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Throughput (Mb/s)
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— 160K CPU cores

— 624GDb/s Peak SAN read throughput; GPFS 80GB/s sustained read rates
— ~3.9Mb/s per CPU core peak; ~0.5Mb/s per CPU core sustained

— Experiments on 4K CPU BG/P achieved 0.3Mb/s per CPU core

— Experiments on 5.7K CPU SiCortex achieved 0.06Mb/s per CPU core



Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
Failure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data
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e Purpose

— On-demand “stacks” of
random locations within
~10TB dataset

e Challenge O

— Rapid access to 10-10K ~ ©-.
“random” files @

— Time-varying load 8

Solution @ Sservice

— Dynamic acquisition of

compute, storage
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“Significant performance improvements can be
obtained in the analysis of large dataset by leveraging
Information about data analysis workloads rather than

Individual data analysis tasks.”

 Important concepts related to the hypothesis

— Workload: a complex query (or set of queries) decomposable into
simpler tasks to answer broader analysis questions

— Data locality is crucial to the efficient use of large scale distributed
systems for scientific and data-intensive applications

— Allocate computational and caching storage resources, co-scheduled to
optimize workload performance
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« AMDASK: An Abstract Model for DAta-centric taSK farms

— Task Farm: A common parallel pattern that drives independent
computational tasks

 Models the efficiency of data analysis workloads for the
split/merge class of applications

o Captures the following data diffusion properties
— Resources are acquired in response to demand
— Data and applications diffuse from archival storage to new resources
— Resource “caching” allows faster responses to subsequent requests
— Resources are released when demand drops
— Considers both data and computations to optimize performance
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e Data Stores: Persistent & Transient

— Store capacity, load, ideal bandwidth, available
bandwidth

 Data Objects:
— Data object size, data object’s storage location(s),
copy time

« Transient resources: compute speed,
resource state

o Task: application, input/output data
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Dispatch Policy

— next-available, first-available, max-compute-util, max-cache-hit
Caching Policy

— random, FIFO, LRU, LFU

Replay policy

Data Fetch Policy

— Just-in-Time, Spatial Locality

Resource Acquisition Policy

— one-at-a-time, additive, exponential, all-at-once, optimal
Resource Release Policy

— distributed, centralized
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B: Average Task Execution Time'

— K: Stream of tasks Z (k)
— n(k): Task k execution time IK | keKﬂ

Y: Average Task Execution Time W|th Overheads

— o(Kk): Dispatch overhead Z[,u(lc)+o(1c)] 5 d(e). 5
— ¢(8,7): Time to get data y=) Kl
|K|Z[“(")+°(")+5(5 D] Sed(r),5eQ

V: Workload Execution Time:
— A: Arrival rate of tasks V = max(i, 1 j*l K|
— T: Transient Resources |IT| A

W: Workload Execution Time with Overheads

W = max L,i *| K |
I T|" A



o Efficiency

V
= — e— =
W
e Speedup
S=E*|T|

e Optimizing Efficiency

y o1
Tl A
B’|T|j, Yy 1
Y'A*Y ) T A

— Easy to maximize either efficiency or speedup independently

— Harder to maximize both at the same time
* Find the smallest number of transient resources |T| while maximizing

speedup*efficiency



o Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

 Combines three components:
— a streamlined task dispatcher

— resource provisioning through multi-level scheduling
techniques

— data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

 |ntegration into Swift to leverage many applications

— Applications cover many domains: astronomy, astro-physics,
medicine, chemistry, economics, climate modeling, etc
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Task Dispatcher

Persistent Storage
Data-Aware Scheduler

Dynamic
Resource
Provisioning

Available Resources
(GRAM4)
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Resource acquired in
response to demand

Data and applications diffuse
from archival storage to N
newly acquired reSoUrces  ouanwasseredier oy o

Resource “caching” allows I
faster responses to
subsequent requests
— Cache Eviction Strategies:
RANDOM, FIFO, LRU, LFU
Resources are released
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e Considers both data and computations to
optimize performance
 Decrease dependency of a shared file system

— Theoretical linear scalability with compute
resources

— Significantly increases meta-data creation and/or
modification performance

 Completes the “data-centric task farm”
realization
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o first-available:

— simple load balancing
 max-cache-hit

— maximize cache hits
e max-compute-util

— maximize processor utilization

e good-cache-compute

— maximize both cache hit and processor utilization at
the same time
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* No Locality
— Modest loss of read performance for small # of nodes (<8)
— Comparable performance with large # of nodes

