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What will we do 
with 1+ Exaflops
and 1M+ cores?
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1) Tackle Bigger and Bigger
Problems

Computational
Scientist

as 
Hero
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2) Tackle Increasingly Complex
Problems

Computational
Scientist

as 
Logistics

Officer
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“More Complex Problems”

• Use ensemble runs to quantify climate model 
uncertainty

• Identify potential drug targets by screening a 
database of ligand structures against target proteins

• Study economic model sensitivity to key parameters
• Analyze turbulence dataset from multiple 

perspectives
• Perform numerical optimization to determine optimal 

resource assignment in energy problems
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Programming Model Issues

• Multicore processors
• Massive task parallelism
• Massive data parallelism
• Integrating black box applications
• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Data management: input, intermediate, output
• Dynamic task graphs
• Dynamic data access involving large amounts of data
• Documenting provenance of data products 
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Problem Types

Number of tasks

Input
data
size

1                        1K                       1M       

Hi

Med

Lo

Heroic
MPI
tasks

Data
analysis,
mining

Many loosely coupled tasks 

Big data and 
many tasks 



5/12/2008 Harnessing Grid Resources with Data-Centric Task Farms 8

Motivating Example:
AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of 

random locations within 
~10TB dataset

• Challenge
– Rapid access to 10-10K 

“random” files
– Time-varying load

• Solution
– Dynamic acquisition of 

compute, storage

S4 Sloan
Data

+

+
+
+

+

+

=

+

Web page 
or Web 
Service
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Challenge #1:
Long Queue Times

5/12/2008 9

• Wait queue times are typically longer than 
the job duration times

SDSC DataStar 1024 Processor Cluster 2004
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Challenge #2:
Slow Job Dispatch Rates

• Production LRMs ~1 job/sec dispatch rates

5/12/2008 10

• What job durations are 
needed for 90% efficiency:
– Production LRMs: 900 sec
– Development LRMs: 100 sec
– Experimental LRMs: 50 sec
– 1~10 sec should be possible

System Comments Throughput 
(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

Medium Size Grid Site (1K processors)
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Challenge #3: Poor Scalability of 
Shared File Systems
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• GPFS vs. LOCAL
– Read Throughput

• 1 node: 0.48Gb/s vs. 1.03Gb/s 2.15x
• 160 nodes: 3.4Gb/s vs. 165Gb/s 48x

– Read+Write Throughput:
• 1 node: 0.2Gb/s vs. 0.39Gb/s 1.95x
• 160 nodes: 1.1Gb/s vs. 62Gb/s 55x

– Metadata (mkdir / rm -rf)
• 1 node: 151/sec vs. 199/sec 1.3x
• 160 nodes: 21/sec vs. 31840/sec 1516x
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Hypothesis

• Important concepts related to the hypothesis
– Workload: a complex query (or set of queries) decomposable into 

simpler tasks to answer broader analysis questions 
– Data locality is crucial to the efficient use of large scale distributed 

systems for scientific and data-intensive applications
– Allocate computational and caching storage resources, co-scheduled to 

optimize workload performance 

“Significant performance improvements can be 
obtained in the analysis of large dataset by leveraging 
information about data analysis workloads rather than 

individual data analysis tasks.”
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Proposed Solution: Part 1
Abstract Model and Validation

• AMDASK:
– An Abstract Model for DAta-centric taSK farms

• Task Farm: A common parallel pattern that drives independent computational 
tasks

– Models the efficiency of data analysis workloads for the split/merge class 
of applications

– Captures the following data diffusion properties
• Resources are acquired in response to demand
• Data and applications diffuse from archival storage to new resources 
• Resource “caching” allows faster responses to subsequent requests 
• Resources are released when demand drops 
• Considers both data and computations to optimize performance

• Model Validation
– Implement the abstract model in a discrete event simulation
– Validate model with statistical methods (R2 Statistic, Residual Analysis)
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Proposed Solution: Part 2
Practical Realization

• Falkon: a Fast and Light-weight tasK executiON 
framework
– Light-weight task dispatch mechanism 
– Dynamic resource provisioning to acquire and release 

resources
– Data management capabilities including data-aware 

scheduling
– Integration into Swift to leverage many Swift-based 

applications
• Applications cover many domains: astronomy, astro-physics, 

medicine, chemistry, and economics  
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AMDASK:
Performance Efficiency Model

• B: Average Task Execution Time: 
– K: Stream of tasks
– µ(k): Task k execution time

• V: Workload Execution Time:  
– A: Arrival rate of tasks 
– T: Transient Resources

