
Harnessing Harnessing
Grid Resources with Grid Resources with

DataData--Centric Task FarmsCentric Task Farms
Ioan Raicu

Distributed Systems Laboratory
Computer Science Department

University of Chicago

Collaborators:
Ian Foster (UC/CI/ANL), Yong Zhao (MS), Mike Wilde (CI/ANL),
Zhao Zhang (CI), Rick Stevens (UC/CI/ANL), Alex Szalay (JHU),

Jerry Yan (NASA/AMES), Catalin Dumitrescu (FANL)

NASA, Ames Research Center
GSRP Fellowship Talk

May 13th, 2008

What will we do
with 1+ Exaflops
and 1M+ cores?

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 3

1) Tackle Bigger and Bigger
Problems

Computational
Scientist

as
Hero

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 4

2) Tackle Increasingly Complex
Problems

Computational
Scientist

as
Logistics

Officer

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 5

“More Complex Problems”

• Use ensemble runs to quantify climate model
uncertainty

• Identify potential drug targets by screening a
database of ligand structures against target proteins

• Study economic model sensitivity to key parameters
• Analyze turbulence dataset from multiple

perspectives
• Perform numerical optimization to determine optimal

resource assignment in energy problems

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 6

Programming Model Issues

• Multicore processors
• Massive task parallelism
• Massive data parallelism
• Integrating black box applications
• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Data management: input, intermediate, output
• Dynamic task graphs
• Dynamic data access involving large amounts of data
• Documenting provenance of data products

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 7

Problem Types

Number of tasks

Input
data
size

1 1K 1M

Hi

Med

Lo

Heroic
MPI
tasks

Data
analysis,
mining

Many loosely coupled tasks

Big data and
many tasks

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 8

Motivating Example:
AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of

random locations within
~10TB dataset

• Challenge
– Rapid access to 10-10K

“random” files
– Time-varying load

• Solution
– Dynamic acquisition of

compute, storage

S4 Sloan
Data

+

+
+
+

+

+

=

+

Web page
or Web
Service

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 9

Challenge #1:
Long Queue Times

5/12/2008 9

• Wait queue times are typically longer than
the job duration times

SDSC DataStar 1024 Processor Cluster 2004

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 10

Challenge #2:
Slow Job Dispatch Rates

• Production LRMs ~1 job/sec dispatch rates

5/12/2008 10

• What job durations are
needed for 90% efficiency:
– Production LRMs: 900 sec
– Development LRMs: 100 sec
– Experimental LRMs: 50 sec
– 1~10 sec should be possible

System Comments Throughput
(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

Medium Size Grid Site (1K processors)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.001 0.01 0.1 1 10 100 1000 10000 100000

Task Length (sec)

Ef
fic

ie
nc

y

1 task/sec (i.e. PBS, Condor 6.8) 10 tasks/sec (i.e. Condor 6.9.2)
100 tasks/sec 500 tasks/sec (i.e. Falkon)
1K tasks/sec 10K tasks/sec
100K tasks/sec 1M tasks/sec

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 115/12/2008 11

Challenge #3: Poor Scalability of
Shared File Systems

100

1000

10000

100000

1000000

1 10 100 1000
Number of Nodes

Th
ro

ug
hp

ut
 (M

b/
s)

GPFS R
LOCAL R
GPFS R+W
LOCAL R+W

• GPFS vs. LOCAL
– Read Throughput

• 1 node: 0.48Gb/s vs. 1.03Gb/s 2.15x
• 160 nodes: 3.4Gb/s vs. 165Gb/s 48x

– Read+Write Throughput:
• 1 node: 0.2Gb/s vs. 0.39Gb/s 1.95x
• 160 nodes: 1.1Gb/s vs. 62Gb/s 55x

– Metadata (mkdir / rm -rf)
• 1 node: 151/sec vs. 199/sec 1.3x
• 160 nodes: 21/sec vs. 31840/sec 1516x

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 12

Hypothesis

• Important concepts related to the hypothesis
– Workload: a complex query (or set of queries) decomposable into

simpler tasks to answer broader analysis questions
– Data locality is crucial to the efficient use of large scale distributed

systems for scientific and data-intensive applications
– Allocate computational and caching storage resources, co-scheduled to

optimize workload performance

“Significant performance improvements can be
obtained in the analysis of large dataset by leveraging
information about data analysis workloads rather than

individual data analysis tasks.”