— Modest gains in read+write performance
* Locality
— Significant gains in performance beyond 8 nodes
— Data-aware scheduler achieves near optimal performance and scalability
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e Purpose

— On-demand “stacks” of random
locations within ~10TB dataset

 Challenge
— Rapid access to 10-10K “random” files &
— Time-varying load
« Sample Workloads

@u E+E+E+EtEtE+

Locality | Number of Objects | Number of Files
1 111700 111700
1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790
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— Near perfect scalability

25




e Aggregate throughput:

— 39GDb/s

— 10X higher than GPFS
e Reduced load on GPFS

— 0.49Gb/s

— 1/10 of the original load
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« Stacking service (large scale astronomy application)
e 92 experiments

558K files
— Compressed: 2MB each = 1.1TB
— Un-compressed: 6MB each = 3.3TB
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250K tasks
— 10MB reads
— 10ms compute

Vary arrival rate:
— Min: 1 task/sec

— Increment function:
CEILING(*1.3)

— Max: 1000 tasks/sec
128 processors

Ideal case:
— 1415 sec

— 80GDb/s peak
throughput
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o Comparing GPFS with ideal
— 5011 sec vs. 1415 sec
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€ Throughput:
— Average: 14Gb/s vs 4Gb/s
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 Performance Index:
— 34X higher
o Speedup
— 3.5X faster than GPFS
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e Slowdown:
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GPFS
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[Casanova99]. Adaptive Scheduling for Task Farming with Grid
Middleware

[HeymannO0O0]. Adaptive Scheduling for Master-Worker
Applications on the Computational Grid

« [DaneluttoO4]: Adaptive Task Farm Implementation Strategies
 [Gonzalez-Velez05]: An Adaptive Skeletal Task Farm for Grids
o [Petrou05]. Scheduling Speculative Tasks in a Compute Farm
 [Reid06]: Task farming on Blue Gene

Conclusion: none addressed the proposed “data-centric” part of
task farms
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e [Ramakrishnan06]
Control

[Appleby01]: Oceano - SLA Based Management of a
Computing Utility
o [Frey02, MehtaO6]
o [Walker06]. MyCluster (based on Condor glide-ins)

. Condor glide-ins

. Grid Hosting with Adaptive Resource

 [Bresnahan06]: Provisioning of bandwidth
e [Singh06]: Simulations

Conclusion: Allows dynamic resizing of resource pool
(independent of application logic) based on system load and
makes use of light-weight task dispatch
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 [BeynonOl]: DataCutter

 [Ranganathan03]: Simulations
 [Ghemawat03,Dean04,Chang06]. BigTable, GFS, MapReduce
o [LiuO4]: GridDB

* [Chervenak04,Chervenak06]: RLS (Replica Location Service),
DRS (Data Repllcatlon Service)

o [Tatebe04,XiaohuiO5]: GFarm

e [Branco04,Adams06]: DIAL/ATLAS

o [Kosar06]: Stork

Conclusion: Our work focuses on the co-location of storage and
computations close to each other (i.e. on the same physical
resource) while operating in a dynamic environment.
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* Defined an abstract model for performance efficiency of data
analysis workloads using data-centric task farms

* Provide a reference implementation (Falkon)

Use a streamlined dispatcher to increase task throughput by several
orders of magnitude over traditional LRMs

Use multi-level scheduling to reduce perceived wait queue time for tasks
to execute on remote resources

Address data diffusion through co-scheduling of storage and
computational resources to improve performance and scalability

Provide the benefits of dedicated hardware without the associated high
cost

Show effectiveness on a real large-scale astronomy application
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 More information: http://people.cs.uchicago.edu/~iraicu/

 Related Projects:
— Falkon: http://dev.globus.org/wiki/Incubator/Falkon
— AstroPortal: http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro_portal.htm
— Swift: http://www.ci.uchicago.edu/swift/index.php

» Collaborators (relevant to this proposal).
— lan Foster, The University of Chicago & Argonne National Laboratory
— Alex Szalay, The Johns Hopkins University
— Rick Stevens, The University of Chicago & Argonne National Laboratory
— Yong Zhao, Microsoft
— Mike Wilde, Computation Institute, University of Chicago & Argonne National Laboratory
— Catalin Dumitrescu, Fermi National Laboratory
— Zhao Zhang, The University of Chicago
— Jerry C. Yan, NASA, Ames Research Center
* Funding:
— NASA: Ames Research Center, Graduate Student Research Program (GSRP)

— DOE: Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy

— NSF: TeraGrid
5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 38