• W: Workload Execution Time with Overheads  
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– ο(k): Dispatch overhead
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AMDASK:
Performance Efficiency Model

• Efficiency

• Speedup

• Optimizing Efficiency
– Easy to maximize either efficiency or speedup independently
– Harder to maximize both at the same time

• Find the smallest number of transient resources |T| while maximizing 
speedup*efficiency
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Performance Efficiency Model
Example: 1K CPU Cluster

• Application: Angle - distributed data mining
• Testbed Characteristics:

– Computational Resources: 1024
– Transient Resource Bandwidth: 10MB/sec
– Persistent Store Bandwidth: 426MB/sec

• Workload:
– Number of Tasks: 128K
– Arrival rate: 1000/sec
– Average task execution time: 60 sec
– Data Object Size: 40MB
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Performance Efficiency Model
Example: 1K CPU Cluster
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Falkon on ANL/UC TG Site:
Peak Dispatch Throughput: 500/sec

Scalability: 50~500 CPUs
Peak speedup: 623x 

PBS on ANL/UC TG Site:
Peak Dispatch Throughput: 1/sec

Scalability: <50 CPUs
Peak speedup: 54x 
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Model Validation:
Simulations

• Implement the abstract model in a discrete event 
simulation

• Simulation parameters
– number of storage and computational resources
– communication costs
– management overhead
– workloads (inter-arrival rates, query complexity, data set 

properties, and data locality)
• Model Validation

– R2 Statistic
– Residual analysis
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Falkon: a Fast and Light-weight 
tasK executiON framework

• Goal: enable the rapid and efficient execution of 
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher able to achieve order-of-

magnitude higher task dispatch rates than conventional 
schedulers Challenge #1

– resource provisioning through multi-level scheduling 
techniques Challenge #2

– data diffusion and data-aware scheduling to leverage the 
co-located computational and storage resources 
Challenge #3
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Falkon: The Streamlined 
Task Dispatcher 

• Tier 1: Dispatcher
– GT4 Web Service accepting 

task submissions from clients 
and sending them to available 
executors

• Tier 2: Executor
– Run tasks on local resources

• Provisioner
– Static and dynamic resource 

provisioning

WS

WS

Provisioner
Compute 

Resources

Executor 1

Clients

Executor n

Compute
Resource m

Compute 
Resource 1

Dispatcher
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Falkon: The Streamlined 
Task Dispatcher

• Falkon Message Exchanges
– Description:

{1}: task(s) submit
{2}: task(s) submit confirmation
{3}: notification for work
{4}: request for task(s)
{5 or 7}: dispatch task(s)
{6}: deliver task(s) results to service
{8}: notification for task result(s)
{9}: request for task result(s)
{10}: deliver task(s) results to client 

– Worst case (process tasks individually, no optimizations): 
• 4 WS messages ({1,2}, {4,5}, {6,7}, {9,10}) and 2 notifications ({3}, 

{8}) per task
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Falkon: The Streamlined 
Task Dispatcher

– Bundling
• Include multiple tasks per communication 

message
– Piggy-Backing

• Attach next task to acknowledgement of 
previous task

• Include data management information in the 
task description and acknowledgement 
messages

• Falkon Message Exchanges Enhancements

– Message reduction: 
• General Lower Bound: 10 2+c, where c is a small positive value
• Application Specific Lower Bound: 10 0+c, where c is a small positive value
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Falkon: 
Resource Provisioning

0.    provisioner registration
1. task(s) submit
2. resource allocation to GRAM
3. resource allocation to LRM
4. executor registration
5. notification for work
6. pick up task(s)
7. deliver task(s) results
8. notification for task(s) result
9. pick up task(s) results
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Falkon: 
Data Diffusion

• Resource acquired in 
response to demand

• Data and applications diffuse 
from archival storage to 
newly acquired resources

• Resource “caching” allows 
faster responses to 
subsequent requests 
– Cache Eviction Strategies: 

RANDOM, FIFO, LRU, LFU
• Resources are released 

when demand drops 

text

Task Dispatcher
Data-Aware Scheduler Persistent Storage

Shared File System

Idle Resources

Provisioned Resources
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Falkon: 
Data Diffusion

• Considers both data and computations to 
optimize performance

• Decrease dependency of a shared file system
– Theoretical linear scalability with compute 

resources
– Significantly increases meta-data creation and/or 

modification performance
• Completes the “data-centric task farm”

realization
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Related Work: 
Task Farms

