saé THE UNIVERSITY OF

Accelerating
Large-Scale Data Exploration
through Data Diffusion

loan Raicu
Distributed Systems Laboratory
Computer Science Department
University of Chicago

Collaborators:

lan Foster (UC/CI/ANL), Yong Zhao (MS), Mike Wilde (CI/ANL),
Zhao Zhang (ClI), Rick Stevens (UC/CI/ANL), Alex Szalay (JHU),
Jerry Yan (NASA/AMES), Catalin Dumitrescu (FANL)

Distributed Systems Laboratory Workshop 2008 - DSLWO0S8
May 22"d, 2008

Argonne

NATIONAL LABORATORY

@Eﬂﬂc Projected Performance Development
100F Flops
- #1
10 PFlops - o- #500
-3 Sum
1 PFlops — #1 Trend
Line
100 THops - — #5300 Trend
- Line
£ 10 TFops 7 — Sum Trend
E b, | 2 Line
'E 1 TFlops .
: - What will we do
100 GFlops 325)
Y with 1+ Exaflops
| Gt and 1M+ cores?
1|:||:|r'|'1FI|:|F|3IlllIll|I|llIll|IlllIll|Illlllllllllllllllllllll
(L] L [~ (] — (L] L [~ (] — (L] L [~

/1172007 http:/'www top500.0m/

Throughput (Mb/s)

1000000 1.
---E‘ggiLRR e GPFSvs. LOCAL
~ COCAL RaW . Read Th hout
100000 e — Read fhroughpu
ST e 1 node: 0.48Gb/s vs. 1.03Gb/s = 2.15x
10000 / « 160 nodes: 3.4Gb/s vs. 165Gb/s = 48x
/ __________ 10.6Mb/s per CPU
o « 1 node: 0.2Gb/s vs. 0.39Gb/s & 1.95x
100 | » 160 nodes: 1.1Gb/s vs. 62Gb/s =» 55x
1 10 100 — oMetadata (mkdir / rm -rf)
Number of Nodes « 1 node: 151/sec vs. 199/sec = 1.3x
IBM BIueGene/P e 160 nodes: 21/sec vs. 31840/sec =» 1516x

— 160K CPU cores

— 624GDb/s Peak SAN read throughput; GPFS 80GB/s sustained read rates
— ~3.9Mb/s per CPU core peak; ~0.5Mb/s per CPU core sustained

— Experiments on 4K CPU BG/P achieved 0.3Mb/s per CPU core

— Experiments on 5.7K CPU SiCortex achieved 0.06Mb/s per CPU core

Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
Failure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 4

Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
Failure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 5

data
size

Med

Lo

5/22/2008

v

Data o d q
analysis, Big data an
mining many tasks

Heroic
MPI
tasks

Many loosely coupled tasks

o
»

1 1K 1M
Number of tasks

Accelerating Large-Scale Data Exploration through Data Diffusion 6

e Purpose

— On-demand “stacks” of
random locations within
~10TB dataset

e Challenge O

— Rapid access to 10-10K ~ ©-.
“random” files @

— Time-varying load 8

Solution @ Sservice

— Dynamic acquisition of

compute, storage
5/22/2008 Accelerating Large-Scale Data Exploration th

@u E+E+E+EtEtE+

“Significant performance improvements can be
obtained in the analysis of large dataset by leveraging
Information about data analysis workloads rather than

Individual data analysis tasks.”

