L7 THE UNIVERSITY OF ;
% CHICAGO Argonne

NATIONAL LABORATORY Ames Research Center

Scalable Resource Management
in Clouds and Grids

loan Raicu
Distributed Systems Laboratory
Computer Science Department
University of Chicago

In Collaboration with:

Motorola Labs
December 5t 2008



. Introductions

— University of Chicago, DSL
— University of Chicago, CI
— Argonne National Laboratory, MCS

Il. Comparing Grids and Clouds

Ill. Scalable resource management challenges
and solutions
— Dispatch
— Provisioning
— Data Management

Scalable Resource Management in Clouds and Grids 2



|. Introductions
— University of Chicago, DSL
— University of Chicago, CI
— Argonne National Laboratory, MCS

Scalable Resource Management in Clouds and Grids 3



Lead by Dr. lan Foster

Research Areas:
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Grid applications
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— 1 faculty (Dr. lan Foster)
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GT4: Globus Toolkit 4
— http://www.globus.org/

Falkon: a Fast and Light-weight tasK executiON framework
— http://dev.qglobus.org/wiki/Incubator/Falkon

Swift: Fast, Reliable, Loosely Coupled Parallel Computation
—  http://www.ci.uchicago.edu/swift/

AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis
— http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro portal.htm

Haizea: a VM-based Lease Management Architecture
— http://haizea.cs.uchicago.edu/

AG: Access Grid

— http://Iwww.mcs.anl.gov/research/fl/research/index.php?p=proj detail&id=1

Collaborative Visualization and the Analysis Pipeline
— http://Iwww.mcs.anl.gov/research/fl/research/index.php?p=proj detail&id=28

Flash Center Visualization
— http://Iwww.mcs.anl.gov/research/fl/research/index.php?p=proj detail&id=14

TeraGrid: Visualization*&ARTREea AR AK8RIFIESb cauds and Grids

— http://Iwww.mcs.anl.gov/research/fl/research/index.php?p=proj detail&id=34




UChicago CS (50+ machines over the UChicago campus)
— http://tools.cs.uchicago.edu/find cs hosts/find.cqi

UChicago TeraPort (274 processors)
— http://teraport.uchicago.edu/

UC/ANL Cluster (316 processors)

— http://www.uc.teragrid.org/

PlanetLab (912 nodes at 470 sites all over the world)
—  http://www.planet-lab.org/

UChicago PADS (7TF, O(1000-cores))

— http://www.ci.uchicago.edu/pads/

ANL SiCortex 5832 (5832 processors)

— http://Iwww.mcs.anl.gov/hs/hardware/sicortex.php

Open Science Grid (43K-cores across 80 institutions over the US)
—  http://www.opensciencegrid.org/

IBM Blue Gene/P Supercomputer at ANL (160K processors)
— https://wiki.alcf.anl.gov/index.php/Main_Page

TeraGrid (161K-cores s8R eS8 SN 320Us 88" EVer the US)

— http://www.teragrid.org/




. Introductions

— University of Chicago, DSL
— University of Chicago, ClI
— Argonne National Laboratory, MCS

. Comparing Grids and Clouds

Ill. Scalable resource management challenges
and solutions
— Dispatch
— Provisioning
— Data Management

Scalable Resource Management in Clouds and Grids 10



Scale Distributed Systems

-
Application Services

Oriented Oriented 1



Highly-tuned computer clusters using commodity
processors combined with custom network
Interconnects and customized operating system

e.g. IBM Blue Gene/P

Scalable Resource Management in Clouds and Grids 12



Baseline System
32 Racks

Rack Cabled 8x8x16

32 Node Cards

500TF/s
64 TB

Node Card
(32 chips 4x4x2)
32 compute, 0-4 10 cards

Compute Card
1 chip, 1x1x1

" 435 GF/s

Chip 64 GB

4 Processors T

13508 13.6 GF/s
. S
8 MB EDRAM 2 Gngallaable Resource Management in Clouds and Grids




Computer clusters using commodity processors,
network interconnects, and operating system

e.g. PADS

Scalable Resource Management in Clouds and Grids 14



: home website in development

PADS is a petabyte (10'5-byte)-scale online storage
server capable of sustained multi-gigabyte/s /O
performance, tightly integrated with a 9 teraflop/s
computing resource and multi-gigabit/s local and
wide area networks. lts hardware and associated
software enables the reliable storage of, access to,
and analysis of massive datasets by both local users
and the national scientific community.

The PADS design results from a study of the storage and

! ; — {ITTTITIT, analysis requirements of participating groups in astrophysics
,SS o (ITTFY VT and astronomy, computer science, economics, evolutionary
'Ea = (TN and organismal biology, geosciences, high-energy physics,
g;é = %:H::%::H.}—:- linguistics, materials scence, neuroscience, psychelogy, and

= = T sociology. For these groups, PADS represents a significant
Fi = (T opportunity to look at their data in new ways, enabling new
iél = AT scientific insights The infrastructure also encourages new
iv é = Py et “:H::%::HHI collaborations across disciplines. PADS is also a vehicle for
Sa‘ ) — . computer science research into active data store systems,
— T and provides rich data on which to investigate new
techniques. Results will be made avallable as open source
software.
System diagram of the PADS environment, showing links to other resources.
The PADS project is supported in part by the National Science Foundation under grant OCI-0821678 PADSstatus myPADS

and by The University of Chicago.
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Grids tend to be composed of multiple clusters,
and are typically loosely coupled,
heterogeneous, and geographically dispersed

e.g. TeraGrid

Scalable Resource Management in Clouds and Grids 16
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An instrument (cyberinfrastructure) that delivers high-end IT resources -
storage, computation, visualization, and data/service hosting - almost all of
which are UNIX-based under the covers; some hidden by Web interfaces
— 20 Petabytes of storage (disk and tape)
— over 100 scientific data collections

