2023: Page 22 (of 22)