 Important concepts related to the hypothesis

— Workload: a complex query (or set of queries) decomposable into
simpler tasks to answer broader analysis questions

— Data locality is crucial to the efficient use of large scale distributed
systems for scientific and data-intensive applications

— Allocate computational and caching storage resources, co-scheduled to
optimize workload performance

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 8

« AMDASK: An Abstract Model for DAta-centric taSK farms

— Task Farm: A common parallel pattern that drives independent
computational tasks

 Models the efficiency of data analysis workloads for the
split/merge class of applications

o Captures the following data diffusion properties
— Resources are acquired in response to demand
— Data and applications diffuse from archival storage to new resources
— Resource “caching” allows faster responses to subsequent requests
— Resources are released when demand drops
— Considers both data and computations to optimize performance

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 9

e Data Stores: Persistent & Transient

— Store capacity, load, ideal bandwidth, available
bandwidth

 Data Objects:
— Data object size, data object’s storage location(s),
copy time

« Transient resources: compute speed,
resource state

o Task: application, input/output data

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 10

Dispatch Policy

— next-available, first-available, max-compute-util, max-cache-hit
Caching Policy

— random, FIFO, LRU, LFU

Replay policy

Data Fetch Policy

— Just-in-Time, Spatial Locality

Resource Acquisition Policy

— one-at-a-time, additive, exponential, all-at-once, optimal
Resource Release Policy

— distributed, centralized

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 11

B: Average Task Execution Time'

— K: Stream of tasks Z (k)
— n(k): Task k execution time IK | keKﬂ

Y: Average Task Execution Time W|th Overheads

— o(Kk): Dispatch overhead Z[,u(lc)+o(1c)] 5 d(e). 5
— ¢(8,7): Time to get data y=) Kl
|K|Z[“(")+°(")+5(5 D] Sed(r),5eQ

V: Workload Execution Time:
— A: Arrival rate of tasks V = max(i, 1 j*l K|
— T: Transient Resources |IT| A

W: Workload Execution Time with Overheads

W = max L,i *| K |
I T|" A

o Efficiency

V
= — e— =
W
e Speedup
S=E*|T|

e Optimizing Efficiency

y o1
Tl A
B’|T|j, Yy 1
Y'A*Y) T A

— Easy to maximize either efficiency or speedup independently

— Harder to maximize both at the same time
* Find the smallest number of transient resources |T| while maximizing

speedup*efficiency

o Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

 Combines three components:
— a streamlined task dispatcher

— resource provisioning through multi-level scheduling
techniques

— data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

 |ntegration into Swift to leverage many applications

— Applications cover many domains: astronomy, astro-physics,
medicine, chemistry, economics, climate modeling, etc

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 14

o Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

 Combines three components:
— a streamlined task dispatcher

— resource provisioning through multi-level scheduling
techniques

— data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

 |ntegration into Swift to leverage many applications

— Applications cover many domains: astronomy, astro-physics,
medicine, chemistry, economics, climate modeling, etc

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 15

Task Dispatcher

Persistent Storage
Data-Aware Scheduler

Dynamic
Resource
Provisioning

Available Resources
(GRAM4)

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 16

Resource acquired in
response to demand

Data and applications diffuse
from archival storage to N
newly acquired reSoUrces ouanwasseredier oy o

Resource “caching” allows I
faster responses to
subsequent requests
— Cache Eviction Strategies:
RANDOM, FIFO, LRU, LFU
Resources are released
when demand drops

-
ceo
- e
- -
- Seo
e
-
e

-
c~eo
e

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 17

e Considers both data and computations to
optimize performance
 Decrease dependency of a shared file system

— Theoretical linear scalability with compute
resources

— Significantly increases meta-data creation and/or
modification performance

 Completes the “data-centric task farm”
realization

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 18

o first-available:

— simple load balancing
 max-cache-hit

— maximize cache hits
e max-compute-util

— maximize processor utilization

e good-cache-compute

— maximize both cache hit and processor utilization at
the same time

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 19

5/22/2008

w S ol
|

N

CPU Time per Task (ms)
|_\

- B WS Communication 4000

Bl Task Submit o
m Notification for Task Availabilit 5000
Bl Task Dispatch (data-aware scheduler)
 Task Results (data-aware scheduler)
Notification for Task Results

- Throughput (tasks/sec)

'__

+ 3000

2000

1000

Throughput (tasks/sec)

