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CS 525: Advanced Database 
Organization

Boris Glavic

06: Even more index
structures

Slides: adapted from a course taught by 
Hector Garcia-Molina, Stanford InfoLab
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Recap

• We have discussed
– Conventional Indices
– B-trees
– Hashing
– Trade-offs
–Multi-key indices
–Multi-dimensional indices
• … but no example
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Today

• Multi-dimensional index structures
– kd-Trees (very similar to example before)
– Grid File (Grid Index)
– Quad Trees
– R Trees
– Partitioned Hash
– ...

• Bitmap-indices
• Tries
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Grid Index
Key 2
X1  X2 ……                Xn

V1
V2

Key 1

Vn

To records with key1=V3, key2=X2
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CLAIM

• Can quickly find records with
– key 1 = Vi Ù Key 2 = Xj

– key 1 = Vi

– key 2 = Xj
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CLAIM

• Can quickly find records with
– key 1 = Vi Ù Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

• And also ranges….
– E.g.,   key 1 ³ Vi Ù key 2 < Xj

http://www-db.stanford.edu/~hector/cs245/notes.htm
http://infolab.stanford.edu/people/hector.html
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• How do we find entry i,j in linear structure?
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0, 0
0, 1
0, 2
0, 3
1, 0
1, 1
1, 2
1, 3
2, 0
2, 1
2, 2
2, 3
3, 0

i, j position S+0

position S+1
position S+2
position S+3
position S+4

position S+9

pos(i, j) = 

max number of
i values N=4

• How do we find entry i,j in linear structure?
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0, 0
0, 1
0, 2
0, 3
1, 0
1, 1
1, 2
1, 3
2, 0
2, 1
2, 2
2, 3
3, 0

i, j position S+0

position S+1
position S+2

position S+3
position S+4

position S+9

pos(i, j) = S + iN + j 

max number of
i values N=4

Issue: Cells must be same size,
and N must be constant!

Issue: Some cells may overflow,
some may be sparse...
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Solution: Use Indirection

Buckets
V1
V2
V3 *Grid only
V4 contains

pointers to
buckets

Buckets
--
----

--
----

--
----

--
----

--
----

X1   X2   X3
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With indirection:

• Grid can be regular without wasting space
• We do have price of indirection
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Can also index grid on value ranges

Salary Grid

Linear Scale

1 2 3

Toy Sales Personnel

0-20K 1

20K-50K 2

50K- 38
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Grid files

Good for multiple-key search
Space, management overhead

(nothing is free)

Need partitioning ranges that evenly
split keys

+

-

-
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Idea:

Key1 Key2

Partitioned hash function

h1 h2

010110 1110010
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<Fred,toy,10k>,<Joe,sales,10k>
<Sally,art,30k>

EX:

Insert

000
001
010
011
100
101
110
111

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.
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EX:

Insert

000
001
010
011
100
101
110
111

<Fred>

<Joe><Sally>

<Fred,toy,10k>,<Joe,sales,10k>
<Sally,art,30k>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.
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EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.
Find Emp. with Dept. = Sales  Ù Sal=40k

<Fred>

<Mary>

<Tom><Bill>
<Andy>
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EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

.
Find Emp. with Dept. = Sales  Ù Sal=40k

<Fred>

<Mary>

<Tom><Bill>
<Andy>
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EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>
<Andy>
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EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Sal=30k

<Fred>

<Mary>

<Tom><Bill>
<Andy>
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EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>
<Andy>
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EX:
000
001
010
011
100
101
110
111

<Joe><Jan>

<Sally>

h1(toy) =0
h1(sales) =1
h1(art) =1

.
h2(10k) =01
h2(20k) =11
h2(30k) =01
h2(40k) =00

. Find Emp. with Dept. = Sales

<Fred>

<Mary>

<Tom><Bill>
<Andy>

R-tree

• Nodes can store up to M entries
–Minimum fill requirement (depends on variant)

