
CS 525 Notes 12 - Transaction
Management

1

CS 525: Advanced Database
Organization

12: Transaction
Management

Boris Glavic
Slides: adapted from a course taught by
Hector Garcia-Molina, Stanford InfoLab

http://www-db.stanford.edu/~hector/cs245/notes.htm
http://infolab.stanford.edu/people/hector.html

Concurrency and Recovery
• DBMS should enable multiple

clients to access the database
concurrently
– This can lead to problems with correctness

of data because of interleaving of
operations from different clients

– ->System should ensure correctness
(concurrency control)

CS 525 Notes 12 - Transaction
Management

2

Concurrency and Recovery
• DBMS should enable reestablish

correctness of data in the presence
of failures
– ->System should restore a correct state

after failure (recovery)

CS 525 Notes 12 - Transaction
Management

3

CS 525 Notes 12 - Transaction
Management

4

Integrity or correctness of data

• Would like data to be “accurate” or
“correct” at all times

EMP Name

White
Green
Gray

Age

52
3421

1

CS 525 Notes 12 - Transaction
Management

5

Integrity or consistency constraints

• Predicates data must satisfy
• Examples:

- x is key of relation R
- x ® y holds in R
- Domain(x) = {Red, Blue, Green}
- a is valid index for attribute x of R
- no employee should make more than

twice the average salary

CS 525 Notes 12 - Transaction
Management

6

Definition:

• Consistent state: satisfies all constraints
• Consistent DB: DB in consistent state

CS 525 Notes 12 - Transaction
Management

7

Constraints (as we use here) may
not capture “full correctness”

Example 1 Transaction constraints
• When salary is updated,

new salary > old salary
• When account record is deleted,

balance = 0

CS 525 Notes 12 - Transaction
Management

8

Note: could be “emulated” by simple
constraints, e.g.,

account Acct # …. balance deleted?

CS 525 Notes 12 - Transaction
Management

9

Example 2 Database should reflect
real world

DB
Reality

Constraints (as we use here) may
not capture “full correctness”

CS 525 Notes 12 - Transaction
Management

10

?in any case, continue with constraints...

Observation: DB cannot be consistent
always!

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2: a2 ¬ a2 + 100

TOT ¬ TOT + 100

CS 525 Notes 12 - Transaction
Management

11

a2

TOT

..
50
..

1000

..
150

..
1000

..
150

..
1100

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2: a2 ¬ a2 + 100

TOT ¬ TOT + 100

Transactions
• Transaction: Sequence of

operations executed by one
concurrent client that preserve
consistency

CS 525 Notes 12 - Transaction
Management

12

CS 525 Notes 12 - Transaction
Management

13

Transaction: collection of actions
that preserve consistency

Consistent DB Consistent DB’T

CS 525 Notes 12 - Transaction
Management

14

Big assumption:

If T starts with consistent state +
T executes in isolation

Þ T leaves consistent state

CS 525 Notes 12 - Transaction
Management

15

Correctness (informally)

• If we stop running transactions,
DB left consistent

• Each transaction sees a consistent DB

Transactions - ACID
• Atomicity

– Either all or no commands of transaction are executed
(their changes are persisted in the DB)

• Consistency
– After transaction DB is consistent (if before consistent)

• Isolation
– Transactions are running isolated from each other

• Durability
– Modifications of transactions are never lost

CS 525 Notes 12 - Transaction
Management

16

CS 525 Notes 12 - Transaction
Management

17

How can constraints be violated?

• Transaction bug
• DBMS bug
• Hardware failure

e.g., disk crash alters balance of account

• Data sharing
e.g.: T1: give 10% raise to programmers

T2: change programmers Þ systems analysts

CS 525 Notes 12 - Transaction
Management

18

How can we prevent/fix violations?

• Part 13 (Recovery):
–due to failures

• Part 14 (Concurrency Control):
–due to data sharing

CS 525 Notes 12 - Transaction
Management

19

Will not consider:

• How to write correct transactions
• How to write correct DBMS
• Constraint checking & repair

That is, solutions studied here do not need
to know constraints

CS 525 Notes 12 - Transaction
Management

20

Data Items:

• Data Item / Database Object / …
• Abstraction that will come in handy

when talking about concurrency control
and recovery

• Data Item could be
– Table, Row, Page, Attribute value

CS 525 Notes 12 - Transaction
Management

21

Operations:

• Input (x): block containing x ® memory
• Output (x): block containing x ® disk

CS 525 Notes 12 - Transaction
Management

22

Operations:

• Input (x): block containing x ® memory
• Output (x): block containing x ® disk

• Read (x,t): do input(x) if necessary
t ¬ value of x in block

• Write (x,t): do input(x) if necessary
value of x in block ¬ t

CS 525 Notes 12 - Transaction
Management

23

Key problem Unfinished transaction
(Atomicity)

Example Constraint: A=B
T1: A ¬ A ´ 2

B ¬ B ´ 2

CS 525 Notes 12 - Transaction
Management

24

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

CS 525 Notes 12 - Transaction
Management

25

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

CS 525 Notes 12 - Transaction
Management

26

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

Transactions in SQL
• BEGIN WORK

– Start new transaction
– Often implicit

• COMMIT
– Finish and make all modifications of

transactions persistent
• ABORT/ROLLBACK

– Finish and undo all changes of transaction
CS 525 Notes 12 - Transaction

Management
27

Example
BEGIN WORK;
UPDATE accounts
SET bal = bal + 40
WHERE acc = 10;