• [Casanova99]: Adaptive Scheduling for Task Farming with Grid 
Middleware

• [Heymann00]: Adaptive Scheduling for Master-Worker 
Applications on the Computational Grid

• [Danelutto04]: Adaptive Task Farm Implementation Strategies
• [González-Vélez05]: An Adaptive Skeletal Task Farm for Grids
• [Petrou05]: Scheduling Speculative Tasks in a Compute Farm
• [Reid06]: Task farming on Blue Gene

Conclusion: none addressed the proposed “data-centric” part of 
task farms
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Related Work:
Task Dispatch

• [Zhou92]: LSF – Load Sharing Cluster Management
• [Bode00]: PBS – Portable Batch Scheduler and Maui Scheduler 
• [Anderson04]: BOINC – Task Distribution for Volunteer 

Computing
• [Thain05]: Condor
• [Robinson07]: Condor-J2 – Turning Cluster Management into 

Data Management

Conclusion: related work is several orders of magnitude slower
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Related Work:
Resource Provisioning

• [Appleby01]: Oceano - SLA Based Management of a 
Computing Utility 

• [Frey02, Mehta06]: Condor glide-ins
• [Walker06]: MyCluster (based on Condor glide-ins)
• [Ramakrishnan06]: Grid Hosting with Adaptive Resource 

Control 
• [Bresnahan06]: Provisioning of bandwidth
• [Singh06]: Simulations

Conclusion: Allows dynamic resizing of resource pool 
(independent of application logic) based on system load and 
makes use of light-weight task dispatch
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Related Work:
Data Management

• [Beynon01]: DataCutter
• [Ranganathan03]: Simulations
• [Ghemawat03,Dean04,Chang06]: BigTable, GFS, MapReduce
• [Liu04]: GridDB
• [Chervenak04,Chervenak06]: RLS (Replica Location Service), 

DRS (Data Replication Service)
• [Tatebe04,Xiaohui05]: GFarm
• [Branco04,Adams06]: DIAL/ATLAS

Conclusion: Our work focuses on the co-location of storage and 
computations close to each other (i.e. on the same physical 
resource) while operating in a dynamic environment.
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Results 

• Abstract task farm model [Dissertation Proposal 2007]

• Practical Realization: Falkon
– Task Dispatcher [Globus Incubator 2007, SC07, SC08]

– Resource Provisioning [SC07, TG07]

– Data Diffusion [NSF06, MSES07, DADC08]

– Swift Integration [SWF07, NOVA08, SWF08, GW08]

• Applications [NASA06, TG06, SC06, NASA07, SWF07, NOVA08, SC08]

– Astronomy, medical imaging, molecular dynamics (chemistry 
and pharmaceuticals), economic modeling
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Dispatcher Throughput
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• Fast:
– Up to 3700 tasks/sec

• Scalable:
– 54,000 processors
– 1,500,000 tasks queued

• Efficient:
– High efficiency with second 

long tasks on 1000s of 
processors
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Dispatcher Performance Profiling

• GT: Java WS-Core 4.0.4
• Java: Sun JDK 1.6
• Machine Hardware: Dual Xeon 3GHz CPUs with HT
• Machine OS: Linux 2.6.13-15.16-smp
• Executors Location: ANL/UC TG Site, 100 dual CPU Xeon/Itanium nodes, ~2ms latency 
• Workload: 10000 tasks, “/bin/sleep 0”
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Task Submit (Client -> Service)
Notification for Task Availability (Service -> Executor)
Task Dispatch (Service -> Executor)
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WS communication / TCPCore (Service -> Executor & Executor -> Service)
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Resource Provisioning

• End-to-end execution time: 
– 1260 sec in ideal case
– 4904 sec 1276 sec

• Average task queue time: 
– 42.2 sec in ideal case
– 611 sec 43.5 sec

• Trade-off:
– Resource Utilization for 

Execution Efficiency

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Time to 
complete 

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce 

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution 
Efficiency 26% 72% 75% 84% 85% 99% 100%
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Allocations 1000 11 9 7 6 0 0
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GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Queue 
Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2
Execution 
Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution 

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%
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Data Diffusion

• No Locality
– Modest loss of read performance for small # of nodes (<8) 
– Comparable performance with large # of nodes
– Modest gains in read+write performance

• Locality
– Significant gains in performance beyond 8 nodes
– Data-aware scheduler achieves near optimal performance and scalability
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Falkon Integration with Swift

13

Virtual Node(s)

SwiftScript

Abstract
computation

Virtual Data
Catalog

SwiftScript
Compiler

Specification Execution

Virtual Node(s)

