
Scalable Resource Management Scalable Resource Management
in Clouds and Gridsin Clouds and Grids

Ioan Raicu
Distributed Systems Laboratory
Computer Science Department

University of Chicago

In Collaboration with:
Ian Foster, University of Chicago and Argonne National Laboratory
+many more, see “Recent Collaborators” slide…

Motorola Labs
December 5th, 2008

Talk Overview

I. Introductions
– University of Chicago, DSL
– University of Chicago, CI
– Argonne National Laboratory, MCS

II. Comparing Grids and Clouds
III. Scalable resource management challenges

and solutions
– Dispatch
– Provisioning
– Data Management

Scalable Resource Management in Clouds and Grids 2

Talk Overview

I. Introductions
– University of Chicago, DSL
– University of Chicago, CI
– Argonne National Laboratory, MCS

II. Comparing Grids and Clouds
III. Scalable resource management challenges

and solutions
– Dispatch
– Provisioning
– Data Management

Scalable Resource Management in Clouds and Grids 3

Distributed Systems Laboratory
University of Chicago

http://dsl-wiki.cs.uchicago.edu/index.php/Main_Page
• Lead by Dr. Ian Foster
• Research Areas:

– Distributed systems
– Grid middleware
– Grid applications
– Designing,

Scalable Resource Management in Clouds and Grids 4

Designing,
implementing, and
evaluating systems,
protocols, and
applications

– Data-intensive scientific
computing

• People:
– 1 faculty (Dr. Ian Foster)
– 12 students
– 2 research staff
– 13 alumnis

Computation Institute
University of Chicago

http://www.ci.uchicago.edu/index.php
• People:

– Director: Ian Foster
– 70 faculty and scientists
– 30 full-time professional staff
– 14 graduate students

• Focus

Scalable Resource Management in Clouds and Grids 5

ocus
– Deep Supercomputing
– Data Intensive Computing
– Next Generation Cybertools

• Many high-impact projects
– Open Science Grid
– TeraGrid
– Globus
– National Microbial Pathogen Research Center
– Social Informatics Data Grid
– Chicago Biomedical Consortium

Math and Computer Science Div.
Argonne National Laboratory

http://www.mcs.anl.gov/index.php

• People:
– Associate Director: Ian Foster
– 188 staff, researchers, scientists, developers

R h A

Scalable Resource Management in Clouds and Grids 6

• Research Areas
– Algorithms, Software, and Applications
– Parallel Tools
– Distributed Systems Research
– Collaborative and Virtual Environments
– Computational Science

About Ian Foster
http://www-fp.mcs.anl.gov/~foster/

• Many awards and titles:
– 1995: “father of grid computing”
– 1996: Globus Toolkit is released
– 2001: Gordon Bell Award
– 2002: R&D Magazine awards Globus “most

promising new technology” of the year

Scalable Resource Management in Clouds and Grids 7

– 2003: Infoworld Magazine awards “top 10
technology inovators”

– 2004: co-founder of Univa Corporation
– 2005: Network World: “The 50 most powerful people

in networking”
– 2007: “top three most influential computer scientists

worldwide” h-index 67

• Funding
– NSF: $133M since 1999
– Others: DOE, NASA, Microsoft, IBM

Projects

• GT4: Globus Toolkit 4
– http://www.globus.org/

• Falkon: a Fast and Light-weight tasK executiON framework
– http://dev.globus.org/wiki/Incubator/Falkon

• Swift: Fast, Reliable, Loosely Coupled Parallel Computation
– http://www.ci.uchicago.edu/swift/

• AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis
– http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro_portal.htm

• Haizea: a VM-based Lease Management Architecture
– http://haizea.cs.uchicago.edu/

• AG: Access Grid
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=1

• Collaborative Visualization and the Analysis Pipeline
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=28

• Flash Center Visualization
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=14

• TeraGrid: Visualization and Data Analysis Resource
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=34

8Scalable Resource Management in Clouds and Grids

Resources

• UChicago CS (50+ machines over the UChicago campus)
– http://tools.cs.uchicago.edu/find_cs_hosts/find.cgi

• UChicago TeraPort (274 processors)
– http://teraport.uchicago.edu/

• UC/ANL Cluster (316 processors)
– http://www.uc.teragrid.org/

• PlanetLab (912 nodes at 470 sites all over the world)
– http://www.planet-lab.org/

• UChicago PADS (7TF, O(1000-cores))
– http://www.ci.uchicago.edu/pads/

• ANL SiCortex 5832 (5832 processors)
– http://www.mcs.anl.gov/hs/hardware/sicortex.php

• Open Science Grid (43K-cores across 80 institutions over the US)
– http://www.opensciencegrid.org/

• IBM Blue Gene/P Supercomputer at ANL (160K processors)
– https://wiki.alcf.anl.gov/index.php/Main_Page

• TeraGrid (161K-cores across 11 institutions and 22 systems over the US)
– http://www.teragrid.org/

9Scalable Resource Management in Clouds and Grids

Talk Overview

I. Introductions
– University of Chicago, DSL
– University of Chicago, CI
– Argonne National Laboratory, MCS

II. Comparing Grids and Clouds
III. Scalable resource management challenges

and solutions
– Dispatch
– Provisioning
– Data Management

Scalable Resource Management in Clouds and Grids 10

Clusters, Grids, Clouds, …

Scalable Resource Management in Clouds and Grids 11

Supercomputing

Highly-tuned computer clusters using commodity
processors combined with custom network

interconnects and customized operating system

Scalable Resource Management in Clouds and Grids

e.g. IBM Blue Gene/P
12

IBM Blue Gene/P
at ANL ALCF

32 Node Cards

32 Racks
Cabled 8x8x16Rack

Baseline System

13
13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 1x1x1

13.6 GF/s
2 GB DDR

(32 chips 4x4x2)
32 compute, 0-4 IO cards

435 GF/s
64 GB

500TF/s
64 TB

Node Card

Compute Card

Chip

14 TF/s
2 TB

Scalable Resource Management in Clouds and Grids

Cluster Computing

Computer clusters using commodity processors,
network interconnects, and operating system