UPDATE accounts
SET bal = bal - 40
WHERE acc = 9;

COMMIT;

CS 525 Notes 12 - Transaction
Management

28

BEGIN WORK;
UPDATE accounts
SET bal = bal * 1.05;

COMMIT;

time

Example
BEGIN WORK;
UPDATE accounts
SET bal = bal + 40
WHERE acc = 10;

UPDATE accounts
SET bal = bal - 40
WHERE acc = 9;

COMMIT;

CS 525 Notes 12 - Transaction
Management

29

BEGIN WORK;
UPDATE accounts
SET bal = bal * 1.05;

COMMIT;

time Bank customer
transfers money
from account 9
to account 10

Example
BEGIN WORK;
UPDATE accounts
SET bal = bal + 40
WHERE acc = 10;

UPDATE accounts
SET bal = bal - 40
WHERE acc = 9;

COMMIT;

CS 525 Notes 12 - Transaction
Management

30

BEGIN WORK;
UPDATE accounts
SET bal = bal * 1.05;

COMMIT;

time Bank adds interest
to all accounts

BEGIN WORK;
UPDATE accounts
SET bal = bal + 40
WHERE acc = 10;

UPDATE accounts
SET bal = bal - 40
WHERE acc = 9;

COMMIT;

CS 525 Notes 12 - Transaction
Management

31

BEGIN WORK;
UPDATE accounts
SET bal = bal * 1.05;

COMMIT;

time

Potential Problems:
1. Transactions are interrupted
• No reduction in bal of acc 9
• Only some accounts got

interest
2. Interleaving of Transaction
• Acc 9 too much interest

(before 40 has been
deducted)

Modeling Transactions and
their Interleaving

• Transaction is sequence of operations
– read: ri(x) = transaction i read item x
– write: wi(x) = transaction i wrote item x
– commit: ci= transaction i committed
– abort: ai =transaction i aborted

CS 525 Notes 12 - Transaction
Management

32

BEGIN WORK;
UPDATE accounts
SET bal = bal + 40
WHERE acc = 10;

UPDATE accounts
SET bal = bal - 40
WHERE acc = 9;

COMMIT;

CS 525 Notes 12 - Transaction
Management

33

time

T1 = r1(a10), w1(a10), r1(a9), w1(a9), c1

BEGIN WORK;
UPDATE accounts
SET bal = bal + 40
WHERE acc = 10;

UPDATE accounts
SET bal = bal - 40
WHERE acc = 9;

COMMIT;

CS 525 Notes 12 - Transaction
Management

34

BEGIN WORK;
UPDATE accounts
SET bal = bal * 1.05;

COMMIT;

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1

Assume we have accounts:
a1,a2,a9,a10

Schedules
• A schedule S for a set of transactions

T = {T1, …, Tn} is an partial order over
operations of T so that
– S contains a prefix of the operations of

each Ti
– Operations of Ti appear in the same order

in S as in Ti
– For any two conflicting operations they are

ordered
CS 525 Notes 12 - Transaction

Management
35

Note
• For simplicity: We often assume that

the schedule is a total order

CS 525 Notes 12 - Transaction
Management

36

How to model execution
order?

• Schedules model the order of the
execution for operations of a set of
transactions

CS 525 Notes 12 - Transaction
Management

37

Conflicting Operations
• Two operations are conflicting if

– At least one of them is a write
– Both are accessing the same data item

• Intuition
– The order of execution for conflicting

operations can influence result!

CS 525 Notes 12 - Transaction
Management

38

Conflicting Operations
• Examples

– w1(X), r2(X) are conflicting
– w1(X), w2(Y) are not conflicting
– r1(X), r2(X) are not conflicting
– w1(X), w1(X) are not conflicting

CS 525 Notes 12 - Transaction
Management

39

Complete Schedules = History
• A schedule S for T is complete if it

contains all operations from each
transaction in T

• We will call complete schedules
histories

CS 525 Notes 12 - Transaction
Management

40

CS 525 Notes 12 - Transaction
Management

41

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c1

Complete Schedule

Incomplete Schedule

Not a Schedule

S=r2(a1),r1(a10),w2(a1),r2(a2),w1(a10),w2(a2),r2(a9),w2(a9),
r1(a9),w1(a9),c1 r2(a10),w2(a10),c1

S=r2(a1),r1(a10),w2(a1),w1(a10)

S=r2(a1),r1(a10),c1

CS 525 Notes 12 - Transaction
Management

42

time

T1=r1(a10),w1(a10),r1(a9),w1(a9),c1

T2=r2(a1),w2(a1),r2(a2),w2(a2),r2(a9),w2(a9),r2(a10),w2(a10),c2

Conflicting operations

S1 = … w2(a10) … w1(a10)

S2 = … w1(a10) … w2(a10)

• Conflicting operations w1(a10) and w2(a10)
• Order of these operations determines value of a10
• S1 and S2 do not generate the same result

Why Schedules?
• Study properties of different execution

orders
– Easy/Possible to recover after failure
– Isolation
– -> preserve ACID properties

• Classes of schedules and protocols to
guarantee that only “good” schedules
are produced

CS 525 Notes 12 - Transaction
Management

43