0
first- first- max- max-cache- good-
available available compute-util hit cache-
without I/O with I/O compute

Accelerating Large-Scale Data Exploration through Data Diffusion 20

* No Locality
— Modest loss of read performance for small # of nodes (<8)
— Comparable performance with large # of nodes

— Modest gains in read+write performance
* Locality
— Significant gains in performance beyond 8 nodes
— Data-aware scheduler achieves near optimal performance and scalability

Read Throughput (Mb/s)

100,000

=®- 1. Model (local disk)

2. Model (shared file system)
=¥~ 3. Falkon (first-available policy)
=&=5_ Falkon (first-cache-available policy — 0% locality)
=6=6. Falkon (first-cache-available policy — 100% locality)
=#=7. Falkon (max-compute-util policy — 0% locality)
=7 8. Falkon (max-compute-util policy — 100% locality)

10,000

1,000

100

1 2 4 8 16

Number of Nodes

64

Read+Write Throughput (Mb/s)

100,000

10,000

=—1. Model (local disk)

2. Model (shared file system)
=¥~ 3. Falkon (first-available policy)
=4=5. Falkon (first-cache-available policy — 0% locality)
=6—6. Falkon (first-cache-available policy — 100% locality)
=#=7. Falkon (max-compute-util policy — 0% locality)
=#8. Falkon (max-compute-util policy — 100% locality)

1,000

100

1 2 4 8 16
Number of Nodes

32 64

e Purpose

— On-demand “stacks” of random
locations within ~10TB dataset

 Challenge
— Rapid access to 10-10K “random” files &
— Time-varying load
« Sample Workloads

@u E+E+E+EtEtE+

Locality | Number of Objects | Number of Files
1 111700 111700
1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790

5/22/2008 Accelerating Large-Scale Data Exploration th

Purpo e = open
— On- radec2xy
400 - W readHDU+getTile+curl+convertArray
locé M calibration+interpolation+doStacking
B writeStacking
Challe 3]
Raj -
(72}
— Timr E250 1
(0]
Samp =
Locality
1
1.38
2
3
4
5
10
20 GPFS GZ LOCAL GZ GPFS FIT LOCAL FIT
30
Filesystem and Image Format
5/22/2006

ACLEICiadlllly Ldlye-oldic Udld EXpPIuiauull uingogrrodld UIHUSIUTI

2000
-, 1800

per C
=
A O
o O
o O

1000
800

Time (ms) per stack

200

2000
Low data locality = 2 o
— Similar (but better) % 1400
performance to GPFS $ 1200
® 1000
[}
——Data Digusion (G2) ,:: 800 -
-« Data Diffusion (FIT
2 DataDifuson (1) |2 g0p
-®= GPFS (FIT) g 400
= [200
. 0
SRS S FETY LA
2 4 8 16 32 64 128
Number of CPUs
5/22/2008

1200 -

600 -
400 -

—— Data Diffusion (GZ)

= e Data Diffusion (FIT)
—=—GPFS (G2)
-= GPFS (FIT)
|]
»’
s O
P :;l—l
— — " ., e
o & ® P - = 4- % o
p = = = =fi= = = = @ = a°
’ ‘ 8 16 32 64 128

Number of CPUs

€High data locality

Accelerating Large-Scale Data Exploration through Data Diffusion

— Near perfect scalability

25

e Aggregate throughput:

— 39GDb/s

— 10X higher than GPFS
e Reduced load on GPFS

— 0.49Gb/s

— 1/10 of the original load

2000
1800 -

oY

& 1600 -

S 1400

- » Data Diffusion (GZ)

—e— Data Diffusion (FIT) |

-= GPFS (G2)
—=—GPFS (FIT)

E 1200

=
o
o
o

800
600 -
400 -
200 -

Time (ms) per s

0

Locality

10 20 30 Ideal

50 [Data Diffusion Throughput Local

[Data Diffusion Throughput Cache-to-Cache
45 Il Data Diffusion Throughput GPFS

=== GPFS Throughput (FIT)