Scalable Resource Management in Clouds and Grids

e.g. PADS
14

Petascale Active Data Store
(PADS)

15Scalable Resource Management in Clouds and Grids

Grid Computing

Grids tend to be composed of multiple clusters,
and are typically loosely coupled, yp y y p ,

heterogeneous, and geographically dispersed

Scalable Resource Management in Clouds and Grids

e.g. TeraGrid
16

TeraGrid High Performance Computing
Systems 2007-8

UC/ANL

NCSA
PU

IU

PSC

17Computational Resources
(size approximate - not to scale)

Tommy Minyard, TACC

SDSC

TACC

NCSA

ORNL

IUNCAR

2007
(504TF)

2008
(~1PF)Tennessee

LONI/LSU

What is the TeraGrid?

• An instrument (cyberinfrastructure) that delivers high-end IT resources -
storage, computation, visualization, and data/service hosting - almost all of
which are UNIX-based under the covers; some hidden by Web interfaces

– 20 Petabytes of storage (disk and tape)
– over 100 scientific data collections
– 750 TFLOPS (161K-cores) in parallel computing systems and growing

18

– Support for Science Gateways

• The largest individual cyberinfrastructure facility funded by the NSF, which
supports the national science and engineering research community

• Something you can use without financial cost - allocated via peer review
(and without double jeopardy)

Scalable Resource Management in Clouds and Grids

Major Grids

• TeraGrid (TG)
• Open Science Grid (OSG)
• Enabling Grids for E-sciencE (EGEE)
• LHC Computing Grid from CERN
• Grid Middleware

– Globus Toolkit
– Unicore

Scalable Resource Management in Clouds and Grids 19

Cloud Computing

A large-scale distributed computing paradigm that is
driven by economies of scale, in which a pool of
abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms,
and services are delivered on demand to external

customers over the Internet.

Scalable Resource Management in Clouds and Grids

e.g. Amazon EC2
20

Major Cloud Middleware

• Google App Engine
– Engine, Datastore, memcache

• Amazon
EC2 S3 SQS Si l DB– EC2, S3, SQS, SimpleDB

• Microsoft Azure
• Nimbus
• Eucalyptus
• Salesforce

Scalable Resource Management in Clouds and Grids 21

So is “Cloud Computing”
just a new name for Grid?

• IT reinvents itself every five years
• The answer is complicated…

• YES: the vision is the same

Scalable Resource Management in Clouds and Grids

• YES: the vision is the same
– to reduce the cost of computing
– increase reliability
– increase flexibility by transitioning from self operation to third

party

22

So is “Cloud Computing”
just a new name for Grid?

• NO: things are different than they were 10 years ago
– New needs to analyze massive data, increased demand for

computing
– Commodity clusters are expensive to operate
– We have low-cost virtualization
– Billions of dollars being spent by Amazon, Google, and

Microsoft to create real commercial large-scale systems with
hundreds of thousands of computers

– The prospect of needing only a credit card to get on-demand
access to *infinite computers is exciting; *infinite<O(1000)

Scalable Resource Management in Clouds and Grids 23

So is “Cloud Computing”
just a new name for Grid?

• YES: the problems are mostly the same
– How to manage large facilities
– Define methods to discover, request, and use resources
– How to implement and execute parallel computations
– Details differ, but issues are similar

Scalable Resource Management in Clouds and Grids 24

Outline

• Business model
• Architecture
• Resource management
• Programming model• Programming model
• Application model
• Security model

Scalable Resource Management in Clouds and Grids 25

Business Model

• Grids:
– Largest Grids funded by government
– Largest user-base in academia and government labs to drive

scientific computing
– Project-oriented: service units

• Clouds:
– Industry (i.e. Amazon) funded the initial Clouds
– Large user base in common people, small businesses, large

businesses, and a bit of openn science research
– Utility computing: real money

Scalable Resource Management in Clouds and Grids 26

Architecture

• Grids:
– Application: Swift, Grid portals (NVO)
– Collective layer: MDS, Condor-G, Nimrod-G
– Resource layer: GRAM, Falkon, GridFTP
– Connectivity layer: Grid Security Infrastructure

Scalable Resource Management in Clouds and Grids

Platform

Application

Unified Resource

FabricCl
ou

d
A
rc
hi
te
ct
ur
e

Platform

Application

Unified Resource

FabricCl
ou

d
A
rc
hi
te
ct
ur
e

y y y
– Fabric layer: GRAM, PBS, SGE, LSF, Condor, Falkon

• Clouds:
– Application Layer: Software as a Service (SaaS)
– Platform Layer: Platform as a Service (PaaS)
– Unified Resource: Infrastructure as a Service (IaaS)
– Fabric: IaaS

27

Resource Management

• Compute Model
– batch-scheduled vs. time-shared

• Data Model
D t L lit– Data Locality

– Combining compute and data management
• Virtualization

– Slow adoption vs. central component
• Monitoring
• Provenance

Scalable Resource Management in Clouds and Grids
28

Programming and
Application Model

• Grids:
– Tightly coupled

• High Performance Computing (MPI-based)
– Loosely Coupled– Loosely Coupled

• High Throughput Computing
• Workflows

– Data Intensive
• Map/Reduce

• Clouds:
– Loosely Coupled, transactional oriented

Scalable Resource Management in Clouds and Grids
29

Programming Model Issues

• Multicore processors
• Massive task parallelism
• Massive data parallelism
• Integrating black box applications