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 13

Proposed Solution: Part 1
Abstract Model and Validation

• AMDASK:
– An Abstract Model for DAta-centric taSK farms

• Task Farm: A common parallel pattern that drives independent computational
tasks

– Models the efficiency of data analysis workloads for the split/merge class
of applications

– Captures the following data diffusion properties
• Resources are acquired in response to demand
• Data and applications diffuse from archival storage to new resources
• Resource “caching” allows faster responses to subsequent requests
• Resources are released when demand drops
• Considers both data and computations to optimize performance

• Model Validation
– Implement the abstract model in a discrete event simulation
– Validate model with statistical methods (R2 Statistic, Residual Analysis)

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 14

Proposed Solution: Part 2
Practical Realization

• Falkon: a Fast and Light-weight tasK executiON
framework
– Light-weight task dispatch mechanism
– Dynamic resource provisioning to acquire and release

resources
– Data management capabilities including data-aware

scheduling
– Integration into Swift to leverage many Swift-based

applications
• Applications cover many domains: astronomy, astro-physics,

medicine, chemistry, and economics

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 17

AMDASK:
Performance Efficiency Model

• B: Average Task Execution Time:
– K: Stream of tasks
– µ(k): Task k execution time

• V: Workload Execution Time:
– A: Arrival rate of tasks
– T: Transient Resources

• W: Workload Execution Time with Overheads

∑
Κ∈Κ

=Β
k

)(
||

1 κµ

||*1,
||

max Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

=
BV

||*1,
||

max Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

Υ
=W

• Y: Average Task Execution Time with Overheads:
– ο(k): Dispatch overhead
– ς(δ,τ): Time to get data

⎪
⎪
⎩

⎪⎪
⎨

⎧

Ω∈∉++
Κ

Ω∈∈+
Κ=
∑

∑

Κ∈

Κ∈

δτφδτδζκκµ

δτφδκκµ

κ

κ

),(,)],()()([
||

1

),()],()([
||

1

o

o
Y

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 18

AMDASK:
Performance Efficiency Model

• Efficiency

• Speedup

• Optimizing Efficiency
– Easy to maximize either efficiency or speedup independently
– Harder to maximize both at the same time

• Find the smallest number of transient resources |T| while maximizing
speedup*efficiency

W
V

=Ε
⎪
⎪
⎩

⎪⎪
⎨

⎧

>⎟
⎠
⎞

⎜
⎝
⎛

Α
Τ

≤
=

AT
Y

YY
B

AT
Y

E 1
||

,
*

||,max

1
||

,1

||* TES =

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 19

Performance Efficiency Model
Example: 1K CPU Cluster

• Application: Angle - distributed data mining
• Testbed Characteristics:

– Computational Resources: 1024
– Transient Resource Bandwidth: 10MB/sec
– Persistent Store Bandwidth: 426MB/sec

• Workload:
– Number of Tasks: 128K
– Arrival rate: 1000/sec
– Average task execution time: 60 sec
– Data Object Size: 40MB

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

Ef
fic

ie
nc

y

1

10

100

1000

Sp
ee

du
p

Efficiency
Speedup
Speedup*Efficiency

Performance Efficiency Model
Example: 1K CPU Cluster

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

Ef
fic

ie
nc

y

1

10

100

1000

Sp
ee

du
p

Efficiency
Speedup
Speedup*Efficiency

Falkon on ANL/UC TG Site:
Peak Dispatch Throughput: 500/sec

Scalability: 50~500 CPUs
Peak speedup: 623x

PBS on ANL/UC TG Site:
Peak Dispatch Throughput: 1/sec

Scalability: <50 CPUs
Peak speedup: 54x

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 23

Model Validation:
Simulations

• Implement the abstract model in a discrete event
simulation

• Simulation parameters
– number of storage and computational resources
– communication costs
– management overhead
– workloads (inter-arrival rates, query complexity, data set

properties, and data locality)
• Model Validation

– R2 Statistic
– Residual analysis

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 24

Falkon: a Fast and Light-weight
tasK executiON framework

• Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher able to achieve order-of-