-®= GPFS Throughput (GZ)

o

o O
| |

o
|

(&)
|

Aggregate Throughput (Gb/s)

P P N N W W b
(6]

o

o o

1 1.38 2 3 4 5 10 20 30
Locality

* Big performance gains
as locality increases

Data Exploration through Data Diffusion 26

« Stacking service (large scale astronomy application)
e 92 experiments

558K files
— Compressed: 2MB each = 1.1TB
— Un-compressed: 6MB each = 3.3TB

100% -
90%
80%
70%

S 60% 1

w 0,

= 50% 1

S 40% -

E 0
30%

—=— GPFS (GZ
-®= GPFS (FI

- e Data Diffusion
—e— Data Diffusion
- - Data Diffusion
—— Data Diffusion
- &~ Data Diffusion
—— Data Diffusion

FIT) - Locality 1
GZ) - Locality 1
FIT) - Locality 1.38
GZ) - Locality 1.38

GZ) - Locality 30

- Locality 30

20%

10% -

0% -

8

16 32
Number of CPUs

Model Error

100% ~

90% -
80% -
70% -
60%

—=—GPFS (G2)

-= GPFS (FIT)
= = Data Diffusion (FIT)

—e— Data Diffusion (GZ)

50%

40%

30%
20% -
10% -

0%

Data Locality

250K tasks
— 10MB reads
— 10ms compute

Vary arrival rate:
— Min: 1 task/sec

— Increment function:
CEILING(*1.3)

— Max: 1000 tasks/sec
128 processors

Ideal case:
— 1415 sec

— 80GDb/s peak
throughput

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion

Arrival Rate per second

1000 -
900 -

800
700
600

500 -

400

300
200 +

100

O W © O O OO O O
N AR o0 R AV o o, S

— Arrival Rate per sec
— Tasks completed
~ Ideal Throughput Mb/s

Time (sec)

Y

250000

200000

150000

100000

- 50000

28

Tasks Completed
Ideal Throughput (Mb/s)

o Comparing GPFS with ideal
— 5011 sec vs. 1415 sec

5/22/2008

1000

100 +

=
o
|

Number of Nodes
Throughput (Gb/s)
Queue Length (x1K)
[y

O S P P P P S . S & .S .S
SEESL LS, L LS PSSP
EEA RN S i O U G S U S

Time (sec)

~=|deal Throughput (Gb/s) — Throughput (Gb/s) —— Wait Queue Length ===Number of Nodes

29

Max-compute-util

1000 - 1
F0.9
100 -
r 0.8
823 10 07 g
- o X 7]
S) = r 0.6 %
4= S (=) =
S ac¢ 1+ r 05 =
0 T
293 2
5gs (048
< 0.1 -
ZE3 L 03 ©
F0.2
0.01
ro0.1
0.001 - -0
OV O OO O OV O O OO QO O 0L OO
P A% 507 Q7 O AV X O QLY ©° O NV X
WA RS AT EF PP EEE IS
Time (sec)
I Cache Hit Local % Cache Hit Global % I Cache Miss %
~=Ideal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length

= Number of Nodes

Max-cache-hit

1000 H

—~_ 100 -

)

=52

03
=55 10- B
TaoX s
Z252S =
— 3 _ O @
©98<c 1- =
5E29 =
akF 57 =)
EQas]
2553 01 8
z ? 235 O

22

<" o011

0.001 -
QNN O O NV O O PP O OV O N O OO L N
D7 o0 XAV LT PO VD D WO WX QT P
FE TS FE WP FEF PP S
Time (sec)
[Cache Hit Local % Cache Hit Global % mm Cache Miss %
Ideal Throughput (Gb/s) ~ —— Throughput (Gb/s) Wait Queue Length