Comple task dependencies (task graphs)

Scalable Resource Management in Clouds and Grids

• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Dynamic task graphs
• Documenting provenance of data products
• Data management: input, intermediate, output
• Dynamic data access involving large amounts of

data
30

Gateways

• Aimed to simplify usage of complex resources
• Grids

– Front-ends to many different applications
E i t h l i f G id– Emerging technologies for Grids

• Clouds
– Standard interface to Clouds

Scalable Resource Management in Clouds and Grids 31

Gateway to Grids

32Scalable Resource Management in Clouds and Grids

Gateway to Clouds

33Scalable Resource Management in Clouds and Grids

Security Model

• Grids
– Grid Security Infrastructure (GSI)
– Stronger, but steeper learning curve and wait time

• Personal verification: phone manager etc• Personal verification: phone, manager, etc

• Clouds
– Weaker, can use credit card to gain access, can

reset password over plain text email, etc

Scalable Resource Management in Clouds and Grids 34

Conclusion

• Move towards a mix of micro-production and large utilities, with load being
distributed among them dynamically
– Increasing numbers of small-scale producers (local clusters and embedded

processors—in shoes and walls)
– Large-scale regional producers

• Need to define protocols• Need to define protocols
– Allow users and service providers to discover, monitor and manage their

reservations and payments
– Interoperability

• Need to combine the centralized scale of today’s Cloud utilities, and the
distribution and interoperability of today’s Grid facilities

• Need support for on-demand provisioning
• Need tools for managing both the underlying resources and the resulting

distributed computations
• Security and trust will be a major obstacle for commercial Clouds by large

companies that have in-house IT resources to host their own data centers
35

Talk Overview

I. Introductions
– University of Chicago, DSL
– University of Chicago, CI
– Argonne National Laboratory, MCS

II. Comparing Grids and Clouds
III. Scalable resource management challenges

and solutions
– Dispatch
– Provisioning
– Data Management

Scalable Resource Management in Clouds and Grids 36

Many-Core Growth Rates

• Increasing attention to
parallel chips
– Many plans for cores

with “In-Order” execution

90
nm

65
nm

256
Cores

90
nm

65
nm

256
Cores

Slide 37

On-chip shared memory
Far faster to access on-chip memory than DRAM

Interesting challenges in synchronization (e.g.
locking)

Inexpensive Low-Power Parallel Chips
Amazing amounts of computing very cheap

Slower (or same) sequential speed!2004 2006 2008 2010 2012 2014 2016 2018

45
nm 32

nm
22
nm

16
nm 11

nm

8 nm2
Cores

4
Cores

8
Cores

16
Cores 32

Cores

64
Cores

128
Cores

2004 2006 2008 2010 2012 2014 2016 2018

45
nm 32

nm
22
nm

16
nm 11

nm

8 nm2
Cores

4
Cores

8
Cores

16
Cores 32

Cores

64
Cores

128
Cores

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable Objects, November 9th, 2007

Scalable Resource Management in Clouds and Grids 38

What will we do
with 1+ Exaflops

and 100M+ cores?

Programming Model Issues

• Multicore processors
• Massive task parallelism
• Massive data parallelism
• Integrating black box applications

Comple task dependencies (task graphs)

Scalable Resource Management in Clouds and Grids 39

• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Dynamic task graphs
• Documenting provenance of data products
• Data management: input, intermediate, output
• Dynamic data access involving large amounts of

data

Programming Model Issues

• Multicore processors
• Massive task parallelism
• Massive data parallelism
• Integrating black box applications

Comple task dependencies (task graphs)

Scalable Resource Management in Clouds and Grids 40

• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Dynamic task graphs
• Documenting provenance of data products
• Data management: input, intermediate, output
• Dynamic data access involving large amounts of

data

Problem Types

Input
Data
Size

Hi

Data
Analysis,
Mining

Big Data and
Many Tasks

Input
Data
Size

Hi

Data
Analysis,
Mining

Big Data and
Many Tasks

41
Number of Tasks

Med

Low
1 1K 1M

Heroic
MPI
Tasks Many Loosely Coupled Apps

Number of Tasks

Med

Low
1 1K 1M

Heroic
MPI
Tasks Many Loosely Coupled Apps

Scalable Resource Management in Clouds and Grids

An Incomplete and Simplistic View of
Programming Models and Tools

42

MTC: Many Task Computing

• Bridge the gap between HPC and HTC
• Loosely coupled applications with HPC orientations
• HPC comprising of multiple distinct activities, coupled

via file system operations or message passingvia file system operations or message passing
• Emphasis on many resources over short time periods
• Tasks can be:

– small or large, independent and dependent, uniprocessor or
multiprocessor, compute-intensive or data-intensive, static or
dynamic, homogeneous or heterogeneous, loosely or tightly
coupled, large number of tasks, large quantity of computing,
and large volumes of data… 43

Obstacles and Solutions

• Obstacles:
1. Long queue times
2. Slow job dispatch rates
3. Poor shared file system scaling

100000

1000000
t (

M
b/

s)
GPFS R
LOCAL R
GPFS R+W
LOCAL R+W

100000

1000000
t (

M
b/

s)
GPFS R
LOCAL R
GPFS R+W
LOCAL R+W

Scalable Resource Management in Clouds and Grids 44

y g
…many many years of hard work…

• Solution Falkon: a Fast and Light-weight
tasK executiON framework
1. Streamlined dispatching
2. Multi-level scheduling
3. Data diffusion

System Comments Throughput
(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

System Comments Throughput
(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

100

1000

10000

1 10 100 1000
Number of Nodes

Th
ro

ug
hp

ut

100

1000

10000

1 10 100 1000
Number of Nodes

Th
ro

ug
hp

ut

Hypothesis

“Significant performance improvements can be
obtained in the analysis of large dataset by leveraging
information about data analysis workloads rather than

individual data analysis tasks ”

Scalable Resource Management in Clouds and Grids 47

• Important concepts related to the hypothesis
– Workload: a complex query (or set of queries) decomposable into

simpler tasks to answer broader analysis questions
– Data locality is crucial to the efficient use of large scale distributed

systems for scientific and data-intensive applications
– Allocate computational and caching storage resources, co-scheduled to

optimize workload performance

individual data analysis tasks.