Provenance
data

Provenance
dataProvenance

collector

launcher

launcher

file1

file2

file3

App
F1

App
F2

Scheduling

Execution Engine
(Karajan w/

Swift Runtime)

Swift runtime
callouts

C
C CC

Status reporting

Swift Architecture

Provisioning

Falkon
Resource

Provisioner

Amazon
EC2

Application #Tasks/workflow #Stages
ATLAS: High Energy 

Physics Event Simulation 500K 1

fMRI DBIC: 
AIRSN Image Processing 100s 12

FOAM: Ocean/Atmosphere Model 2000 3
GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4
NVO/NASA: Photorealistic 

Montage/Morphology 1000s 16

QuarkNet/I2U2: 
Physics Science Education 10s 3 ~ 6

RadCAD: Radiology 
Classifier Training 1000s 5

SIDGrid: EEG Wavelet 
Processing, Gaze Analysis 100s 20

SDSS: Coadd, 
Cluster Search 40K, 500K 2, 8

SDSS: Stacking, AstroPortal 10Ks ~ 100Ks 2 ~ 4
MolDyn: Molecular Dynamics 1Ks ~ 20Ks 8
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Functional MRI (fMRI)

• Wide range of analyses
– Testing, interactive analysis,

production runs
– Data mining
– Parameter studies
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fMRI Application
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• GRAM vs. Falkon: 85%~90% lower run time
• GRAM/Clustering vs. Falkon: 40%~74% lower run time
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B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)
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Montage Application
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• GRAM/Clustering vs. Falkon: 57% lower application run time
• MPI* vs. Falkon: 4% higher application run time
• * MPI should be lower bound
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• 244 molecules 20497 jobs
• 15091 seconds on 216 CPUs 867.1 CPU hours
• Efficiency: 99.8%
• Speedup: 206.9x 8.2x faster than GRAM/PBS
• 50 molecules w/ GRAM (4201 jobs) 25.3 speedup

MolDyn Application
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MARS Economic Modeling 
on IBM BG/P

• CPU Cores: 2048
• Tasks: 49152
• Micro-tasks: 7077888
• Elapsed time: 1601 secs
• CPU Hours: 894
• Speedup: 1993X (ideal 2048)
• Efficiency: 97.3%
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Many Many Tasks:
Identifying Potential Drug Targets

5M+ ligands200+ Protein        x
target(s)          

(Mike Kubal, Benoit Roux, and others)
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DOCK on SiCortex

• CPU cores: 5760
• Tasks: 92160
• Elapsed time: 12821 sec
• Compute time: 1.94 CPU years
• Average task time: 660.3 sec
• Speedup: 5650X (ideal 5760)
• Efficiency: 98.2%
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AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of random 

locations within ~10TB dataset

• Challenge
– Rapid access to 10-10K “random” files
– Time-varying load

• Sample Workloads
S4 Sloan

Data

+

+
+
+

+

+

=

+

Web page 
or Web 
Service

 Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790
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AstroPortal Stacking Service
with Data Diffusion

Low data locality 
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High data locality
– Near perfect scalability
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AstroPortal Stacking Service
with Data Diffusion

• Big performance 
gains as locality 
increases
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AstroPortal Stacking Service
with Data Diffusion

• Aggregate throughput:
– 39Gb/s
– 10X higher than GPFS
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• Reduced load on GPFS
– 0.49Gb/s
– 1/10 of the original load
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Hadoop vs. Swift

• Classic benchmarks for MapReduce
– Word Count
– Sort

• Swift performs similar or better than Hadoop
(on 32 processors)
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Mythbusting

• Embarrassingly Happily parallel apps are trivial to run
– Logistical problems can be tremendous

• Loosely coupled apps do not require 
“supercomputers”
– Total computational requirements can be enormous
– Individual tasks may be tightly coupled
– Workloads frequently involve large amounts of I/O

• Loosely coupled apps do not require specialized 
system software

• Shared file systems are good all around solutions
– They don’t scale proportionally with the compute resources
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Conclusions & Contributions

• Defined an abstract model for performance efficiency of data 
analysis workloads using data-centric task farms

• Provide a reference implementation (Falkon)
– Use a streamlined dispatcher to increase task throughput by several 

orders of magnitude over traditional LRMs
– Use multi-level scheduling to reduce perceived wait queue time for tasks 

to execute on remote resources
– Address data diffusion through co-scheduling of storage and 

computational resources to improve performance and scalability
– Provide the benefits of dedicated hardware without the associated high 

cost
– Show flexibility/effectiveness on real world applications

• Astronomy, medical imaging, molecular dynamics (chemistry and 
pharmaceuticals), economic modeling