— 750 TFLOPS (161K-cores) in parallel computing systems and growing
— Support for Science Gateways

The largest individual cyberinfrastructure facility funded by the NSF, which
supports the national science and engineering research community

Something you can use without financial cost - allocated via peer review
(and without double jeopardy)

Scalable Resource Management in Clouds and Grids 18



TeraGrid (TG)

Open Science Grid (OSG)

Enabling Grids for E-scienck (EGEE)
LHC Computing Grid from CERN

Grid Middleware
— Globus Toolkit
— Unicore

Scalable Resource Management in Clouds and Grids
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A large-scale distributed computing paradigm that is
driven by economies of scale, in which a pool of
abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms,
and services are delivered on demand to external
customers over the Internet.

e.g. Amazon EC2

Scalable Resource Management in Clouds and Grids 20




 Google App Engine
— Engine, Datastore, memcache
e Amazon
— EC2, S3, SQS, SimpleDB
e Microsoft Azure
 Nimbus
e Eucalyptus
e Salesforce

Scalable Resource Management in Clouds and Grids 21



* |IT reinvents itself every five years
 The answer is complicated...

e YES: the vision Is the same

— to reduce the cost of computing
— Increase reliability

— Increase flexibility by transitioning from self operation to third
party

Scalable Resource Management in Clouds and Grids 22



 NO: things are different than they were 10 years ago

— New needs to analyze massive data, increased demand for
computing

— Commodity clusters are expensive to operate

— We have low-cost virtualization

— Billions of dollars being spent by Amazon, Google, and
Microsoft to create real commercial large-scale systems with
hundreds of thousands of computers

— The prospect of needing only a credit card to get on-demand
access to *infinite computers is exciting; *infinite<O(1000)

Scalable Resource Management in Clouds and Grids 23



 YES: the problems are mostly the same
— How to manage large facilities
— Define methods to discover, request, and use resources
— How to implement and execute parallel computations
— Details differ, but issues are similar

Scalable Resource Management in Clouds and Grids 24



Business model
Architecture

Resource management
Programming model
Application model
Security model

Scalable Resource Management in Clouds and Grids
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e Grids:

— Largest Grids funded by government

— Largest user-base in academia and government labs to drive
scientific computing

— Project-oriented: service units

 Clouds:

— Industry (i.e. Amazon) funded the initial Clouds

— Large user base in common people, small businesses, large
businesses, and a bit of openn science research

— Utility computing: real money

Scalable Resource Management in Clouds and Grids 26



Grids:
— Application: Swift, Grid portals (NVO)
Collective layer: MDS, Condor-G, Nimrod-G
Resource layer: GRAM, Falkon, GridFTP
Connectivity layer: Grid Security Infrastructure
Fabric layer: GRAM, PBS, SGE, LSF, Condor, Falko

Clouds:

Application Layer: Software as a Service (SaaS)

Platform Layer: Platform as a Service (PaaS)
Unified Resource: Infrastructure as a Service (laaS)

Fabric: laaS

Grid Protocol Architecture

loud Architecture

o
Scalable Resource Management in Clouds and Grias

Application

=

Platform

Unified Resource

Fabric

27




 Compute Model
— batch-scheduled vs. time-shared

e Data Model

— Data Locality
— Combining compute and data management

 Virtualization
— Slow adoption vs. central component

* Monitoring
e Provenance 28

Scalable Resource Management in Clouds and Grids



e Grids:
— Tightly coupled
* High Performance Computing (MPIl-based)
— Loosely Coupled
e High Throughput Computing
* Workflows

— Data Intensive
 Map/Reduce

e Clouds:
— Loosely Coupled, transactional oriented 29
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Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
Failure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data

Scalable Resource Management in Clouds and Grids 30



« Aimed to simplify usage of complex resources

e Grids
— Front-ends to many different applications
— Emerging technologies for Grids

 Clouds
— Standard interface to Clouds

Scalable Resource Management in Clouds and Grids 31
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e Grids

— Grid Security Infrastructure (GSI)

— Stronger, but steeper learning curve and wait time
* Personal verification: phone, manager, etc

e Clouds

— Weaker, can use credit card to gain access, can
reset password over plain text email, etc

Scalable Resource Management in Clouds and Grids 34



Move towards a mix of micro-production and large utilities, with load being
distributed among them dynamically

— Increasing numbers of small-scale producers (local clusters and embedded
processors—in shoes and walls)

— Large-scale regional producers

Need to define protocols

— Allow users and service providers to discover, monitor and manage their
reservations and payments

— Interoperability

Need to combine the centralized scale of today’s Cloud utilities, and the
distribution and interoperability of today’s Grid facilities

Need support for on-demand provisioning

Need tools for managing both the underlying resources and the resulting
distributed computations

Security and trust will be a major obstacle for commercial Clouds by largfe
companies that have in-house IT resources to host their own data centers
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2004 2006 2008 2010 2012 2014 2016 2018

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable Objects, November 9th, 2007 Slide 37
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Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
Failure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data

Scalable Resource Management in Clouds and Grids 39



Massive task parallelism
Massive data parallelism
Integrating black box applications

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data

Scalable Resource Management in Clouds and Grids
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Heroic
MPI
Tasks

Many Loosely Coupled Apps

Low
1 1K 1M

Scalable Resource Management in Clouds and Grids

Number of Tasks
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Single task, modest data
MPI, etc...