Abstract Model

• AMDASK: An Abstract Model for DAta-centric taSK farms
– Task Farm: A common parallel pattern that drives independent

computational tasks
• Models the efficiency of data analysis workloads for the

split/merge class of applications

Scalable Resource Management in Clouds and Grids 48

split/merge class of applications
• Captures data diffusion properties

– Resources are acquired in response to demand
– Data and applications diffuse from archival storage to new resources
– Resource “caching” allows faster responses to subsequent requests
– Resources are released when demand drops
– Considers both data and computations to optimize performance

AMDASK:
Base Definitions

• Data Stores: Persistent & Transient
– Store capacity, load, ideal bandwidth, available

bandwidth
• Data Objects:

Scalable Resource Management in Clouds and Grids 49

• Data Objects:
– Data object size, data object’s storage location(s),

copy time
• Transient resources: compute speed,

resource state
• Task: application, input/output data

AMDASK:
Execution Model Concepts

• Dispatch Policy
– next-available, first-available, max-compute-util, max-cache-hit

• Caching Policy
– random, FIFO, LRU, LFU

• Replay policy

Scalable Resource Management in Clouds and Grids 50

Replay policy
• Data Fetch Policy

– Just-in-Time, Spatial Locality
• Resource Acquisition Policy

– one-at-a-time, additive, exponential, all-at-once, optimal
• Resource Release Policy

– distributed, centralized

AMDASK:
Performance Efficiency Model

• B: Average Task Execution Time:
– K: Stream of tasks
– µ(k): Task k execution time ∑

Κ∈Κ
=Β

k
)(

||
1 κµ

• Y: Average Task Execution Time with Overheads:
– ο(k): Dispatch overhead ⎧ Ω∑ δφδ)()]()([1

Scalable Resource Management in Clouds and Grids 51

• V: Workload Execution Time:
– A: Arrival rate of tasks
– T: Transient Resources

• W: Workload Execution Time with Overheads

||*1,
||

max Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

=
BV

||*1,
||

max Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

Υ
=W

ο(k): Dispatch overhead
– ς(δ,τ): Time to get data

⎪
⎪
⎩

⎪⎪
⎨

⎧

Ω∈∉++
Κ

Ω∈∈+
Κ=
∑

∑

Κ∈

Κ∈

δτφδτδζκκµ

δτφδκκµ

κ

κ

),(,)],()()([
||

1

),()],()([
||

1

o

o
Y

AMDASK:
Performance Efficiency Model

• Efficiency

• Speedup

W
V

=Ε
⎪
⎪
⎩

⎪⎪
⎨

⎧

>⎟
⎠
⎞

⎜
⎝
⎛

Α
Τ

≤
=

AT
Y

YY
B

AT
Y

E 1
||

,
*

||,max

1
||

,1

Scalable Resource Management in Clouds and Grids 52

• Speedup

• Optimizing Efficiency
– Easy to maximize either efficiency or speedup independently
– Harder to maximize both at the same time

• Find the smallest number of transient resources |T| while maximizing
speedup*efficiency

||* TES =

Model Validation

• Stacking service (large scale astronomy application)
• 92 experiments
• 558K files

– Compressed: 2MB each 1.1TB
Un compressed 6MB each 3 3TB

53

– Un-compressed: 6MB each 3.3TB

0%

10%

20%

30%

2 4 8 16 32 64 128
Number of CPUs

M
od

el
 E

rr
or

GPFS (GZ) GPFS (FIT)
Data Diffusion (FIT) - Locality 1 Data Diffusion (GZ) - Locality 1
Data Diffusion (FIT) - Locality 1.38 Data Diffusion (GZ) - Locality 1.38
Data Diffusion (FIT) - Locality 30 Data Diffusion (GZ) - Locality 30

0%

10%

20%

30%

2 4 8 16 32 64 128
Number of CPUs

M
od

el
 E

rr
or

GPFS (GZ) GPFS (FIT)
Data Diffusion (FIT) - Locality 1 Data Diffusion (GZ) - Locality 1
Data Diffusion (FIT) - Locality 1.38 Data Diffusion (GZ) - Locality 1.38
Data Diffusion (FIT) - Locality 30 Data Diffusion (GZ) - Locality 30

0%

10%

20%

30%

1 1.38 2 3 4 5 10 20 30
Data Locality

M
od

el
 E

rr
or

GPFS (GZ)
GPFS (FIT)
Data Diffusion (FIT)
Data Diffusion (GZ)

0%

10%

20%

30%

1 1.38 2 3 4 5 10 20 30
Data Locality

M
od

el
 E

rr
or

GPFS (GZ)
GPFS (FIT)
Data Diffusion (FIT)
Data Diffusion (GZ)

