
Decreasing EndDecreasing End--toto--End End
Job Execution Times by Job Execution Times by

Increasing Resource Increasing Resource
Utilization using Utilization using

Predictive Scheduling in Predictive Scheduling in
the Gridthe Grid

Ioan Raicu
Computer Science Department

University of Chicago

Grid Computing Seminar – Winter 2005

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

2

Motivation
• There is a gap between software requirements (high level)

and hardware resources (low level)
– Automatic mapping could produce better scheduling decisions and

give users feedback with the expected running time of their software
– Can this automatic mapping be achieved for a wide range of

software classes?
• Large pool of resources in large scale distributed systems

(i.e. Grid) are underutilized
– Large (1000s of nodes) clusters or distributed systems seldom get

more than a few percent resource utilization
– Even modest improvements in resource utilization could have

significant financial benefits
– Can software predictions aid scheduling decisions in resource

management?

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

3

Scenario

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

4

.
Gate

Keepers

JOB

Software Requirements:
I don’t know...

Output

DiProfile

DiSched

DiPred

Software Reuirements:
Processor: 500 MIPS

Network: 15Mb/s
Memory bandwidth: 2GB/s
disk bandwidth: 125MB/s

Job class: memory and disk I/O intensive

Resource Utilization: 1% - 10%
Length of job: 3-1000 hours
Cost of job: 100 – 300 units

Feedback

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

5

Related Work
• GridBench
• A Grid Resource Broker
• TITAN & PACE
• Prophesy & PAIDE
• Pegasus & Prophesy
• Application Development Software Project

(GrADS)
• AppLeS (Application Level Scheduling)
• Flexible Co-Scheduling
• ClassAdd & RedLine

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

6

GridBench
• A set of tools to characterize Grid resources using micro-

benchmarks
• GridBench framework runs benchmarks in Grid

environments and collects, archives, and publishes the
results

• Differences, Limitations, and Comments:
– Uses benchmarks to gain insight into the performance of Grid

resources
– The relationship between the micro-benchmarks and the application

kernel must be established; this relationship is found in a manual
fashion that involves human intervention and detailed knowledge of
the application or its empirical performance

• Papers
– George Tsouloupas and Marios D. Dikaiakos. Characterization of Computational Grid Resources Using Low-level

Benchmarks. Technical Report TR-2004-5, Dept. of Computer Science, University of Cyprus, December 2004
– George Tsouloupas and Marios D. Dikaiakos. Gridbench: A tool for benchmarking grids. In Proceedings of the 4th

International Workshop on Grid Computing (GRID2003), pages 60-67, Phoenix, AZ, November 2003.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

7

A Grid Resource Broker
• Main features:

– advance reservations
– resource selection based on computer benchmark results and

network performance predictions (using NWS)
– basic adaptation facility

• Differences, Limitations, and Comments:
– Benchmark-based procedure for resource selection
– The user must identify relevant benchmarks and an estimated

execution time on some specified resource
– The authors assume linear scaling of the application in relation

to the benchmark
• Papers:

– Erik Elmroth and Johan Tordsson. A Grid Resource Broker Supporting Advance Reservations and
Benchmark-Based Resource Selection, PARA'04 State-of-the-Art in Scientific Computing, June 20-23, 2004.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

8

TITAN & PACE
• TITAN: multi-tiered scheduling architecture

– Focuses on the lowest tier which is responsible for local scheduling
• PACE: performance prediction system

– Dynamically predict the execution time given an application model and suitable hardware
descriptions

• Resource tools are available to characterize the resource hardware through micro-benchmarking
• Application tools are provided that take C source code and generate sub-tasks that capture the

serial components of the code by control flow graphs
– Straightforward for simple codes, and a library of templates exists for standard constructs
– Applications that exhibit more complex parallel operations may require customization

• Differences, Limitations, and Comments:
– Uses compiler technology to gain insight into application performance models
– Applications models seem complex, and require user customization for non-trivial parallel

operations
– Requires access to source code, and the recompiling and re-linking of the source code
– It is not clear how the control flow graph maps onto the micro-benchmarks in the resource

selection problem
• Papers:

– D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini, and G. R. Nudd. Local Grid Scheduling Techniques using Performance
Prediction. IEE Proc. Comp. Digit. Tech., Nice, France, 150(2):87-96, April 2003.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

9

Prophesy & PAIDE
• An infrastructure for performance analysis and modeling of parallel and distributed applications

– automatic instrumentation of applications
• Instruments the entire code via PAIDE at the level of loops and procedures
• PAIDE includes a parser that identifies where to insert instrumentation code

– databases for archival of information
• Performance data from the performance database
• Model templates from the template database
• System characteristics from the systems database