magnitude higher task dispatch rates than conventional
schedulers Challenge #1

– resource provisioning through multi-level scheduling
techniques Challenge #2

– data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources
Challenge #3

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 25

Falkon: The Streamlined
Task Dispatcher

• Tier 1: Dispatcher
– GT4 Web Service accepting

task submissions from clients
and sending them to available
executors

• Tier 2: Executor
– Run tasks on local resources

• Provisioner
– Static and dynamic resource

provisioning

WS

WS

Provisioner
Compute

Resources

Executor 1

Clients

Executor n

Compute
Resource m

Compute
Resource 1

Dispatcher

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 26

Falkon: The Streamlined
Task Dispatcher

• Falkon Message Exchanges
– Description:

{1}: task(s) submit
{2}: task(s) submit confirmation
{3}: notification for work
{4}: request for task(s)
{5 or 7}: dispatch task(s)
{6}: deliver task(s) results to service
{8}: notification for task result(s)
{9}: request for task result(s)
{10}: deliver task(s) results to client

– Worst case (process tasks individually, no optimizations):
• 4 WS messages ({1,2}, {4,5}, {6,7}, {9,10}) and 2 notifications ({3},

{8}) per task

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 27

Falkon: The Streamlined
Task Dispatcher

– Bundling
• Include multiple tasks per communication

message
– Piggy-Backing

• Attach next task to acknowledgement of
previous task

• Include data management information in the
task description and acknowledgement
messages

• Falkon Message Exchanges Enhancements

– Message reduction:
• General Lower Bound: 10 2+c, where c is a small positive value
• Application Specific Lower Bound: 10 0+c, where c is a small positive value

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 28

Falkon:
Resource Provisioning

0. provisioner registration
1. task(s) submit
2. resource allocation to GRAM
3. resource allocation to LRM
4. executor registration
5. notification for work
6. pick up task(s)
7. deliver task(s) results
8. notification for task(s) result
9. pick up task(s) results

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 29

Falkon:
Data Diffusion

• Resource acquired in
response to demand

• Data and applications diffuse
from archival storage to
newly acquired resources

• Resource “caching” allows
faster responses to
subsequent requests
– Cache Eviction Strategies:

RANDOM, FIFO, LRU, LFU
• Resources are released

when demand drops

text

Task Dispatcher
Data-Aware Scheduler Persistent Storage

Shared File System

Idle Resources

Provisioned Resources

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 30

Falkon:
Data Diffusion

• Considers both data and computations to
optimize performance

• Decrease dependency of a shared file system
– Theoretical linear scalability with compute

resources
– Significantly increases meta-data creation and/or

modification performance
• Completes the “data-centric task farm”

realization

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 31

Related Work:
Task Farms

• [Casanova99]: Adaptive Scheduling for Task Farming with Grid
Middleware

• [Heymann00]: Adaptive Scheduling for Master-Worker
Applications on the Computational Grid

• [Danelutto04]: Adaptive Task Farm Implementation Strategies
• [González-Vélez05]: An Adaptive Skeletal Task Farm for Grids
• [Petrou05]: Scheduling Speculative Tasks in a Compute Farm
• [Reid06]: Task farming on Blue Gene

Conclusion: none addressed the proposed “data-centric” part of
task farms

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 32

Related Work:
Task Dispatch

• [Zhou92]: LSF – Load Sharing Cluster Management
• [Bode00]: PBS – Portable Batch Scheduler and Maui Scheduler
• [Anderson04]: BOINC – Task Distribution for Volunteer

Computing
• [Thain05]: Condor
• [Robinson07]: Condor-J2 – Turning Cluster Management into

Data Management

Conclusion: related work is several orders of magnitude slower

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 33

Related Work:
Resource Provisioning

• [Appleby01]: Oceano - SLA Based Management of a
Computing Utility

• [Frey02, Mehta06]: Condor glide-ins
• [Walker06]: MyCluster (based on Condor glide-ins)
• [Ramakrishnan06]: Grid Hosting with Adaptive Resource

Control
• [Bresnahan06]: Provisioning of bandwidth
• [Singh06]: Simulations

Conclusion: Allows dynamic resizing of resource pool
(independent of application logic) based on system load and
makes use of light-weight task dispatch

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 34

Related Work:
Data Management

• [Beynon01]: DataCutter
• [Ranganathan03]: Simulations
• [Ghemawat03,Dean04,Chang06]: BigTable, GFS, MapReduce
• [Liu04]: GridDB
• [Chervenak04,Chervenak06]: RLS (Replica Location Service),

DRS (Data Replication Service)
• [Tatebe04,Xiaohui05]: GFarm
• [Branco04,Adams06]: DIAL/ATLAS

Conclusion: Our work focuses on the co-location of storage and
computations close to each other (i.e. on the same physical
resource) while operating in a dynamic environment.