Talk Overview

I. Introductions
– University of Chicago, DSL
– University of Chicago, CI
– Argonne National Laboratory, MCS

II. Comparing Grids and Clouds
III. Scalable resource management challenges

and solutions
– Dispatch
– Provisioning
– Data Management

Scalable Resource Management in Clouds and Grids 54

Falkon: a Fast and Light-weight
tasK executiON framework

• Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher

i i i th h lti l l h d li

Scalable Resource Management in Clouds and Grids 55

– resource provisioning through multi-level scheduling
techniques

– data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

• Integration into Swift to leverage many applications
– Applications cover many domains: astronomy, astro-physics,

medicine, chemistry, economics, climate modeling, etc

Falkon Overview

Scalable Resource Management in Clouds and Grids 56

Distributed Falkon Architecture

Dispatcher
1

Executor
1

Client

Login Nodes
(x10)

I/O Nodes
(x640)

Compute Nodes
(x40K)

57

Provisioner

Cobalt

Client
Executor

256

Dispatcher
N

Executor
1

Executor
256

Dispatch Throughput

3000
3500
4000
4500
5000

2534

3186 3071

(ta
sk

s/
se

c)

3000
3500
4000
4500
5000

2534

3186 3071

(ta
sk

s/
se

c)

58

0
500

1000
1500
2000
2500
3000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

1758

Th
ro

ug
hp

ut
 (

Executor Implementation and Various Systems

0
500

1000
1500
2000
2500
3000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

1758

Th
ro

ug
hp

ut
 (

Executor Implementation and Various SystemsRunning 1 Million Jobs in 10 Minutes via the Falkon Fast and Light-weight
tasK executiON framework

System Comments Throughput
(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

System Comments Throughput
(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

Efficiency

90%

100%
30%

40%

50%

60%

70%

80%

90%

100%

Ef
fic

ie
nc

y

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

59
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

256 1024 4096 16384 65536 163840

Ef
fic

ie
nc

y

Number of Processors

256 seconds
128 seconds
64 seconds
32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

0%

10%

20%

Number of Processors

Resource Provisioning

64

640

160

5

10

15

20

25

30

35

N
um

be
r o

f M
ac

hi
ne

s

100

200

300

400

500

600

700

N
um

be
r o

f T
as

ks# of Machines
of Tasks

- 18 Stages
- 1,000 tasks
- 17,820 CPU seconds
- 1,260 total time on 32 machines

5

10

15

20

25

30

35

of

 E
xe

cu
to

rs

Allocated
Registered
Active

Ideal

5

10

15

20

25

30

35

of

 E
xe

cu
to

rs

Allocated
Registered
Active

Falkon-180 Falkon-15

Scalable Resource Management in Clouds and Grids 60

• End-to-end execution time:
– 1260 sec in ideal case
– 4904 sec 1276 sec

• Average task queue time:
– 42.2 sec in ideal case
– 611 sec 43.5 sec

• Trade-off:
– Resource Utilization for

Execution Efficiency

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal
(32 nodes)

Time to
complete

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution
Efficiency 26% 72% 75% 84% 85% 99% 100%
Resource

Allocations 1000 11 9 7 6 0 0

1 2 4 8 16 32
1 3 20 18 16 8 4 2 1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Stage Number

0
0

0 580.386 1156.853 1735.62
Time (sec)

0
0 494.438 986.091 1477.3

Time (sec)

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal
(32 nodes)

Queue
Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2
Execution
Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%

Falkon Endurance Test

Falkon, a Fast and Light-weight tasK executiON framework for Clusters,
Grids, and Supercomputers

61

Falkon Monitoring

• Workload
• 160K CPUs

1M tasks

Falkon, a Fast and Light-weight tasK executiON framework for Clusters,
Grids, and Supercomputers

62

• 1M tasks
• 60 sec per task

• 17.5K CPU hours in 7.5 min
• Throughput: 2312 tasks/sec
• 85% efficiency

Falkon Activity History
(10 months)

Falkon, a Fast and Light-weight tasK executiON framework for Clusters,
Grids, and Supercomputers

63

Virtual Node(s)Abstract
computation

S iftS i t

Specification Execution

Virtual Node(s)

file1

Scheduling

Execution Engine
(Karajan w/

Swift Runtime)

Swift Architecture

Provisioning

Falkon
Resource

Provisioner

SwiftScript

Virtual Data
Catalog

SwiftScript
Compiler

Provenance
data

Provenance
dataProvenance

collector

launcher

launcher

file2

file3

App
F1

App
F2

Swift runtime
callouts

C
C CC

Status reporting
Amazon

EC2

64
Scalable Resource Management in Clouds and Grids

Functional MRI (fMRI)

Scalable Resource Management in Clouds and Grids 65

• Wide range of analyses
– Testing, interactive analysis,

production runs
– Data mining
– Parameter studies

Completed Milestones:
fMRI Application

48085000

6000
GRAM
GRAM/Clustering

• GRAM vs. Falkon: 85%~90% lower run time
• GRAM/Clustering vs. Falkon: 40%~74% lower run time

Scalable Resource Management in Clouds and Grids 66Falkon: a Fast and Light-weight tasK executiON framework

1239

2510

3683

456
866 992 1123

120 327 546 678

0

1000

2000

3000

4000

120 240 360 480
Input Data Size (Volumes)

Ti
m

e
(s

)

Falkon

B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

Scalable Resource Management in Clouds and Grids 67

Completed Milestones:
Montage Application

3000

3500

GRAM/Clustering
MPI

• GRAM/Clustering vs. Falkon: 57% lower application run time
• MPI* vs. Falkon: 4% higher application run time
• * MPI should be lower bound

Scalable Resource Management in Clouds and Grids 68Falkon: a Fast and Light-weight tasK executiON framework

0

500

1000

1500

2000

2500

mProj
ec

t

mDiff/
Fit

mBac
kg

rou
nd

mAdd
(su

b)

mAdd tot
al

Components

Ti
m

e
(s

)