– automatic development of performance models using different techniques
• Curve fitting (least squares)
• Parameterized model of the application code
• Coupling of the kernel models

• Differences, Limitations, and Comments:
– Uses compiler technology to gain insight into application performance models
– Performance models derived automatically (curve fitting) can only be used to explore an application’s

scalability
– Performance models derived manually (parameterized models) can be used to explore what happens

under different system configurations as well as different application sizes
– Kernel coupling is not yet understood enough to be a useful technique

• Papers:
– Valerie Taylor, Xingfu Wu, Rick Stevens. Prophesy: An Infrastructure for Performance Analysis and

Modeling of Parallel and Grid Applications, ACM SIGMETRICS Performance Evaluation Review, Volume
30, Issue 4, March 2003.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

10

Pegasus & Prophesy
• A resource planner system consisting of:

– The Pegasus workflow management and mapping system
• Pegasus is used to map an abstract workflow description onto the available grid resources using

Chimera or can be written directly by the user
• Uses MDS to find available resources and characteristics

– The Prophesy performance modeling infrastructure
• Interfaces Pegasus and Prophesy to enable Pegasus to use the Prophesy prediction mechanisms

• Differences, Limitations, and Comments:
– Pegasus provides a feasible solution, but it is not necessarily a low cost one in term of

performance
– General framework which does not take into consideration application specific performance

characteristics
– Not clear how Chimera is used to map an abstract workflow description onto the available

grid resources
• Papers:

– Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, Kent Blackburn,
Albert Lazzarini, Adam Arbree, Richard Cavanaugh and Scott Koranda, Mapping Abstract Complex
Workflows onto Grid Environments, Journal of Grid Computing, vol.1, no. 1, pages 25-39, 2003.

– Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su, Karan
Vahi and Miron Livny, Pegasus : Mapping Scientific Workflows onto the Grid , Across Grids Conference
2004, Nicosia, Cyprus, 2004.

– Seung-Hye Jang, Xingfu Wu, Valerie Taylor, Gaurang Mehta, Karan Vahi, Ewa Deelman. Using
Performance Prediction to Allocate Grid Resources. GriPhyN Technical Report 2004-25, July 2004.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

11

Application Development
Software Project (GrADS)

• GrADS goals: to realize a Grid system, by providing tools to manage all the stages of application
development and execution through:

– Problem solving environments
– Grid compilers

• Generates:
– An intermediate representation code
– Application performance models

– Schedulers
• Depends on the availability of two application-specific components:

– performance model
» an analytic metric for the performance expected of the application on a given set of resources

– Mapper
» provides directives for mapping logical application data or tasks to physical resources

– Performance monitors
• Used to offer performance guarantees and rescheduling

• Differences, Limitations, and Comments:
– Uses compiler technology to gain insight into application performance models
– It is unclear if the GrADS compiler has been realized where both the performance model and the mapper

can be generated automatically
• Papers:

– F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C.
Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski, "The GrADS Project: Software Support
for High-Level Grid Application Development," International Journal of High Performance Computing
Applications, vol. 15, pp. 327-344, 2001.

– Holly Dail, Henri Casanova, and Fran Berman. A Decoupled Scheduling Approach for Grid Application
Development Environments, Proceedings of Supercomputing, November 2002.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

12

AppLeS
(Application Level Scheduling)
• The AppLes approach exploits:

– static and dynamic resource information
– performance predictions (via NWS)
– application and user-specific information
– scheduling techniques that adapt “on-the-fly” to application

execution
• Differences, Limitations, and Comments:

– It requires to integrate in the application a scheduling agent
which must be customized according to application features

– The performance model is provided by the user
– Typically uses an application-specific resource selection model

to develop an ordered list of resource sets
• Papers:

– F. Berman, R. Wolski, H. Casanova, et al. Adaptive Computing on the Grid Using AppLeS.
IEEE Trans. on Parallel and Distrib. Systems, 14(5), 2003.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

13

Flexible Co-Scheduling
• Flexible co-scheduling: Employs dynamic process classification and schedules processes using this class

information
– CS (co-scheduling): CS processes communicate often, and must be co-scheduled (gang-scheduled) across the machine

to run effectively
– F (frustrated): F processes have enough synchronization requirements to be co-scheduled, but due to load imbalance,

they often cannot make full use of their allotted CPU time
– DC (don’t-care): DC processes rarely synchronize, and can be scheduled independently of each other without penalizing

the system’s utilization or the job’s performance
– RE (rate-equivalent): RE processes are characterized by jobs that have little synchronization, but require a similar

(balanced) amount of CPU time for all their processes
• Processes are categorized based on measuring process statistics; this was achieved by implementing a

lightweight monitoring layer that was integrated with MPI.
• Other Scheduling methods:

– Gang scheduling: Combines time and space slicing: all processors are time-slices in a coordinated manner, and in each
time slot, they are partitioned among multiple jobs

– Backfilling: Improves the performance of pure space slicing by using small jobs from the end of the queue to fill in holes in
the schedule

• Differences, Limitations, and Comments:
– Established classes (CS, F, DC and RE) only allows the use of the appropriate scheduling decision, and does not aid in

the mapping of processes and available resources
– Applications need to run MPI and must be re-linked to the modified MPI library

• Papers:
– Eitan Frachtenberg, Dror G. Feitelson, Juan Fernandez-Peinador, and Fabrizio Petrini. Parallel Job Scheduling under DynamicWorkloads. In 9th

Workshop on Job Scheduling Strategies for Parallel Processing, June 2003.
– Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini and Juan Fernandez. Adaptive Parallel Job Scheduling with Flexible CoScheduling. In IEEE

Transactions on Parallel and Distributed Processing. To appear, 2005.
– Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini, and Juan Fernandez. “Flexible CoScheduling: Mitigating Load Imbalance and Improving

Utilization of Heterogeneous Resources”, IPDPS 2003.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

14

ClassAdd & RedLine
• A general-purpose resource selection framework to meet application

requirements:
– discovering resources
– organizing resources

• ClassAdd & RedLine
– Both application resource requirements and application performance

models are specified declaratively
– Mapping strategies can be determined by user-supplied code.

• Differences, Limitations, and Comments:
– Focuses on the expressiveness of the declarative language and

matchmaking problem
• Papers:

– Chuang Liu, Lingyun Yang, Ian Foster, Dave Angulo. Design and Evaluation of a Resource Selection
Framework for Grid Applications, HPDC-11, the Symposium on High Performance Distributed Computing,
July 2002, Edinburgh, Scotland.

– C. Liu and I. Foster. A Constraint Language Approach to Grid Resource Selection. Technical Report TR-
2003-07, Department of Computer Science, University of Chicago, 2003.

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

15

Same Goals…
• Mapping between software requirements and

available resources
– Benchmark resources

• Requires user specified relationships between benchmarks
and software requirements

– Application performance models
• Workflow analysis

– It is hard and time consuming to produce accurate workflows
• Uses compiler technology to gain insight into application

performance models
– Complex applications require user intervention
– Performance models might not reflect actual performance on

various architectures

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

16

… Different Approach
• Mapping between software requirements and available resources

– Black box approach, generic and application independent
• Build performance models to classify into several software classes based on

the type and amount of resource usage
• Considers interactions between various components in a system, and across

distributed systems
• No modifications needed to applications

• Lessons learned from related work
– Could use benchmarking of Grid resources to enhance the resource

selection
– Could use co-scheduling based on the software classes to increase

resource utilization
– Could use historical information to recall the performance models

generated for commonly used software
• Much work concentrated on lower levels of scheduling (i.e. local

scheduling); it is important to address scheduling decisions on a
larger global scale, giving hints to the low level schedulers

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

17

Proposed Work
• DiPerF

– Collection of performance
measurements in a distributed
environment

• DiProfile
– Perform software characterization

• DiPred
– Automatic mapping of software

requirements to raw resources
• DiSched

– Matchmaking between the needed
raw resources and the available
resources

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

18

DiProfile Questions
1. Can the performance of a complex piece of software that

heavily depends on its input be characterized in its entirety in
a fraction of the time that it would take to run the entire
workload?

2. Is the average case resource utilization sufficient to make the
software class useful in real world resource management?

3. How flexible will the job profiler be to different types of
software classes?

4. What is the maximum amount of time users are willing to wait
for a job profile?

5. What overall performance improvement is needed in order to
offset the extra complexity, time, and resources that the
software profiler introduces?

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

19

DiPredict Questions
6. Can this automatic mapping (software requirements �

hardware resources) be achieved for a wide range of
software classes?

7. Are the predictions accurate enough to be useful?
8. How flexible/fragile are the predictions?
9. Can the predictions be computed fast enough to satisfy

the user agreeable wait time?

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

20

DiSched Questions
10. Can software performance predictions aid resource

scheduling decisions in a consistent and significant
manner?

11. Can a broad type of software (that identifies not
resource usage, but rather software features, workload,
usage patterns, etc) be defined that will most likely
benefit from DiSched?

12. Are dynamic run-time performance models more
accurate than static generic performance models,
especially for certain types of software?

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

21

Co-Scheduling
• Running several independent processes on 1 physical

node
– Allowing multiple independent processes to run will increase

resource utilization, but it might also increase execution time
• Running several dependent processes on multiple

physical nodes
– Not allowing these dependent processes to run concurrently

could negatively affect resource utilization and increase
execution time

• Problem with Co-Scheduling: shared resources
– Resource reservations becomes VERY hard
– Resource planning is no longer an easy task

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

22

.