• Each node rectangle in n-dimensional space
–Minimum Bounding Rectangle (MBR) of its 

children
• MBRs of siblings are allowed to overlap
– Different from B-trees

• balanced
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Data Space

[5-7] [9-15] [13-19]

[20-24] [12-16] [2-4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

R-tree - Search

• Point Search
– Search for p = <xi, yi>
– Keep list of potential nodes
• Needed because of overlap

– Traverse to child if MBR of 
child contains p
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R-tree - Search

• Point Search
– Search for points in region = 

<[xmin- xmax], [ymin -ymax]>
– Keep list of potential nodes
– Traverse to child if MBR of 

child overlaps with query 
region
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Data Space

[5-7] [9-15] [13-19]

[20-24] [12-16] [2-4]

[5] [6] [7]

[24] [20] [24]

[9] [11] [15]

[15] [16] [12]

[13] [14] [18] [19]

[4] [2] [2] [3]

Search <5,24>

R-tree - Insert

• Similar to B-tree, but more complex
– Overlap -> multiple choices where to add entry
– Split harder because more choice how to split 

node (compare B-tree = 1 choice)

• 1) Find potential subtrees for current node
– Choose one for insert (heuristic, e.g., the one the 

would grow the least)
– Continue until leaf is found
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R-tree - Insert

• 2) Insert into leaf
• 3) Leaf is full? -> split 
– Find best split (minimum overlap between new 

nodes) is hard (O(2M))
– Use linear or quadratic heuristics (original paper)

• 4) Adapt parents if necessary
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R-tree - Delete

• 1) Find leaf node that contains entry
• 2) Delete entry
• 3) Leaf node underflow? 
– Remove leaf node and cache entries
– Adapt parents
– Reinsert deleted entries
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Bitmap Index

• Domain of values D = {d1, …, dn}
– Gender {male, female}
– Age {1, …, 120?}

• Use one vector of bits for each value
– One bit for each record
• 0: record has different value in this attribute
• 1: record has this value
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Bitmap Index Example
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Name Age Gender
Peter 1 male
Gertrud 2 female
Joe 1 male
Marry 3 female

male female
1 0
0 1
1 0
0 1

1 2 3
1 0 0
0 1 0
1 0 0
0 0 1

Age GenderTodlers

Bitmap Index Example
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Name Age Gender
Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female
1 0

0 1

1 0

0 1

1 2 3
1 0 0

0 1 0

1 0 0

0 0 1

Age GenderTodlers

Find all todlers with age 2 and sex female:
Bitwise-and between vectors

0

1

0

0

Bitmap Index Example
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Name Age Gender
Peter 1 male

Gertrud 2 female

Joe 1 male

Marry 3 female

male female
1 0

0 1

1 0

0 1

1 2 3
1 0 0

0 1 0

1 0 0

0 0 1

Age GenderTodlers

Find all todlers with age 2 or sex female:
Bitwise-or between vectors

0

1

0

1

Compression

• Observation:
– Each record has one value in indexed attribute
– For N records and domain of size |D|
• Only 1/|D| bits are 1

– -> waste of space
• Solution
– Compress data
– Need to make sure that and and or is still fast

CS 525 Notes 6 - More Indices 34

Run length encoding (RLE)

• Instead of actual 0-1 sequence encode length 
of 0 or 1 runs

• One bit to indicate whether 0/1 run + several 
bits to encode run length

• But how many bits to use to encode a run 
length?
– Gamma codes or similar to have variable number 

of bits
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RLE Example

CS 525 Notes 6 - More Indices 36

• 0001 0000 1110 1111 (2 bytes)
• 3,   1,4,       3,   1,4 (6 bytes)
• -> if we use one byte to encode a run we have 

7 bits for length = max run length is 128(127)
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Elias Gamma Codes
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• X = 2N + (x mod 2N)
–Write N as N zeros followed by one 1