MPI
Falkon

Hadoop vs. Swift

• Classic benchmarks for MapReduce
– Word Count
– Sort

• Swift performs similar or better than Hadoop

Scalable Resource Management in Clouds and Grids 69

p p
(on 32 processors)

Sort

42
85

733

25

83

512

1

10

100

1000

10000

10MB 100MB 1000MB
Data Size

Ti
m

e
(s

ec
)

Swift+Falkon

Hadoop

Word Count

221

1143
1795

863

4688
7860

1

10

100

1000

10000

75MB 350MB 703MB
Data Size

Ti
m

e
(s

ec
)

Swift+PBS
Hadoop

Molecular Dynamics

• Determination of free
energies in aqueous solution
– Antechamber – coordinates

Charmm solution– Charmm – solution
– Charmm - free energy

70

0 1800 3600 5400 7200 9000 10800 12600 14400
1

Time (sec)

• 244 molecules 20497 jobs
• 15091 seconds on 216 CPUs 867.1 CPU hours
• Efficiency: 99.8%
• Speedup: 206.9x 8.2x faster than GRAM/PBS
• 50 molecules w/ GRAM (4201 jobs) 25.3 speedup

MolDyn Application

Scalable Resource Management in Clouds and Grids 7171

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

10001
11001
12001
13001
14001
15001
16001
17001
18001
19001
20001

Ta
sk

 ID

waitQueueTime execTime resultsQueueTime

MTC: Many Task Computing

• Bridge the gap between HPC and HTC
• Loosely coupled applications with HPC orientations
• HPC comprising of multiple distinct activities, coupled

via file system operations or message passingvia file system operations or message passing
• Emphasis on many resources over short time periods
• Tasks can be:

– small or large, independent and dependent, uniprocessor or
multiprocessor, compute-intensive or data-intensive, static or
dynamic, homogeneous or heterogeneous, loosely or tightly
coupled, large number of tasks, large quantity of computing,
and large volumes of data… 72

Growing Interest on enabling
HTC/MTC on Supercomputers

• Project Kittyhawk
– IBM Research

• HTC-mode in Cobalt/BG
– IBM

• Condor on BG• Condor on BG
– University of Wisconsin at Madison, IBM

• Grid Enabling the BG
– University of Colorado, National Center for Atmospheric Research

• Plan 9
– Bell Labs, IBM Research, Sandia National Labs

• Falkon/Swift on BG/P and Sun Constellation
– University of Chicago, Argonne National Laboratory

73

• Jaguar (#2)
– DOE, ORNL

• Intrepid (#5)
– DOE, ANL

Many Large Systems available
for Open Science Research

,
• Ranger (#6)

– NSF, TACC

Toward Loosely Coupled Programming on Petascale Systems
74

Why Petascale Systems for
MTC Applications?

1. The I/O subsystem of petascale systems offers
unique capabilities needed by MTC
applications

2. The cost to manage and run on petascale g
systems is less than that of conventional
clusters or Grids

3. Large-scale systems that favor large jobs have
utilization issues

4. Some problems are intractable without
petascale systems

Toward Loosely Coupled Programming on Petascale Systems 75

MARS Economic Modeling
on IBM BG/P

• CPU Cores: 2048
• Tasks: 49152
• Micro-tasks: 7077888
• Elapsed time: 1601 secs
• CPU Hours: 894

Scalable Resource Management in Clouds and Grids 76

• CPU Hours: 894
• Speedup: 1993X (ideal 2048)
• Efficiency: 97.3%

Scaling from 1K to 100K CPUs
without Data Diffusion

• At 1K CPUs:
– 1 Server to manage all 1K CPUs
– Use shared file system extensively

• Invoke application from shared file system
• Read/write data from/to shared file system

• At 100K CPUs:• At 100K CPUs:
– N Servers to manage 100K CPUs (1:256 ratio)
– Don’t trust the application I/O access patterns to behave optimally

• Copy applications and input data to RAM
• Read input data from RAM, compute, and write results to RAM
• Archive all results in a single file in RAM
• Copy 1 result file from RAM back to GPFS

• Great potential for improvements
– Could leverage the Torus network for high aggregate bandwidth
– Collective I/O (CIO) Primitives
– Roadblocks: machine global IP connectivity, Java support, and time 77

Managing 160K CPUs

High-speed local disk

Falkon

78Scalable Resource Management in Clouds and Grids

Slower shared storage

MARS Economic Modeling
on IBM BG/P (128K CPUs)

3500

4000

4500

5000

800000

1000000

ec
)

s

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

• CPU Cores: 130816
• Tasks: 1048576
• Elapsed time: 2483 secs
• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Scalable Resource Management in Clouds and Grids 79

0

500

1000

1500

2000

2500

3000

3500

0

200000

400000

600000

Th
ro

ug
hp

ut
 (t

as
ks

/s
e

Ta
sk

s
C

om
pl

et
ed

N
um

be
r o

f P
ro

ce
ss

or
s

Time (sec)

Speedup: 115168X (ideal 130816)
Efficiency: 88%

Many Many Tasks:
Identifying Potential Drug Targets

2M+ ligandsProtein x
target(s)

(Mike Kubal, Benoit Roux, and others)
81Scalable Resource Management in Clouds and Grids

start

DOCK6
Receptor

(1 per protein:
defines pocket

to bind to)

ZINC
3-D

structures

NAB script
parameters

(defines flexible
residues,
#MDsteps)

BuildNABScript

NAB
Script

NAB
Script

Template

Amber prep:
2. AmberizeReceptor
4. perl: gen nabscript

FRED
Receptor

(1 per protein:
defines pocket

to bind to)

Manually prep
DOCK6 rec file

Manually prep
FRED rec file

1
protein
(1MB)

6
GB
2M

structures
(6 GB)