Many Tasks
DAGMan+Pegasus
Karajan+Swift+Falkon

42



Bridge the gap between HPC and HTC
Loosely coupled applications with HPC orientations

HPC comprising of multiple distinct activities, coupled
via file system operations or message passing

Emphasis on many resources over short time periods
Tasks can be:

— small or large, independent and dependent, uniprocessor or
multiprocessor, compute-intensive or data-intensive, static or
dynamic, homogeneous or heterogeneous, loosely or tightly
coupled, large number of tasks, large quantity of computing,
and large volumes of data... 43



Queue Wait Job Run Queue Wait | Job Run
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“Significant performance improvements can be
obtained In the analysis of large dataset by leveraging
Information about data analysis workloads rather than

Individual data analysis tasks.”

« Important concepts related to the hypothesis

— Workload: a complex query (or set of queries) decomposable into
simpler tasks to answer broader analysis questions

— Data locality is crucial to the efficient use of large scale distributed
systems for scientific and data-intensive applications

— Allocate computational and caching storage resources, co-scheduled to
optimize workload performance

Scalable Resource Management in Clouds and Grids 47



« AMDASK: An Abstract Model for DAta-centric taSK farms

— Task Farm: A common parallel pattern that drives independent
computational tasks
 Models the efficiency of data analysis workloads for the
split/merge class of applications

o Captures data diffusion properties
— Resources are acquired in response to demand
— Data and applications diffuse from archival storage to new resources
— Resource “caching” allows faster responses to subsequent requests
— Resources are released when demand drops
— Considers both data and computations to optimize performance

Scalable Resource Management in Clouds and Grids 48



Data Stores: Persistent & Transient

— Store capacity, load, ideal bandwidth, available
bandwidth

Data Objects:

— Data object size, data object’s storage location(s),
copy time

Transient resources: compute speed,
resource state

Task: application, input/output data

Scalable Resource Management in Clouds and Grids 49



Dispatch Policy

— next-available, first-available, max-compute-util, max-cache-hit
Caching Policy

— random, FIFO, LRU, LFU

Replay policy

Data Fetch Policy

— Just-in-Time, Spatial Locality

Resource Acquisition Policy

— one-at-a-time, additive, exponential, all-at-once, optimal
Resource Release Policy

— distributed, centralized

Scalable Resource Management in Clouds and Grids 50



B: Average Task Execution Time'

— K: Stream of tasks Z (x)
— M(k): Task k execution time |K | keKﬂ
* Y:Average Task Execution Time Wlth Overheads:
— o(Kk): Dispatch overhead
— ¢(8,7): Time to get data Y = |K|:§<[ﬂ(K)+O(K)] Pednoed
lKlZ[,u(K)+O(K)+§(§ )], 0¢¢(r),0eQ

V: Workload Execution Time;
— A: Arrival rate of tasks V = max[i, 1 j*l K|
— T Transient Resources | T| A

W: Workload Execution Time with Overheads

W = max L,i *| K |
I T|" A



e Efficiency . Y 1

1, <
_V T A
= — F=
W B |T| Y 1

MY Ay ) |T|>A

« Speedup :

S=E*|T|

« Optimizing Efficiency
— Easy to maximize either efficiency or speedup independently

— Harder to maximize both at the same time
* Find the smallest number of transient resources |T| while maximizing
speedup*efficiency



« Stacking service (large scale astronomy application)

e 92 experiments

558K files

— Compressed: 2MB each = 1.1TB
— Un-compressed: 6MB each = 3.3TB
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- B -GPFS (FIT)
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Ill. Scalable resource management challenges
and solutions
— Dispatch
— Provisioning

Scalable Resource Management in Clouds and Grids 54



 Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

 Combines three components:

— a streamlined task dispatcher

— resource provisioning through multi-level scheduling
techniques

— data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

 |ntegration into Swift to leverage many applications

— Applications cover many domains: astronomy, astro-physics,
medicine, chemistry, economics, climate modeling, etc

Scalable Resource Management in Clouds and Grids 55



Task Dispatcher

Persistent Storage
Data-Aware Scheduler

Dynamic
Resource
Provisioning

Available Resources
(GRAM4)

Scalable Resource Management in Clouds and Grids 56



Login Nodes I/O Nodes Compute Nodes
(x10) (x640) (x40K)

Executor
=y

Provisioner
Cobalt W

Executor
Na 32
= 57




Throughput (tasks/sec)

Throughput
(tasks/sec)
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Efficiency

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

—= 2 ————p ﬁ
=32 d
T s T\
-e-8 seconds
==4 seconds \ \
-2 seconds
-+1 second \\
\x P ——— = ]
— —
i i =256 seconds
128 seconds
\ \ --64 seconds
L e e e Y 401 ~=32 seconds
AR NN | S seconds
Number of Processors 5 \ \ \ -4 seconds
‘5 50% -2 seconds
= 40% \ \ \ -1 second
1T 0
30% = \ \b
200 {—————— \'\\\\\\
0% . . | |
256 1024 4096 16384 65536 163840 59

Number of Processors



Number of Machines

al
|

o

N
&)
|

N
o
|

[y
a
|

=
o
I

seconds

= # of Machines| |
B # of Tasks

123 456 7 8 91011121314151617 18
Stage Number

- 1,260 total time on 32 rraf:‘ﬁ:frfles

End-to-end execution time:

1260 sec in ideal case
4904 sec - 1276 sec
Average task queue time:
42.2 sec in ideal case
611 sec 2 43.5 sec
Trade-off:

Resource Utilization for
Execution Efficiency

# of Executors

# of Executors

0 580.386 1156.853 1735.62 0 494.438 986.091 1477.2
Time (sec) Time (sec)
GRAM Ideal
+PBS | Falkon-15| Falkon-60 | Falkon-120 | Falkon-180 [ Falkon-= | (32 nodes)
Queue
Time (sec). 87.3 83.9 74.7 44 .4 ‘ ._
Execution
Time (sec)| 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution
Time % | 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%
G Ideal
+PBS | Falkon-15 | Falkon-60 | Falkon-120 [ Falkon-180 | Falkon-« | (32 nodes)
Time to
complete
(sec) l. 1754 1680 1507 1484 ‘_
Resouce
Utilization | 30% 75% 65% 59% 100%
Execution
Efficiency | 26% 75% 84% 85% 100%
Resource
Allocations | 1000 11 9 7 6 0 0




Completed Tasks
— Throughput (tasks/sec) - 60 sec aver
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1% gkrellm

Workload
e 160K CPUs

e 1M tasks

e 60 sec per task
e 17.5K CPU hours in 7.5 min
e Throughput: 2312 tasks/sec
« 85% efficiency
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Specification

Abstract
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Scheduling
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Virtual Data
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Execution Engine >
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Swift Runtime)
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Swift runtime
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« Wide range of analyses

— Testing, interactive analysis,
production runs

— Data mining
— Parameter studies




GRAM vs. Falkon: [85%~90%

« GRAM/Clustering vs. Falkon:

lower run time
40%~74%

lower run time

0 GRAM

4808

— B GRAM/Clustering
O Falkon

Time (s)

Input Data Size (Volumes)

480




mProjectPP mProjectPP mProjectPP

S

mImgtbl

l

mOverlaps

SN

B t\‘ml lt ‘/mm lt B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

mConcatFit

'

mBgModel

g B

mBackground mBackground mBackground

el

mImgtbl

'

mAdd

'

mShrink

l

mIPEG
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« GRAM/Clustering vs. Falkon:|57%/|lower application run time
MPI1* vs. Falkon:|4%|higher application run time

* MPI1 should be [lower bound

Time (s)

3500

B GRAM/Clustering
B MPI
2500 O Falkon

3000

2000 -

1500

1000

500 -

68
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10000

Time (sec)

1000

100 +

=
o
|

Classic benchmarks for MapReduce

Swift performs similar or better than Hadoop

— Word Count
— Sort
(on 32 processors)
. Word Count 7860

75MB

350MB 703MB
Data Size

Time (sec)

Sort

10000

1000 +

100

B Swift+Falkon
W Hadoop

733

85 83

10 -

10MB

100MB
Data Size

1000MB




e Determination of free
energies in aqueous solution

— Antechamber — coordinate
— Charmm — SQ‘I”
— Charmm - frée

|
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182.5.198.60:50100
192.5.198.55:50101
192.5.198.154:50100
192.5.198.155:50100
1%2.5.198.157:50101
192.5.198.153:50101
152.5.198.68:50100
192.5.198.92:50100
192.5.198.18:50100
182.5.198.9:50100
192.5.198.23:50100
192.5.198.152:50100
182.5.198.12:50101
192.5.198.13:50100
192.5.198.26:50100
152.5.198.110:50101
192.5.198.104:

* 244 molecules > 20497 jobs |
e 15091 seconds on 216 CPUs - 867.1 CPU,’; ours
« Efficiency] 99.8%
« Speedup: 206.9x - 8.2x faster than GRAM/PB
e 50 molecules w/ GRAM (4201 jobs) - 25.3 speedup

Time (sec) 1L

5.1i98.138:004L0U0 =
192.5.198.148:50101
0 1800 3600 5400 7200 9000 10800 12600 14400 192.5.198.130:50100
1} L L L L L L L I 192.5.198.147:50100
1001 1925198 129:50200
2001 \lwathueueTlme W execTime M resultsQueueTime 192.5. 108 135:50100
192.5.198.147:50101
3001 192.5.198.134:50101
4001 192.5.198.140:50100
192.5.198.144:50101
5001 192.5.198.137:50100
6001 192.5.198.145:50101
192.5,198,125:50100 —
7001 192.5.198.118:50100
8001 192.5.198,127:50100 —
192.5.198.123:50101 =
a 9001 192.5.198.119:50101 =
~ 10001 192.5.198.124:50100 =
] 182.5.198.45:50101 -
& 11001 192.5.198.89:50101 =
12001 192.5.198.89:50100 -
192.5.198.91:50101 =
13001 192.5.198.83:50100 =
14001 182.5.198.112:50101 -
192.5.198.112:50100 =
15001 192.5.198.90:50100 =
16001 192.5.198.115:50100 =
192.5.198.111:50100 =
17001 192.5.198.46:50100 =
18001 192.5.198.103:50101 —
192.5.198.79:50101 =
19001 132.5.198.78:50100 =
20001 192.5.198.77:50101 -
192.5.198.76:50101 =
192.5.198.76:50100 =
192.5.198.34:50101 —
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Bridge the gap between HPC and HTC
Loosely coupled applications with HPC orientations

HPC comprising of multiple distinct activities, coupled
via file system operations or message passing

Emphasis on many resources over short time periods
Tasks can be:

— small or large, independent and dependent, uniprocessor or
multiprocessor, compute-intensive or data-intensive, static or
dynamic, homogeneous or heterogeneous, loosely or tightly
coupled, large number of tasks, large quantity of computing,
and large volumes of data... -



* Project Kittyhawk
— IBM Research

e HTC-mode in Cobalt/BG
— IBM

 Condor on BG
— University of Wisconsin at Madison, IBM

e Grid Enabling the BG

— University of Colorado, National Center for Atmospheric Research

e Plan 9
— Bell Labs, IBM Research, Sandia National Labs

 Falkon/Swift on BG/P and Sun Constellation

— University of Chicago, Argonne National Laboratory 2a



e Jaguar (#2)
— DOE, ORNL

e Intrepid (#5)
— DOE, ANL

 Ranger (#06)
— NSF, TACC

Toward Loos

tems available
ience Research

Home * Lists * November 2008

TOP500 List - November 2008 (1-100)

Rmax aNd Rpeak values are in TFlops. Faor more details about other fields, check the TOPS00 description.