–Write (x mod 2N) as N bit number

• 18 = 24 + 2 = 000010010

• 0001 0000 1110 1111 (2 bytes)
• 3,   1,4,       3,   1,4 (6 bytes)
• 0111 0010 0011 1001 00 (3 bytes)

Hybrid Encoding
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• Run length encoding
– Can waste space
– And/or run length not aligned to byte/word 

boundaries

• Encode some bytes of sequence as is and only 
store long runs as run length
– EWAH
– BBC (that’s what Oracle uses)

Extended Word aligned Hybrid (EWAH)
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• Segment sequence in machine words (64bit)
• Use two types of words to encode
– Literal words, taken directly from input sequence
– Run words
• ½ word is used to encode a run
• ½ word is used to encode how many literals follow

0000 0000 0000 0000 0010 1000 1111 1111 1100 0010

0010 0001 0010 1000 1001 0001 1100 0010

Bitmap Indices
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• Fast for read intensive workloads
– Used a lot in datawarehousing

• Often build on the fly during query processing
– As we will see later in class

Trie

• From Retrieval
• Tree index structure
• Keys are sequences of values from a domain D
– D = {0,1}
– D = {a,b,c,….,z}

• Key size may or may not be fixed
– Store 4-byte integers using D = {0,1} (32 elements)
– Strings using D={a,…,z} (arbitrary length)
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Trie

• Each node has pointers to |D| child nodes

– One for each value of D

• Searching for a key k = [d1, …, dn]

– Start at the root

– Follow child for value di
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Trie Example
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b

a

r l

l

i

n

Words: bar, ball, in

1

2

3

Search for bald

Fail !

Tries Implementation

• 1) Each node has an array of child pointers
• 2) Each node has a list or hash table of child 

pointers
• 3) array compression schemes derived from 

compressed DFA representations
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Index structures in the Main Memory 
DBMS era

• Larger and large portions of the data fit into 
main memory
– Disk I/O no longer the (only) bottleneck
– Highly optimized and specialized operator code
• Difference of the constant factor for full scan versus 

index increase
– Increasing amounts of parallelism
• Traditional methods for parallel access to indexes no 

longer effective enough
• => Do not use indexes anymore?

CS 525 Notes 6 - More Indices 45

Index structures in the Main Memory 
DBMS era

• Solutions
–More Light-weight and coarse-grained data 

structures
– Use data-structures that have less parallelization 

bottle-necks
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Index structures in the Main Memory 
DBMS era

• Solutions
–More Light-weight and coarse-grained data 

structures, e.g.:
• Data skipping (small materialized aggregates)
• Database cracking 

– Use data-structures that have less parallelization 
bottle-necks, e.g., 
• Skip lists
• Bw-trees
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Data skipping
• Consider a relation stored in an unsorted 

page file
– Regular DBMS
– HDFS parquet file
– …

• Main idea of data skipping
– For each page store min/max values of 

each attribute
• To evaluate a selection predicate on 

attribute A say c1 <= A <= c2
– if for page P: Amax < c1 or Amin > c2 then 

none of the tuples on that page will qualify 
and we can skip reading this page
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R
A  B  C
a  1  10
b  5 20
c  2  10
d  2  35
e  3  45
f   4  40
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Database cracking
• Main rationale
– Originally designed for columnar databases
– The amount of indexing effort we spend for a part of the 

key space should be based on how frequently this part of 
the keyspace is accessed

• Basic idea
– Start with an unsorted file
– Whenever a query applies a selection condition on a

column A, say A< 50, then split the current partition 
containing 50 into two fragments one with data < 50 and 
one with the remaining data (partial sort)

– Keep a small in-memory tree index for these fragments
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Database cracking
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From Database Cracking – CIDR 2007