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 35

Results

• Abstract task farm model [Dissertation Proposal 2007]

• Practical Realization: Falkon
– Task Dispatcher [Globus Incubator 2007, SC07, SC08]

– Resource Provisioning [SC07, TG07]

– Data Diffusion [NSF06, MSES07, DADC08]

– Swift Integration [SWF07, NOVA08, SWF08, GW08]

• Applications [NASA06, TG06, SC06, NASA07, SWF07, NOVA08, SC08]

– Astronomy, medical imaging, molecular dynamics (chemistry
and pharmaceuticals), economic modeling

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 36

Dispatcher Throughput

604

3773

2534

3186

1758

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)
ANL/UC, Java

200 CPUs
ANL/UC, Java
Bundling 10
200 CPUs

ANL/UC, C
200 CPUs

SiCortex, C
5760 CPUs

BlueGene/P, C
1024 CPUs

Executor Implementation and Various Systems

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 1 2 4 8 16 32 64 128 256
Task Length (sec)

Ef
fic

ie
nc

y

ANL/UC, Java, 200 CPUs
ANL/UC, C, 200 CPUs
SiCortex, C, 5760 CPUs
BG/P, C, 2048 CPUs

• Fast:
– Up to 3700 tasks/sec

• Scalable:
– 54,000 processors
– 1,500,000 tasks queued

• Efficient:
– High efficiency with second

long tasks on 1000s of
processors

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 39

Dispatcher Performance Profiling

• GT: Java WS-Core 4.0.4
• Java: Sun JDK 1.6
• Machine Hardware: Dual Xeon 3GHz CPUs with HT
• Machine OS: Linux 2.6.13-15.16-smp
• Executors Location: ANL/UC TG Site, 100 dual CPU Xeon/Itanium nodes, ~2ms latency
• Workload: 10000 tasks, “/bin/sleep 0”

0

1

2

3

4

5

6

JAVA C

C
PU

 T
im

e
pe

r T
as

k
(m

s)

Task Submit (Client -> Service)
Notification for Task Availability (Service -> Executor)
Task Dispatch (Service -> Executor)
Task Results (Executor -> Service)
Notifications for Task Results (Service -> Client)
WS communication / TCPCore (Service -> Executor & Executor -> Service)

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 40

Resource Provisioning

• End-to-end execution time:
– 1260 sec in ideal case
– 4904 sec 1276 sec

• Average task queue time:
– 42.2 sec in ideal case
– 611 sec 43.5 sec

• Trade-off:
– Resource Utilization for

Execution Efficiency

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal
(32 nodes)

Time to
complete

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution
Efficiency 26% 72% 75% 84% 85% 99% 100%
Resource

Allocations 1000 11 9 7 6 0 0

1 2 4 8 16 32
64

1

640

160

3 20 18 16 8 4 2 1
0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Stage Number

N
um

be
r o

f M
ac

hi
ne

s

0

100

200

300

400

500

600

700

N
um

be
r o

f T
as

ks# of Machines
of Tasks

- 18 Stages
- 1,000 tasks
- 17,820 CPU seconds
- 1,260 total time on 32 machines

0

5

10

15

20

25

30

35

0 580.386 1156.853 1735.62
Time (sec)

of

 E
xe

cu
to

rs

Allocated
Registered
Active

Ideal

0

5

10

15

20

25

30

35

0 494.438 986.091 1477.3
Time (sec)

of

 E
xe

cu
to

rs

Allocated
Registered
Active

Falkon-180 Falkon-15

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal
(32 nodes)

Queue
Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2
Execution
Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 41

Data Diffusion

• No Locality
– Modest loss of read performance for small # of nodes (<8)
– Comparable performance with large # of nodes
– Modest gains in read+write performance