Power data in KW for entire systerm

Rank

o

&

10

Site

DOEMMSALAML
United States

Dak Ridde Mational Lakaratone
United States

MASARmMes Research
CenterAs
United States

DOEMMSAILLNL
Lnited States

Argonne National Laboratory
United States

Texas Advanced Computing
CenterUniv, of Texas
lInited States

MERSCILEML
Lnited States

Dak Ridae Mational Labaratary
United States

MMSASandia Mational
Laboratories
United States

Shanghai Supercomputer Center
China

ComputerYear Vendor

Roadrunner - BladeCenter @322/L521
Cluster, PowerkCell 8i 3.2 Ghe / Opteron DG

ﬂEEﬂGHz Jvoltaire Infiniband f 2008

Jaguar- CrayxTs A0 2.3 GHz 2008

Ciray I,

Pleiades - SG1 Altix ICE 3200EX, Heon QC

3.0/2.66 GHz [ 2008
=tel

BlueGeneall - eSemwer Blug Gene Solution f

2007
=10

Blue Gene/P Bolution i 2007
=10

Fanger - SunBlade x6420, Cpteron G2 2.3

Ghe, Infindband 5 2008
Sun Microsysterns

Franklin - Cray XT4 QuadCore 2.3 GHz /!
2008

Cray Ine.

Jaguar- Cray =T4 QuadCare 2.1 GHz /2008

Cray Ine.

Red Storm - Sandial Cray Red Storm, #7304,

2.4/2.2 GHz dualiguad core f 2008
Cray Inc.

Danvniing 80004 - Dawning S000A, QG
Opteron 1.9 Ghz, Infiniband, Windows HPC

200872008
Cramvniing

Cores

129600

212992

163840

G2976

38642

30976

3agz08

30720

r< s

1105.00

43:

Lad
0
2
o |

26630

205.00

204.20

180.60

RD!':BK

1456.70

1381.40

608.83

596.38

57 .06

L
=~
L3
e
@

354.51

260.20

284.00

23347

e

Power

243347

EH50.B0

2090.00

2329.60

1260.00

2000.00

1150.00

1480.71

2606.00




. The I/O subsystem of petascale systems offers
unique capabilities needed by MTC
applications

. The cost to manage and run on petascale
systems is less than that of conventional
clusters or Grids

. Large-scale systems that favor large jobs have
utilization issues

. Some problems are intractable without
petascale systems

Toward Loosely Coupled Programming on Petascale Systems 75
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« At 1K CPUs:
— 1 Server to manage all 1K CPUs
— Use shared file system extensively

* Invoke application from shared file system
* Read/write data from/to shared file system

e At 100K CPUs:
— N Servers to manage 100K CPUs (1:256 ratio)

— Don't trust the application 1/O access patterns to behave optimally
» Copy applications and input data to RAM
* Read input data from RAM, compute, and write results to RAM
* Archive all results in a single file in RAM
e Copy 1 result file from RAM back to GPFS

» Great potential for improvements
— Could leverage the Torus network for high aggregate bandwidth

— Collective 1/0 (CIO) Primitives

— Roadblocks: machine global IP connectivity, Java support, and time "
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CPU Cores: 130816
Tasks: 1048576

I Processors

mm Active Tasks

5000

Elapsed time: 2483 secse
CPU Years: 9.3

—Tasks Completed
--------- Throughput (tasks/sec)

T 4500
T 4000

800000
A~

Speedup: 115168X (idgal

130816)s00

w
o
o
o

600000

s Completed
ber of Processors

Effici 8%

Throughput (tasks/sec)



Protein X 2M+ ligands
target(s)

Scalable Resource Management in Clouds Grids . 81
(Mike Kubal, Benoit Roux, and others)



NAB scrlpt a-
parameters _“-‘.'“f;

efines flexible |S=.
residues,  |[Bacs
#MDsteps

Many Many Tasks:
Identifying Potential Drug Targets
|

BuildNABScript

(1 per protein:
defines pocket

2w (1 per protein:
2 UCIUFES|| | jefines pocket

protein protein

descriptions (1|V|B)
Amber prep:
. [ SN céllst 2 AmberizeReceptor
Y _ perl gen nabscript
:{ FRED EEEmeg ~—+x00sx1cpu
’ ~60K cpu-hrs
,’/ Select best ~5K| [Select best ~5K]
/ N \// Amber Score
I Amber ~10Kx20m X1 cpu| ___| 1. AmberizeLigand
ro ~3K cpu-hrs 3. AmberizeComplex
1 5. RunNABScript

! Select best ~500

Y ~500 x 10hr x 100 cpu .
{ GEMC ~500K cpu-hrs ] FOIT 1 target
4 million tasks

*/:K 500,000 cpu-hrs
[ Iigmld@a?eso{ugﬁmm@ment in Clouds ang (50 CpU'yearS)

| report |
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+ CPU cores: 5760
e Tasks: 92160
 Elapsed time: 12821 sec

« Compute time: 1.94 CPU years

* Average task time: 660.3 sec
e Speedup: 5650X (ideal 576C
o Efficiency: 98.2%
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CPU cores: 118784
Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec
Relative Efficiency: 99.7%

(from 16 to 32 racks)
Utilization:

Time (secs)

Number of Processors

1000000

Il Processors
[ Active Tasks

900000

800000 :

Tasks Completed

— — Throughput (tasks/sec)