= Number of Nodes - - --CPU Utilization

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 30

= 100 2% 0.8
20 o)
- w220 F07 o
" =2 © o5 g< 10 =
o5 oo 10 S S aoc X »
TacX [S c o r06 o
252 c 2 Z9z% s
2925 b So5c 1 F05 =
© 0o g ¢c 1 = == T
L =0 O T [= o
7] '-E - © o S0 | 2
2™ 5y r= Egas 04 5
E823 3 2858 o1 8
Z oo 01 [$) lol=Ne3 r03
30 52
o = o <
r0.2
1.5GB > = =
L] ro0.1
0.001 -0
Q Q QO \\} N\ QO Q Q \\} QO O Q Q)
Q O O QO Q Q O QO O QO Q Q Q W% > O) Vv) \ g Q v ©
,50 Q)Q ch ,19 %0 %Q ,\/0 O O 00 ’bQ @Q O V) ™ [N @ B) ,\/0 ,\’/), ,\'/b ,\/bP‘ ,{/o
R LA A -) Time (sec)
Time (sec)
mmm Cache Hit Local % Cache Hit Global % = Cache Miss % W Cache Hit Local % Cache Hit Global % W Cache Miss %
~— Ideal Throughput (Gb/s) —— Throughput (Gb/s) — Wait Queue Length ~—Ideal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length
—— Number of Nodes = Number of Nodes
1000 W 1000 - rl
Tl
D 100 valv I 2% 100 L os
e = T 8 2
mgég \M o W:EQ ’0-7\0
25 o 10 = 2 R) 10 + °
E R " 2 5238 < r06
£ 0o - 2 252z < =
z gaz =S = w— 3 IS) E
S = = 00 g c 4 L =
cggs 1 £ gcag ! 05T
sks5y 2 Er 04 £
Egeg 2 EgE3 I 43
0.1
23%::3 0.1 o Zgga | ‘ | ,0_30
o> 2 D = | \‘ |
> < S | \\ H‘ L 0.2
<F om 4GB 9 <" o014 iy I
r0.1
0.001 0.001 - -0
Q Q \) L N} Q QL Q QO
Q \,}/ é '560 @0 G:)QQ ,],0 @ G:)Q Q’Q 00 '1, b@ '1, N ’bb b?’ N ,\"v %&x Q‘b \,Q‘b \,)9 '\:b"l/ Vb‘
5/22/2008 rme ACCElETating Large-Scale Data Exploration through Data Diffusiofime e 31
mm Cache Hit Local % Cache Hit Global % B Cache Miss % I Cache Hit Local % Cache Hit Global % Bl Cache Miss %
~Ideal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length ~Ideal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length
=—Number of Nodes = Number of Nodes

100

M Local Worker Caches (Gbh/s)
Remote Worker Caches (Gb/s)
100 i B GPFS Throughput (Gb/s)

Throughput (Gb/s)

o
e

Ideal first- good- good- good- good- max-
available cache- cache- cache- cache- cache hlt, compute-
compute, compute, compute, compute, 4GB util, 4GB
1GB 1.5GB 2GB 4GB

Response Time =
— 3 sec vs 1569 sec = 506X

5/22/2008 Accelerating Large-Scale Data

€ Throughput:
— Average: 14Gb/s vs 4Gb/s
— Peak: 100Gb/s vs. 6Gb/s

Average Response Time (sec)

10000
1000 -
100 -
10
3.4
1 - .
first- good- good- good- good- max-cache-
available cache- cache- cache- cache- hit, 4GB compute-
compute, compute, compute, compute, util, 4GB

1GB 1.5GB 2GB 4GB

 Performance Index:
— 34X higher
o Speedup
— 3.5X faster than GPFS

—=— first-available

_| mPerformance Index

I Speedup (compared to first-available)

o
o

Performance Index
o o
£ a1

o
w

- » good-cache-compute, 1GB

good-cache-compute, 1.5GB

- # good-cache-compute, 2GB]/
- = good-cache-compute, 4GB [N
—=—max-cache-hit, 4GB /.'
= max-compute-util, 4GB ;

c /'

2 ?