• Locality
– Significant gains in performance beyond 8 nodes
– Data-aware scheduler achieves near optimal performance and scalability

100

1,000

10,000

100,000

1 2 4 8 16 32 64
Number of Nodes

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1. Model (local disk)
2. Model (shared file system)
3. Falkon (first-available policy)
5. Falkon (first-cache-available policy – 0% locality)
6. Falkon (first-cache-available policy – 100% locality)
7. Falkon (max-compute-util policy – 0% locality)
8. Falkon (max-compute-util policy – 100% locality)

100

1,000

10,000

100,000

1 2 4 8 16 32 64
Number of Nodes

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1. Model (local disk)
2. Model (shared file system)
3. Falkon (first-available policy)
5. Falkon (first-cache-available policy – 0% locality)
6. Falkon (first-cache-available policy – 100% locality)
7. Falkon (max-compute-util policy – 0% locality)
8. Falkon (max-compute-util policy – 100% locality)

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 42

Falkon Integration with Swift

13

Virtual Node(s)

SwiftScript

Abstract
computation

Virtual Data
Catalog

SwiftScript
Compiler

Specification Execution

Virtual Node(s)

Provenance
data

Provenance
dataProvenance

collector

launcher

launcher

file1

file2

file3

App
F1

App
F2

Scheduling

Execution Engine
(Karajan w/

Swift Runtime)

Swift runtime
callouts

C
C CC

Status reporting

Swift Architecture

Provisioning

Falkon
Resource

Provisioner

Amazon
EC2

Application #Tasks/workflow #Stages
ATLAS: High Energy

Physics Event Simulation 500K 1

fMRI DBIC:
AIRSN Image Processing 100s 12

FOAM: Ocean/Atmosphere Model 2000 3
GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4
NVO/NASA: Photorealistic

Montage/Morphology 1000s 16

QuarkNet/I2U2:
Physics Science Education 10s 3 ~ 6

RadCAD: Radiology
Classifier Training 1000s 5

SIDGrid: EEG Wavelet
Processing, Gaze Analysis 100s 20

SDSS: Coadd,
Cluster Search 40K, 500K 2, 8

SDSS: Stacking, AstroPortal 10Ks ~ 100Ks 2 ~ 4
MolDyn: Molecular Dynamics 1Ks ~ 20Ks 8

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 43

Functional MRI (fMRI)

• Wide range of analyses
– Testing, interactive analysis,

production runs
– Data mining
– Parameter studies

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 44Falkon: a Fast and Light-weight tasK executiON framework

fMRI Application

1239

2510

3683

4808

456
866 992 1123

120 327 546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480
Input Data Size (Volumes)

Ti
m

e
(s

)

GRAM
GRAM/Clustering
Falkon

• GRAM vs. Falkon: 85%~90% lower run time
• GRAM/Clustering vs. Falkon: 40%~74% lower run time

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 45

B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 46Falkon: a Fast and Light-weight tasK executiON framework

Montage Application

0

500

1000

1500

2000

2500

3000

3500

mProj
ec

t

mDiff/
Fit

mBac
kg

rou
nd

mAdd
(su

b)

mAdd tot
al

Components

Ti
m

e
(s

)

GRAM/Clustering
MPI
Falkon

• GRAM/Clustering vs. Falkon: 57% lower application run time
• MPI* vs. Falkon: 4% higher application run time
• * MPI should be lower bound

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 4747

0 1800 3600 5400 7200 9000 10800 12600 14400
1

1001
2001
3001
4001
5001
6001
7001
8001
9001

10001
11001
12001
13001
14001
15001
16001
17001
18001
19001
20001

Ta
sk

 ID

Time (sec)

waitQueueTime execTime resultsQueueTime

• 244 molecules 20497 jobs
• 15091 seconds on 216 CPUs 867.1 CPU hours
• Efficiency: 99.8%
• Speedup: 206.9x 8.2x faster than GRAM/PBS
• 50 molecules w/ GRAM (4201 jobs) 25.3 speedup

MolDyn Application

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 48

MARS Economic Modeling
on IBM BG/P

• CPU Cores: 2048
• Tasks: 49152
• Micro-tasks: 7077888
• Elapsed time: 1601 secs
• CPU Hours: 894
• Speedup: 1993X (ideal 2048)
• Efficiency: 97.3%