Iy
700000 {4

600000 - L, i

500000 +

400000 [

300000 -

200000 '

L I‘ I
ik | 'l i |
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M
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100000
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[Casanova99]. Adaptive Scheduling for Task Farming with Grid
Middleware

[HeymannO00]:. Adaptive Scheduling for Master-Worker
Applications on the Computational Grid

o [DaneluttoO4]. Adaptive Task Farm Implementation Strategies
o [Gonzalez-Vélez05]: An Adaptive Skeletal Task Farm for Grids
o [Petrou05]. Scheduling Speculative Tasks in a Compute Farm
« [Reid06]: Task farming on Blue Gene

Conclusion: none addressed the proposed “data-centric” part of
task farms, and the implementations were not as light-weight as
ours

Scalable Resource Management in Clouds and Grids 85



[Appleby01]: Oceano - SLA Based Management of a
Computing Utility

e [Frey02, MehtaO6]: Condor glide-ins

o [WalkerO6]: MyCluster (based on Condor glide-ins)

* [Ramakrishnan06]: Grid Hosting with Adaptive Resource
Control

« [Bresnahan06]: Provisioning of bandwidth
* [Singh06]: Simulations

Conclusion: None allows for dynamic resizing of resource pool
(independent of application logic) based on system load

Scalable Resource Management in Clouds and Grids 86



Ill. Scalable resource management challenges
and solutions

— Data Management

Scalable Resource Management in Clouds and Grids 87



Resource acquired Iin
response to demand

Data and applications diffuse
from archival storage to N
. as| ispatcher
nEWIy achIrEd resources Data_Aware%ChedUIer Persistent Storage

Resource “caching” allows -
faster responses to
subseqguent requests
— Cache Eviction Strategies: L
RANDOM, FIFO, LRU, LFU
Resources are released
when demand drops
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The Quest for Scalable Support of Data Intensive Applications in 88
Distributed Systems



e Considers both data and computations to optimize
performance
— Supports data-aware scheduling

— Can optimize compute utilization, cache hit performance, or
a mixture of the two

e Decrease dependency of a shared file system
— Theoretical linear scalability with compute resources

— Significantly increases meta-data creation and/or
modification performance

e Central for “data-centric task farm” realization

The Quest for Scalable Support of Data Intensive Applications in 89
Distributed Systems



e first-available:
— simple load balancing
e max-cache-hit
— maximize cache hits
e max-compute-util
— maximize processor utilization

e good-cache-compute

— maximize both cache hit and processor utilization at
the same time

The Quest for Scalable Support of Data Intensive Applications in 90
Distributed Systems
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CPU Time per Task (ms)

Bl Task Submit o

m Notification for Task Availabilit 5000

Bl Task Dispatch (data-aware scheduler)

" Task Results (data-aware scheduler)
Notification for Task Results

— B WS Communication 4000

- Throughput (tasks/sec)

'\_\_

+ 3000

2000

+ 1000

Throughput (tasks/sec)

first- first- ax- max-cache- good-
available available compute-utll hit cache-
without I/O  with I/O compute
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e Purpose

— On-demand “stacks” of
random locations within
~10TB dataset

 Challenge

(@)1 m+mtmtm w8

— Processing Costs: 8
« O(100ms) per object @ """"" \
. . .....‘.....‘.‘.‘.‘.-.‘ ‘_‘“‘ A P I
— Data Intensive: O O
e 40MB:1sec @' Locicllity Numbi; f7f O(())bjects Numfle{%foFiles
. o 1.38 154345 111699
— Rapid access to 10-10K & ; o 35000
. 3 888 29620
“random” files 3 s T
5 60590 12120
— Time-varying load 10 46450 des0
Scalable Resource Management[ ™ 3g 23695 790




 Purpo~~ = open
— On- 450 radec2xy
400 - B readHDU+getTile+curl+convertArray
loce m calibration+interpolation+doStacking
| B writeStacking
e Challe 3°
_ Ra["_’;BOO .
— Timr £250
e Samp§g*®

Locality 150 -
1
1.38 100 -
2

3 50 -

2

1

5 |
10 0
20

30

GPFS GZ LOCAL GZ GPFS FIT LOCAL FIT

~— - ————

AN

Filesystem and Image Format
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Low data locality =>»

2000
- 1800

per C
=
5> o
o O
S O

800

Time (ms) per stack

1200 -
1000 -

600 -
400 -
200 -

— Similar (but better)
performance to GPFS

—e—Data Diffusion (GZ)

Time (ms) per stack per CPU

- & Data Diffusion (FIT)
—=—GPFS (G2)
-®= GPFS (FIT)
'l
l-'
o I 4.__T=/——_.
!""!""!""!" &= o= -g=-- -3
2 4 8 16 32 64 128
Number of CPUs

The Quest for Scalable Support of Data Intensive Applications in

2000
1800
1600
1400
1200
1000

800
600 -

400
200

—e— Data Diffusion (GZ)

= Data Diffusion (FIT)
—=—GPFS (G2)
-®= GPFS (FIT)
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? 4 8 16 32 64 128
Number of CPUs

€High data locality

— Near perfect scalability
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e Aggregate throughput:

— 39Gb/s

— 10X higher than GPFS
e Reduced load on GPFS

— 0.49Gb/s

— 1/10 of the original load

2000

1800 -
=2

- » Data Diffusion (GZ)

—e— Data Diffusion (FIT) |

-= GPFS (G2)

—=— GPFS (FIT)

¥ 1000

Locality

10 20 30 Ideal

50 [ Data Diffusion Throughput Local

[ Data Diffusion Throughput Cache-to-Cache
45 Il Data Diffusion Throughput GPFS

0D === GPFS Throughput (FIT)
8 40 -®= GPFS Throughput (GZ)
s 35
£
5,30
=)
© 25
=
® 20 -
15 -
5
<m 10