Skip lists

• Probabilistic datastructure

– Behavior depends on randomization

– Gives only probabilistic guarantees

• => with high probability will guarantee good 
performance

– Approximates a search tree using the much 

simpler (and easier to parallelize linked list 
datastructure)
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Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Search 5
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Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists
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• Search:
• Start from the top list
• 1) Move through list until element is found or we are at a larger 

element/end of the list
• 2) move to previous element (smaller than search key) and follow a down 

pointer to the next deeper level
• 3) Goto 1)

Search 5

Skip lists
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• Insert:
• Use search to find insertion position at the lowest level (keep pointers at the 

higher levels)
• Insert element in the lowest list
• Then for every level throw a dice and insert key with probability p (typically 

½)

Observation: in expectation each level has p as many nodes as the next lower 
level  
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Skip lists

• Characteristics
– O(log(n)) expected performance (insert, delete, 

search)
– Easy to parallelize (linked lists)
– Simpler to implement (also less CPU ops) than B-trees

• Example implementations
– MemSQL (main memory database system)
– Lucene
– leveldb
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Improving insert/update performance

• B-tree
– O(log(n)) I/O

• Hash-index
– O(1) I/O, but potential reorg cost

• Consider Key-value store (e.g., Cassandra) 
application
– Need fast write-throughput
– Need fast point-lookup
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One Solution: LSM-trees
• Log-structured merge (LSM) trees

– Have small index that is memory resident (memtable)
– When memtable exceeds a size threshold write it as one sorted run to 

disk (will explain algorithm when talking about query execution)
• Sequential I/O!
• Runs are immutable after being written (exception compaction)
• Runs may contain outdated values for keys that exist in newer runs of the 

memtable
• Over time me we have multiple sorted runs

– Inserts/Updates
• Always applied to memtable

– Lookup
• If we find a key in the memtable then return it
• Otherwise lookup keys in the sorted runs in reverse chronological order
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LSM-trees

• Performance
– Inserts/Updates
• O(1)!

– Lookup
• O(#runs)
• => want to make sure the number of runs does not 

grow indefinitely

• Compaction
–Merge sorted runs on disks to reduce #runs => 

improve lookup performance
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Basic Compaction
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• Have levels
– Once there are more then x runs on a level these

are merged into one larger run
– Run sizes increase exponentially per level

• E.g., threshold is 4 runs
– first level: runs are of same size as memtable
– 2nd level: 4 * size of memtable
– 3rd level: 4 * 4 * size of memtable
– …

LSM-trees

• Other lookup improvements
– Block index in memory (similar to sparse index)
– Bloomfilters
• A bloom filter is a small over-approximation of set

– Can be used to test if a key K is contained in a set S
» Returns yes, then the key may be in the set 
» Returns no, then the key is guaranteed to not be in the 

set

• => fast way to avoid looking a runs that are guaranteed 
to not contain a key
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Bw-trees

• Motivation
– Improve concurrency properties of B-trees
– Improve cache effectiveness of B-trees
– Designed for flash-storage
• Fast random/sequential reads
• Fast sequential writes
• Comparably slower random writes (albeit smaller factor
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Bw-trees

• Overview
– Updateable B-tree without latches
• Threads almost never block

– => Improved instruction cache performance

– Backed up by log-structured storage
– Updates never modify pages but append deltas to 

a page
• Deltas are “installed” using CAS (atomic compare and 

swap)
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Bw-trees
• Mapping table

• Pages are logical identified by a LPID which is stable
• Locations and size of pages can change over time
• Updates create a delta record that points to the previous 

address of the page
• The delta record’s address is swapped for the current 

address in the mapping table using CAS
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Bw-trees
• Making page splits atomic 
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Discussion:
- Conventional Indices
- B-trees
- Hashing (extensible, linear)
- SQL Index Definition
- Index vs. Hash
- Multiple Key Access
- Multi Dimensional Indices

Variations: Grid, R-tree, 
- Partitioned Hash
- Bitmap indices and compression
- Tries
- Database cracking
- Data skipping (small materialized aggregates/zone maps)
- Skip-lists
- Log-structured merge trees (LSM)

Summary