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 49

Many Many Tasks:
Identifying Potential Drug Targets

5M+ ligands200+ Protein x
target(s)

(Mike Kubal, Benoit Roux, and others)

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 50

DOCK on SiCortex

• CPU cores: 5760
• Tasks: 92160
• Elapsed time: 12821 sec
• Compute time: 1.94 CPU years
• Average task time: 660.3 sec
• Speedup: 5650X (ideal 5760)
• Efficiency: 98.2%

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 51

AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of random

locations within ~10TB dataset

• Challenge
– Rapid access to 10-10K “random” files
– Time-varying load

• Sample Workloads
S4 Sloan

Data

+

+
+
+

+

+

=

+

Web page
or Web
Service

 Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 52

AstroPortal Stacking Service
with Data Diffusion

Low data locality

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of CPUs
Ti

m
e

(m
s)

 p
er

 s
ta

ck
 p

er
 C

PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of CPUs

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

High data locality
– Near perfect scalability

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 53

AstroPortal Stacking Service
with Data Diffusion

• Big performance
gains as locality
increases

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 1.38 2 3 4 5 10 20 30 Ideal
Locality

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1.38 2 3 4 5 10 20 30

Locality

Lo
ca

l D
is

k
C

ac
he

 H
it

Pe
rc

en
ta

ge

max-compute-util: cache hit ratio
ideal cache hit ratio
% of ideal • 90%+ cache hit ratios

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 54

AstroPortal Stacking Service
with Data Diffusion

• Aggregate throughput:
– 39Gb/s
– 10X higher than GPFS

0

5

10

15

20

25

30

35

40

45

50

1 1.38 2 3 4 5 10 20 30
Locality

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
G

b/
s)

Data Diffusion Throughput Local
Data Diffusion Throughput Cache-to-Cache
Data Diffusion Throughput GPFS
GPFS Throughput (FIT)
GPFS Throughput (GZ)

0

1

2

3

4

5

6

7

8

9

10

1 1.3818 2 3 4 5 10 20 30
Locality

D
at

a
M

ov
em

en
t (

M
B

) p
er

 S
ta

ck

Data Diffusion Size Local
Data Diffusion Size Cache-to-Cache
Data Diffusion Size GPFS
GPFS Size (FIT)
GPFS Size (GZ)

• Reduced load on GPFS
– 0.49Gb/s
– 1/10 of the original load

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 55

Hadoop vs. Swift

• Classic benchmarks for MapReduce
– Word Count
– Sort

• Swift performs similar or better than Hadoop
(on 32 processors)

Sort

42
85

733

25

83

512

1

10

100

1000

10000

10MB 100MB 1000MB
Data Size

Ti
m

e
(s

ec
)

Swift+Falkon

Hadoop

Word Count

221

1143
1795

863

4688
7860

1

10

100

1000

10000

75MB 350MB 703MB
Data Size

Ti
m

e
(s

ec
)

Swift+PBS
Hadoop

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 56

Mythbusting

• Embarrassingly Happily parallel apps are trivial to run
– Logistical problems can be tremendous

• Loosely coupled apps do not require
“supercomputers”
– Total computational requirements can be enormous
– Individual tasks may be tightly coupled
– Workloads frequently involve large amounts of I/O

• Loosely coupled apps do not require specialized
system software

• Shared file systems are good all around solutions
– They don’t scale proportionally with the compute resources

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 57

Conclusions & Contributions

• Defined an abstract model for performance efficiency of data
analysis workloads using data-centric task farms

• Provide a reference implementation (Falkon)
– Use a streamlined dispatcher to increase task throughput by several

orders of magnitude over traditional LRMs
– Use multi-level scheduling to reduce perceived wait queue time for tasks

to execute on remote resources
– Address data diffusion through co-scheduling of storage and

computational resources to improve performance and scalability
– Provide the benefits of dedicated hardware without the associated high

cost
– Show flexibility/effectiveness on real world applications

• Astronomy, medical imaging, molecular dynamics (chemistry and
pharmaceuticals), economic modeling

– Runs on real systems with 1000s of processors:
• TeraGrid, IBM BlueGene/P, SiCortex