Resource
Utilization:

50%

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

23

.

Resource
Utilization:

75%

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

24

.

Resource
Utilization:

75%

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

25

Co-Scheduling
CPU

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Number of Concurent Clients

M
IP

S

Aggregate Throughput (MIPS) - Application Control Aggregate Throughput (MIPS) - OS Control

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

26

Co-Scheduling
Memory

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Number of Concurent Clients

M
B/

s

Aggregate Throughput (MB/s) - Application Control Aggregate Throughput (MB/s) - OS Control

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

27

Co-Scheduling
Network

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of Concurent Clients

M
B/

s

Aggregate Throughput (Mb/s) - Application Control Aggregate Throughput (Mb/s) - OS Control

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

28

Co-Scheduling
Disk

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Number of Concurent Clients

M
B/

s

Aggregate Throughput (MB/s) - Application Control Aggregate Throughput (MB/s) - OS Control

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

29

Co-Scheduling:
Test Case 1

CPU % Performance
mem (MB/s) 100% 423 MB/s
disk (MB/s) 12% 66 MB/s
cpu (MIPS) 100% 886 MIPS
nic (Mb/s) 14% 95 Mb/s

Overview

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 1% 1% 4.1 4.2 98%
disk (MB/s) 1% < 1% 0.6 0.7 94%
cpu (MIPS) 95% 95% 825.9 842.3 98%
nic (Mb/s) 1% < 1% 0.9 1.0 95%

96% 96%

Test Case 1

Total CPU % Overall Performance

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

30

Co-Scheduling:
Test Case 2

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 95% 95% 389.9 402.4 97%
disk (MB/s) 1% < 1% 0.6 0.7 93%
cpu (MIPS) 1% 1% 8.8 8.9 99%
nic (Mb/s) 1% < 1% 0.9 1.0 98%

96% 97%Overall PerformanceTotal CPU %

Test Case 2

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

31

Co-Scheduling:
Test Case 3

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 1% 1% 4.2 4.2 98%
disk (MB/s) 100% 12% 65.6 66.3 99%
cpu (MIPS) 1% 1% 8.8 8.9 99%
nic (Mb/s) 100% 14% 93.8 95.8 98%

28% 99%Overall Performance

Test Case 3

Total CPU %

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

32

Co-Scheduling:
Test Case 4

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 20% 20% 79.812 84.7 94%
disk (MB/s) 100% 12% 57.121 66.3 86%
cpu (MIPS) 61% 61% 410.8 540.8 76%
nic (Mb/s) 50% 7% 43.1 47.9 90%

100% 87%Total CPU % Overall Performance

Test Case 4

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

33

Co-Scheduling:
Test Case 5

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 37% 37% 139.3892 156.7 89%
disk (MB/s) 100% 12% 57.6732 66.3 87%
cpu (MIPS) 37% 37% 250.8 328.1 76%
nic (Mb/s) 100% 14% 84.2 95.8 88%

100% 85%

Test Case 5

Total CPU % Overall Performance

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

34

Software Characterization

• Problems
– Jacobi 2D ~ O(N2)

• Solving a linear system of equations
• Regular iterative code continuously updates a 2D matrix within a loop

body between global error-checking stages
• Utilizes CPU intensively
• Problem size: from 1x1 to 1000x1000 input space

– Quick Sort ~ O(N) + O(N*log(N))
• Sorts a list of integers
• Utilizes mostly hard disk, and some CPU
• Problem size: from 1 to 100000000 integer input space ~ 1GB data

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

35

Software Characterization
Jacobi 2D

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

Proble Size (MxM)

Ti
m

e
(s

ec
)

Time to Complete (sec) Poly. (Time to Complete (sec))

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

36

Software Characterization
QSort

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 10 20 30 40 50 60 70 80 90 100
MillionsProblem Size

Ti
m

e

Qsort Time Poly. (Qsort Time)

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

37

Conclusion
• Completed

– An implementation of DiPerF
– A literature survey
– Showed that co-scheduling is possible for several different classes of

software without significant loss of performance
– Showed that reliable software performance characterization is possible

with only a fraction of the entire input space
– A proposal outlining the entire system of components and the related

work
– Showed that reliable software performance characterization is possible

with only a fraction of the entire input space (at least for 2 specific
problems – jacobi and qsort)

• Future work
– Implement the entire system and show that predictive scheduling can

decreasing end-to-end job execution times and increasing resource
utilization

3/17/2005 Decreasing End-to-End Job Execution Times by Increasing Resource
Utilization using Predictive Scheduling in the Grid

38

Questions?

• More info:
– http://people.cs.uchicago.edu/~iraicu/research/uchicago/cs33340-05/

• Questions?