– Runs on real systems with 1000s of processors: 
• TeraGrid, IBM BlueGene/P, SiCortex
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More Information

• More information: http://people.cs.uchicago.edu/~iraicu/
• Related Projects: 

– Falkon: http://dev.globus.org/wiki/Incubator/Falkon
– AstroPortal: http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro_portal.htm
– Swift: http://www.ci.uchicago.edu/swift/index.php

• Collaborators (relevant to this proposal):
– Ian Foster, The University of Chicago & Argonne National Laboratory
– Alex Szalay, The Johns Hopkins University
– Rick Stevens, The University of Chicago & Argonne National Laboratory
– Yong Zhao, Microsoft
– Mike Wilde, Computation Institute, University of Chicago & Argonne National Laboratory 
– Catalin Dumitrescu, Fermi National Laboratory
– Zhao Zhang, The University of Chicago
– Jerry C. Yan, NASA, Ames Research Center

• Funding:
– NASA: Ames Research Center, Graduate Student Research Program (GSRP)
– DOE: Mathematical, Information, and Computational Sciences Division subprogram of the 

Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy
– NSF: TeraGrid
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Proposals / Journal Articles 
Book Chapters / Conference 
Workshop Articles (selected)

1. Yong Zhao, Ioan Raicu, Ian Foster. “Scientific Workflow Systems for 21st Century e-Science, New Bottle or New Wine?”, 
Invited Paper, to appear at IEEE Workshop on Scientific Workflows 2008.

2. Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. "Accelerating Large-scale Data Exploration through Data Diffusion", to 
appear at International Workshop on Data-Aware Distributed Computing 2008.

3. Ioan Raicu, Yong Zhao, Ian Foster, Mike Wilde, Zhao Zhang, Ben Clifford, Mihael Hategan, Sarah Kenny. “Managing and 
Executing Loosely Coupled Large Scale Applications on Clusters, Grids, and Supercomputers”, to appear at 
GlobusWorld08, part of Open Source Grid and Cluster Conference 2008.

4. Yong Zhao, Ioan Raicu, Ian Foster, Mihael Hategan, Veronika Nefedova, Mike Wilde.  “Realizing Fast, Scalable and 
Reliable Scientific Computations in Grid Environments”, to appear as a book chapter in Grid Computing Research Progress, 
ISBN: 978-1-60456-404-4, Nova Publisher 2008.

5. Ioan Raicu.  “Harnessing Grid Resources with Data-Centric Task Farms”, University of Chicago, Computer Science 
Department, PhD Proposal, December 2007, Chicago, Illinois.

6. Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster and Mike Wilde. “Falkon: A Proposal for Project Globus Incubation”, 
Globus Incubation Management Project, 2007 – Proposal accepted 11/10/07. 

7. Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. “A Data Diffusion Approach to Large Scale Scientific Exploration”, to 
appear in the Microsoft Research eScience Workshop 2007.

8. Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, Mike Wilde.  “Falkon: a Fast and Light-weight tasK executiON 
framework”, IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis 
(SuperComputing/SC), 2007.

9. Ioan Raicu, Catalin Dumitrescu, Ian Foster.  “Dynamic Resource Provisioning in Grid Environments”, TeraGrid Conference 
2007.

10. Yong Zhao, Mihael Hategan, Ben Clifford, Ian Foster, Gregor von Laszewski, Ioan Raicu, Tiberiu Stef-Praun, Mike Wilde.  
“Swift: Fast, Reliable, Loosely Coupled Parallel Computation”, IEEE Workshop on Scientific Workflows 2007.

11. I. Raicu, I. Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets”, NASA 
GSRP Proposal, Ames Research Center, NASA, February 2006, February 2007 -- Award funded 10/1/06 - 09/30/08.

12. Ioan Raicu, Ian Foster, Alex Szalay.  “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy 
Datasets”, poster presentation, IEEE/ACM International Conference for High Performance Computing, Networking, Storage 
and Analysis (SuperComputing/SC), 2006.

13. Ioan Raicu, Ian Foster, Alex Szalay, Gabriela Turcu.  “AstroPortal: A Science Gateway for Large-scale Astronomy Data 
Analysis”, TeraGrid Conference 2006, June 2006.

14. Alex Szalay, Julian Bunn, Jim Gray, Ian Foster, Ioan Raicu.  “The Importance of Data Locality in Distributed Computing 
Applications”, NSF Workflow Workshop 2006.