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 58

More Information

• More information: http://people.cs.uchicago.edu/~iraicu/
• Related Projects:

– Falkon: http://dev.globus.org/wiki/Incubator/Falkon
– AstroPortal: http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro_portal.htm
– Swift: http://www.ci.uchicago.edu/swift/index.php

• Collaborators (relevant to this proposal):
– Ian Foster, The University of Chicago & Argonne National Laboratory
– Alex Szalay, The Johns Hopkins University
– Rick Stevens, The University of Chicago & Argonne National Laboratory
– Yong Zhao, Microsoft
– Mike Wilde, Computation Institute, University of Chicago & Argonne National Laboratory
– Catalin Dumitrescu, Fermi National Laboratory
– Zhao Zhang, The University of Chicago
– Jerry C. Yan, NASA, Ames Research Center

• Funding:
– NASA: Ames Research Center, Graduate Student Research Program (GSRP)
– DOE: Mathematical, Information, and Computational Sciences Division subprogram of the

Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy
– NSF: TeraGrid

5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 59

Proposals / Journal Articles
Book Chapters / Conference
Workshop Articles (selected)

1. Yong Zhao, Ioan Raicu, Ian Foster. “Scientific Workflow Systems for 21st Century e-Science, New Bottle or New Wine?”,
Invited Paper, to appear at IEEE Workshop on Scientific Workflows 2008.

2. Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. "Accelerating Large-scale Data Exploration through Data Diffusion", to
appear at International Workshop on Data-Aware Distributed Computing 2008.

3. Ioan Raicu, Yong Zhao, Ian Foster, Mike Wilde, Zhao Zhang, Ben Clifford, Mihael Hategan, Sarah Kenny. “Managing and
Executing Loosely Coupled Large Scale Applications on Clusters, Grids, and Supercomputers”, to appear at
GlobusWorld08, part of Open Source Grid and Cluster Conference 2008.

4. Yong Zhao, Ioan Raicu, Ian Foster, Mihael Hategan, Veronika Nefedova, Mike Wilde. “Realizing Fast, Scalable and
Reliable Scientific Computations in Grid Environments”, to appear as a book chapter in Grid Computing Research Progress,
ISBN: 978-1-60456-404-4, Nova Publisher 2008.

5. Ioan Raicu. “Harnessing Grid Resources with Data-Centric Task Farms”, University of Chicago, Computer Science
Department, PhD Proposal, December 2007, Chicago, Illinois.

6. Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster and Mike Wilde. “Falkon: A Proposal for Project Globus Incubation”,
Globus Incubation Management Project, 2007 – Proposal accepted 11/10/07.

7. Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. “A Data Diffusion Approach to Large Scale Scientific Exploration”, to
appear in the Microsoft Research eScience Workshop 2007.

8. Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, Mike Wilde. “Falkon: a Fast and Light-weight tasK executiON
framework”, IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis
(SuperComputing/SC), 2007.

9. Ioan Raicu, Catalin Dumitrescu, Ian Foster. “Dynamic Resource Provisioning in Grid Environments”, TeraGrid Conference
2007.

10. Yong Zhao, Mihael Hategan, Ben Clifford, Ian Foster, Gregor von Laszewski, Ioan Raicu, Tiberiu Stef-Praun, Mike Wilde.
“Swift: Fast, Reliable, Loosely Coupled Parallel Computation”, IEEE Workshop on Scientific Workflows 2007.

11. I. Raicu, I. Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets”, NASA
GSRP Proposal, Ames Research Center, NASA, February 2006, February 2007 -- Award funded 10/1/06 - 09/30/08.

12. Ioan Raicu, Ian Foster, Alex Szalay. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy
Datasets”, poster presentation, IEEE/ACM International Conference for High Performance Computing, Networking, Storage
and Analysis (SuperComputing/SC), 2006.

13. Ioan Raicu, Ian Foster, Alex Szalay, Gabriela Turcu. “AstroPortal: A Science Gateway for Large-scale Astronomy Data
Analysis”, TeraGrid Conference 2006, June 2006.

14. Alex Szalay, Julian Bunn, Jim Gray, Ian Foster, Ioan Raicu. “The Importance of Data Locality in Distributed Computing
Applications”, NSF Workflow Workshop 2006.