DOCK6FRED ~4M x 60s x 1 cpu
~60K cpu-hrs

PDB
protein

descriptions

Many Many Tasks:
Identifying Potential Drug Targets

report ligands complexes

Amber Score:
1. AmberizeLigand
3. AmberizeComplex
5. RunNABScript

end

Amber ~10K x 20m x 1 cpu
~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu
~500K cpu-hrsGCMC

Select best ~5KSelect best ~5K

For 1 target:
4 million tasks

500,000 cpu-hrs
(50 cpu-years)82Scalable Resource Management in Clouds and Grids

DOCK on SiCortex

• CPU cores: 5760
• Tasks: 92160
• Elapsed time: 12821 sec
• Compute time: 1.94 CPU years

Scalable Resource Management in Clouds and Grids 83

• Average task time: 660.3 sec
• Speedup: 5650X (ideal 5760)
• Efficiency: 98.2%

DOCK on the BG/P

CPU cores: 118784
Tasks: 934803
Elapsed time: 2.01 hours
Compute time: 21.43 CPU years
Average task time: 667 sec
Relative Efficiency: 99 7%

84

Relative Efficiency: 99.7%
(from 16 to 32 racks)
Utilization:
• Sustained: 99.6%
• Overall: 78.3%

Time (secs)

Related Work:
Task Farms

• [Casanova99]: Adaptive Scheduling for Task Farming with Grid
Middleware

• [Heymann00]: Adaptive Scheduling for Master-Worker
Applications on the Computational Grid

• [Danelutto04]: Adaptive Task Farm Implementation Strategies

Scalable Resource Management in Clouds and Grids 85

[] p p g
• [González-Vélez05]: An Adaptive Skeletal Task Farm for Grids
• [Petrou05]: Scheduling Speculative Tasks in a Compute Farm
• [Reid06]: Task farming on Blue Gene

Conclusion: none addressed the proposed “data-centric” part of
task farms, and the implementations were not as light-weight as
ours

Related Work:
Resource Provisioning

• [Appleby01]: Oceano - SLA Based Management of a
Computing Utility

• [Frey02, Mehta06]: Condor glide-ins
• [Walker06]: MyCluster (based on Condor glide-ins)
• [Ramakrishnan06]: Grid Hosting with Adaptive Resource

Control

Scalable Resource Management in Clouds and Grids 86

Control
• [Bresnahan06]: Provisioning of bandwidth
• [Singh06]: Simulations

Conclusion: None allows for dynamic resizing of resource pool
(independent of application logic) based on system load

Talk Overview

I. Introductions
– University of Chicago, DSL
– University of Chicago, CI
– Argonne National Laboratory, MCS

II. Comparing Grids and Clouds
III. Scalable resource management challenges

and solutions
– Dispatch
– Provisioning
– Data Management

Scalable Resource Management in Clouds and Grids 87

Data Diffusion

• Resource acquired in
response to demand

• Data and applications diffuse
from archival storage to
newly acquired resources

text

Task Dispatcher
Data-Aware Scheduler Persistent Storage

Shared File System

Idle Resources

text

Task Dispatcher
Data-Aware Scheduler Persistent Storage

Shared File System

Idle Resources

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

88

• Resource “caching” allows
faster responses to
subsequent requests
– Cache Eviction Strategies:

RANDOM, FIFO, LRU, LFU
• Resources are released

when demand drops

Shared File System

Provisioned Resources

Shared File System

Provisioned Resources

Data Diffusion

• Considers both data and computations to optimize
performance
– Supports data-aware scheduling
– Can optimize compute utilization, cache hit performance, or

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

89

a mixture of the two
• Decrease dependency of a shared file system

– Theoretical linear scalability with compute resources
– Significantly increases meta-data creation and/or

modification performance
• Central for “data-centric task farm” realization

Scheduling Policies

• first-available:
– simple load balancing

• max-cache-hit
– maximize cache hits

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

90

maximize cache hits
• max-compute-util

– maximize processor utilization
• good-cache-compute

– maximize both cache hit and processor utilization at
the same time

Data-Aware Scheduler Profiling

3

4

5

Ta
sk

 (m
s)

3000

4000

5000

ta
sk

s/
se

c)

Task Submit
Notification for Task Availability
Task Dispatch (data-aware scheduler)
Task Results (data-aware scheduler)
Notification for Task Results
WS Communication
Throughput (tasks/sec)

3

4

5

Ta
sk

 (m
s)

3000

4000

5000

ta
sk

s/
se

c)

Task Submit
Notification for Task Availability
Task Dispatch (data-aware scheduler)
Task Results (data-aware scheduler)
Notification for Task Results
WS Communication
Throughput (tasks/sec)

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

91

0

1

2

first-
available

without I/O

first-
available
with I/O

max-
compute-util

max-cache-
hit

good-
cache-

compute

C
PU

 T
im

e
pe

r

0

1000

2000

Th
ro

ug
hp

ut
 (t

0

1

2

first-
available

without I/O

first-
available
with I/O

max-
compute-util

max-cache-
hit

good-
cache-

compute

C
PU

 T
im

e
pe

r

0

1000

2000

Th
ro

ug
hp

ut
 (t

AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of

random locations within
~10TB dataset

Ch ll

+

+
+
+

+

+

+

Scalable Resource Management in Clouds and Grids

94

• Challenge
– Processing Costs:

• O(100ms) per object

– Data Intensive:
• 40MB:1sec

– Rapid access to 10-10K
“random” files

– Time-varying load

AP Sloan
Data

+

=

 Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790

AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of random

locations within ~10TB dataset

• Challenge
– Rapid access to 10-10K “random” files

+

+
+
+

+

+

=

+

300

350

400

450

)

open
radec2xy
readHDU+getTile+curl+convertArray
calibration+interpolation+doStacking
writeStacking