5

0

1 1.38 2 3 4 5 10 20 30
Locality

e Big performance gains
as locality increases
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250K tasks

— 10MB reads 1000 - :’T*;g‘l’g' c':";"’r‘rt]‘;lpe‘fé 366 250000
— 10ms compute 900 11  —Ideal Throughput Mb/s
Vary arrival rate: 2 02
— Min: 1 task/sec % ' 1e0000 §§
— Increment function: & £2
CEILING(*1.3) ; 100000 &
— Max: 1000 tasks/sec g §§
128 processors s s0000 3
ldeal case:
— 1415 sec °
— 80GDb/s peak
throughput Time (sec)
98
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e GPFS vs. ideal: 5011 sec vs. 1415 sec

1000
28 o J
°T 2 X
o0
zZZs | —
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Oagac 1
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O o
Eg23 /
zlféo.l*
0.01 §—
0.001
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O N M i i A S Ol Ol i
Time (sec)

~==|deal Throughput (Gb/s) — Throughput (Gb/s) —— Wait Queue Length == Number of Nodes
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Max-compute-util

Max-cache-hit

1000 - 1
- 0.9
100 - —_
- 0.8 e
2o
-~ i 0=~
27E 9 07 g 28 2
T aXx 053X c
o 9,_: r06 » oc o= o
Z:% £E29z¢ =
©3c 1 052625 ¢2 N
-c O I o g0 =
299 o 8F & 5
HE 045 E9 3 =
S = g 0.1 C 3 ®© -g, [ o
ZFg 7 0392223 3}
58
L >
0.01 0.2 <k
- 0.1
0.001 -0
O NV O OO O QO O O N O O o0 Q QO O O QO O O O O O O DO O OO 0N
PV A 507 &7 (O AV o X O ‘b O~ IV ©° D % D7 50° (X AV N O A0 W D QO D WO WX VDT D
»w%vb«%q,\/@fbb?@b,@@qp P AV K0 E R S S
Time (sec) Time (sec)
m Cache Hit Local % Cache Hit Global % Hm Cache Miss % I Cache Hit Local % Cache Hit Global % I Cache Miss %
~=ldeal Throughput (Gb/s) —— Throughput (Gb/s) — Wait Queue Length Ideal Throughput (Gb/s) ~ —— Throughput (Gb/s) Wait Queue Length
=—Number of Nodes Number of Nodes - - --CPU Utilization
The Quest for Scalable Support of Data Intensive Applications in 100

Distributed Systems




100

10

Queue Length (x1K)
(=

0.1

Number of Nodes
Aggregate Throughput (Gb/s)
Throughput per Node (MB/s)

0.01

€ 1GB

Cache Hit/Miss %
Number of Nodes
Aggregate Throughput (Gb/s)
Throughput per Node (MB/s)

1.5GB =>

0.001

Q O O O O O O O O O O
F &SSP
Time (sec)
B Cache Hit Local % Cache Hit Global % I Cache Miss %
~Ideal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length

— Number of Nodes

10 A

Queue Length (x1K)
-

1000 -

mmm Cache Hit Local %

~Ideal Throughput (Gb/s)

= Number of Nodes

rl
MMWW o0
—_ 100 i i TARA T
% 7 00 Al i |‘!Hm it L 0.8
o ‘
0 =8 kL~ F0.7 o
QS 0T 10 + d = e
S agX I [
9<£ 0 0.6 @
4 gz g =
To8E 1- o5 2
5229 T
akF 57 L 2
Eg2¢ 8
©
.1+ —
=9 %3 ° 0.3 ©
3=
0.2
<F  o01 [0
0.001 -0
Q Q O N\ N} O Q O N\ N O Q QO
WA R R & AV P F S
Time (sec)
mm Cache Hit Local % Cache Hit Global % B Cache Miss %
~Ideal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length

=—Number of Nodes

1000 1

=

(=}

o
L

10

Number of Nodes
Aggregate Throughput (Gb/s)
Throughput per Node (MB/s)

Queue Length (x1K)
=

I Cache Hit Local %

~Ideal Throughput (Gb/s)

= Number of Nodes

Cache Hit/Miss %

Cache Hit Global %
— Throughput (Gb/s)

Hm Cache Miss %
— Wait Queue Length

Cache Hit/Miss %

Cache Hit Global %
— Throughput (Gb/s)

Bl Cache Miss %
— Wait Queue Length




- 0.9
— 100 -
% » 0.8
m

O0s ~
2 sSE 5 07
T agv X "
S <c oo - 0.6 @
Z 02+ =
535 2 =
-£8§ 1 0.5 =
SF g @
T 04 §

0.1

=9 %’3 0.3 ©

S £

< 001 | - 0.2

- 0.1
0.001 L0
Q Q Q Q Q QO Q Q Q Q Q Q Q
NV S SR CA G S S VI
Time (sec)

B Cache Hit Local % Cache Hit Global % mm Cache Miss % 102

~|deal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length

= Number of Nodes




W Local Worker Caches (Gb/s)
Remote Worker Caches (Gb/s)

100 i B GPFS Throughput (Gb/s)

) i T ‘
5 10
e
5
Q
=
(=)
3
2
| 17 I I I |
0_1, l
Ideal first- good- good- good- good-
available  cache- cache- cache- cache- cache hlt, compute-
compute, compute, compute, compute, 4GB util, 4GB

1GB 1.5GB 2GB 4GB

Response Time =

— 3 sec vs 1569 sec = 506X

€ Throughput:
— Average: 14Gb/s vs 4Gb/s
— Peak: 100Gb/s vs. 6Gb/s

Average Response Time (sec)