©

=

o

%)

PRRPRRRPRRRREE
PNWAUTONOOORNWMAUION®
| | | | | | | |

Arrival Rate per Second

first- good- good- good- good- good- max- max-
available cache- cache- cache- cache- cache- cache-hit, compute-
compute, compute, compute, compute, compute, 4GB util, 4GB
1GB 1.5GB 2GB 4GB 4GB, SRP

e Slowdown:

— 18X slowdown for
GPFS

— Near ideal 1X
slowdown for large
enough caches

Speedup (compared to LAN GPFS)

[Casanova99]. Adaptive Scheduling for Task Farming with Grid
Middleware

[HeymannO0O0]. Adaptive Scheduling for Master-Worker
Applications on the Computational Grid

« [DaneluttoO4]: Adaptive Task Farm Implementation Strategies
 [Gonzalez-Velez05]: An Adaptive Skeletal Task Farm for Grids
o [Petrou05]. Scheduling Speculative Tasks in a Compute Farm
 [Reid06]: Task farming on Blue Gene

Conclusion: none addressed the proposed “data-centric” part of
task farms

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 34

e [Ramakrishnan06]
Control

[Appleby01]: Oceano - SLA Based Management of a
Computing Utility
o [Frey02, MehtaO6]
o [Walker06]. MyCluster (based on Condor glide-ins)

. Condor glide-ins

. Grid Hosting with Adaptive Resource

 [Bresnahan06]: Provisioning of bandwidth
e [Singh06]: Simulations

Conclusion: Allows dynamic resizing of resource pool
(independent of application logic) based on system load and
makes use of light-weight task dispatch

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 35

 [BeynonOl]: DataCutter

 [Ranganathan03]: Simulations
 [Ghemawat03,Dean04,Chang06]. BigTable, GFS, MapReduce
o [LiuO4]: GridDB

* [Chervenak04,Chervenak06]: RLS (Replica Location Service),
DRS (Data Repllcatlon Service)

o [Tatebe04,XiaohuiO5]: GFarm

e [Branco04,Adams06]: DIAL/ATLAS

o [Kosar06]: Stork

Conclusion: Our work focuses on the co-location of storage and
computations close to each other (i.e. on the same physical
resource) while operating in a dynamic environment.

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 36

* Defined an abstract model for performance efficiency of data
analysis workloads using data-centric task farms

* Provide a reference implementation (Falkon)

Use a streamlined dispatcher to increase task throughput by several
orders of magnitude over traditional LRMs

Use multi-level scheduling to reduce perceived wait queue time for tasks
to execute on remote resources

Address data diffusion through co-scheduling of storage and
computational resources to improve performance and scalability

Provide the benefits of dedicated hardware without the associated high
cost

Show effectiveness on a real large-scale astronomy application

5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 37

 More information: http://people.cs.uchicago.edu/~iraicu/

 Related Projects:
— Falkon: http://dev.globus.org/wiki/Incubator/Falkon
— AstroPortal: http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro_portal.htm
— Swift: http://www.ci.uchicago.edu/swift/index.php

» Collaborators (relevant to this proposal).
— lan Foster, The University of Chicago & Argonne National Laboratory
— Alex Szalay, The Johns Hopkins University
— Rick Stevens, The University of Chicago & Argonne National Laboratory
— Yong Zhao, Microsoft
— Mike Wilde, Computation Institute, University of Chicago & Argonne National Laboratory
— Catalin Dumitrescu, Fermi National Laboratory
— Zhao Zhang, The University of Chicago
— Jerry C. Yan, NASA, Ames Research Center
* Funding:
— NASA: Ames Research Center, Graduate Student Research Program (GSRP)

— DOE: Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy

— NSF: TeraGrid
5/22/2008 Accelerating Large-Scale Data Exploration through Data Diffusion 38