10000

1000 +

100

10 A

1569

1,

1084
I I ﬁ ) I I:
first- good- good- good- good- max-cache-
available cache- cache- cache- cache- hit, 4GB compute-
compute, compute, compute, compute, 3 util, 4GB
1GB 1.5GB 2GB 4GB




 Performance Index:
— 34X higher
e Speedup
— 3.5X faster than GPFS

_| mPerformance Index
I Speedup (compared to first-available)

°
~

°
o

Performance Index
[=)
wn

0.4
0.3
18 —=—first-available 02t
17 - » good-cache-compute, 1GB 4
good-cache-compute, 1.5GB /e
16 - » good-cache-compute, 2GB ]’
1451 -_:-_good-cache-(;ompute, 4GB ’ " first- good- good- good- good- good- max- max-
max-caChe-hlt’ 4'GB / ot available  cache- cache- cache- cache- cache- cache-hit, compute-
13 = max-compute-util, 4GB ; comout won il aGs
12 - g pute, compute, compute, compute, compute, util,
‘:11 s 1GB 1.5GB 2GB 4GB 4GB, SRP
311 ? .
§uo -+ Slowdown:
¢}
= g - n
n
T — 18X slowdown for
5 GPFS
3 .
2 | — Near ideal 1X
Y150 2000 B P 0 S ASILPISSPES slowdown for largeios

Arrival Rate per Second

enough caches

35

25

,_.
o
Speedup (compared to LAN GPFS)



2M tasks
— 10MB reads
— 10ms compute

Vary arrival rate:
— Min: 1 task/sec

_=—Arrival Rate

||= Number of Tasks

— Arrival rate function:
— Max: 1000 tasks/sec

200 processors

|deal case:
— 6505 sec

— 80GDb/s peak
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. GPFS

= 5.7 hrs,
e DF+SRP = 1.8 hrs,

~8Gb/s, 1138 CPU
~25Gb/s, 361 CPU
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e 500x500

o All-Pairs( set A, set B, function F)

— 250K tasks - i

 2AMB reads returns matrix M:

— 100ms compute * Compare all elements of set A to

— 200 CPUs all elements of set B via function F,
* 1000x1000 yielding matrix M, such that

e 1M tasks o . :

« 24MB reads MI[1,]] = F(A[1],B[]])

* 4sec compute 1 foreach $iin A

« 4096 CPUs 2 foreach $jin B
 |deal case: 3 submit_job F $i $j

— 6505 sec 4 end

— 80Gb/s peak > end
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e Best to use active storage if
— Slow data source
— Workload working set fits on local node storage
— Good aggregate network bandwidth

* Best to use data diffusion if
— Medium to fast data source
— Task working set << workload working set
— Task working set fits on local node storage
— Good aggregate network bandwidth
o |f task working set does not fit on local node storage
— Use parallel file system (i.e. GPFS, Lustre, PVFS, etc)



e Needs Java 1.4+

 Needs IP connectivity between hosts
 Needs local storage (disk, memory, etc)
e Per task workings set must fit in local storage

« Task definition must include input/output files
metadata

« Data access patterns: write once, read many
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 [BeynonO1l]. DataCutter

 [Ranganathan03]: Simulations
 [Ghemawat03,Dean04,Chang06]. BigTable, GFS, MapReduce
e [LiuO4]: GridDB

* [Chervenak04,Chervenak06]. RLS (Replica Location Service),
DRS (Data Repllcatlon Service)

o [Tatebe04,XiaohuiO5]: GFarm

e [Branco04,Adams06]: DIAL/ATLAS

o [KosarO6]: Stork

e [Thain08]: Chirp/Parrot

Conclusion: None focused on the co-location of storage and
generic black box computations with data-aware scheduling
while operating in a dynamic environment



Ewmmly parallel apps are trivial to run

— Logistical problems can be tremendous

Loosely coupled apps do not require “supercomputers”
— Total computational requirements can be enormous
— Individual tasks may be tightly coupled
— Workloads frequently involve large amounts of I/O
— Make use of idle resources from “supercomputers” via backfilling

— Costs to run “supercomputers” per FLOP is among the best
* BG/P: 0.35 gigaflops/watt (higher is better)
» SiCortex: 0.32 gigaflops/watt
* BG/L: 0.23 gigaflops/watt
» x86-based HPC systems: an order of magnitude lower

Loosely coupled apps do not require specialized system software
Shared file systems are good for all applications

— They don’t scale proportionally with the compute resources
— Data intensive applications don’t perform and scale well



Defined Many-Task Computing Paradigm

Addressed real challenges in resource management in large
scale distributed systems

— Slow dispatch rates

— Long wait queue times

— Poor scaling of parallel file systems

Show effectiveness of streamlined task dispatching and
dynamic resource provisioning:

— Astronomy, medicine, chemistry, molecular dynamics, economic
modelling, and data mining

Show effectiveness of data diffusion:

— Real large-scale astronomy application and a variety of synthetic
workloads

Scalable Resource Management in Clouds and Grids 116



e More Information: http://people.cs.uchicago.edu/~iraicu/

 Related Projects:
— Falkon: http://dev.globus.org/wiki/Incubator/Falkon
— Swift: http://www.ci.uchicago.edu/swift/index.php

e Dissertation Committee:
— lan Foster, The University of Chicago & Argonne National Laboratory
— Rick Stevens, The University of Chicago & Argonne National Laboratory
— Alex Szalay, The Johns Hopkins University
* Funding:
— NASA: Ames Research Center, Graduate Student Research Program
e Jerry C. Yan, NASA GSRP Research Advisor

— DOE: Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy

— NSF: TeraGrid
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