300

350

400

450

)

open
radec2xy
readHDU+getTile+curl+convertArray
calibration+interpolation+doStacking
writeStacking

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

95

ap d access to 0 0 a do es
– Time-varying load

• Sample Workloads
S4 Sloan

Data

=

Web page
or Web
Service

 Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790

0

50

100

150

200

250

GPFS GZ LOCAL GZ GPFS FIT LOCAL FIT
Filesystem and Image Format

Ti
m

e
(m

s)

0

50

100

150

200

250

GPFS GZ LOCAL GZ GPFS FIT LOCAL FIT
Filesystem and Image Format

Ti
m

e
(m

s)

AstroPortal Stacking Service
with Data Diffusion

Low data locality
– Similar (but better)

performance to GPFS
800

1000

1200

1400

1600

1800

2000

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

800

1000

1200

1400

1600

1800

2000

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

2000 Data Diffusion (GZ)
D t Diff i (FIT)2000 Data Diffusion (GZ)
D t Diff i (FIT)

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

96

0

200

400

600

2 4 8 16 32 64 128

Number of CPUs
Ti

m
e

(m
s

0

200

400

600

2 4 8 16 32 64 128

Number of CPUs
Ti

m
e

(m
s

High data locality
– Near perfect scalability0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of CPUs

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of CPUs

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

AstroPortal Stacking Service
with Data Diffusion

• Aggregate throughput:
– 39Gb/s
– 10X higher than GPFS

• Reduced load on GPFS
0 49Gb/s 20

25

30

35

40

45

50

Th
ro

ug
hp

ut
 (G

b/
s)

Data Diffusion Throughput Local
Data Diffusion Throughput Cache-to-Cache
Data Diffusion Throughput GPFS
GPFS Throughput (FIT)
GPFS Throughput (GZ)

20

25

30

35

40

45

50

Th
ro

ug
hp

ut
 (G

b/
s)

Data Diffusion Throughput Local
Data Diffusion Throughput Cache-to-Cache
Data Diffusion Throughput GPFS
GPFS Throughput (FIT)
GPFS Throughput (GZ)

97

– 0.49Gb/s
– 1/10 of the original load

0

5

10

15

20

1 1.38 2 3 4 5 10 20 30
Locality

A
gg

re
ga

te

0

5

10

15

20

1 1.38 2 3 4 5 10 20 30
Locality

A
gg

re
ga

te

• Big performance gains
as locality increases

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 1.38 2 3 4 5 10 20 30 Ideal
Locality

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 1.38 2 3 4 5 10 20 30 Ideal
Locality

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

Monotonically Increasing Workload

• 250K tasks
– 10MB reads
– 10ms compute

• Vary arrival rate:
– Min: 1 task/sec

600

700

800

900

1000

r s
ec

on
d

150000

200000

250000

pl
et

ed
ut

 (M
b/

s)

Arrival Rate per sec
Tasks completed
Ideal Throughput Mb/s

600

700

800

900

1000

r s
ec

on
d

150000

200000

250000

pl
et

ed
ut

 (M
b/

s)

Arrival Rate per sec
Tasks completed
Ideal Throughput Mb/s

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

98

– Increment function:
CEILING(*1.3)

– Max: 1000 tasks/sec
• 128 processors
• Ideal case:

– 1415 sec
– 80Gb/s peak

throughput

0

100

200

300

400

500

600

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40

Time (sec)

A
rr

iv
al

 R
at

e
pe

r

0

50000

100000

150000

Ta
sk

s
C

om
p

Id
ea

l T
hr

ou
gh

pu

0

100

200

300

400

500

600

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40

Time (sec)

A
rr

iv
al

 R
at

e
pe

r

0

50000

100000

150000

Ta
sk

s
C

om
p

Id
ea

l T
hr

ou
gh

pu

Data Diffusion:
First-available (GPFS)

• GPFS vs. ideal: 5011 sec vs. 1415 sec

10

100

1000

od
es

G
b/

s)
(x

1K
)

10

100

1000

od
es

G
b/

s)
(x

1K
)

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

99

0.001

0.01

0.1

1

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00

Time (sec)

N
um

be
r o

f N
o

Th
ro

ug
hp

ut
 (G

Q
ue

ue
 L

en
gt

h
(

Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length Number of Nodes

0.001

0.01

0.1

1

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00

Time (sec)

N
um

be
r o

f N
o

Th
ro

ug
hp

ut
 (G

Q
ue

ue
 L

en
gt

h
(

Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length Number of Nodes

Data Diffusion:
Max-compute-util & max-cache-hit

Max-compute-util
100

1000

G
b/

s)
B

/s
) 0.8

0.9

1

100

1000

G
b/

s)
B

/s
) 0.8

0.9

1

100

1000

)

0.8

0.9

1

100

1000

)

0.8

0.9

1

Max-cache-hit

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

100

0.001

0.01

0.1

1

10

0
18

0
36

0
54

0
72

0
90

0
10

80
12

60
14

40
16

20
18

00
19

80
21

60
23

40
25

20
27

00
28

80

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

Q
ue

ue
 L

en
gt

h
(x

1K
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ac

he
 H

it/
M

is
s

%
C

PU
 U

til
iz

at
io

n
%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes CPU Utilization

0.001

0.01

0.1

1

10

0
18

0
36

0
54

0
72

0
90

0
10

80
12

60
14

40
16

20
18

00
19

80
21

60
23

40
25

20
27

00
28

80

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

Q
ue

ue
 L

en
gt

h
(x

1K
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ac

he
 H

it/
M

is
s

%
C

PU
 U

til
iz

at
io

n
%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes CPU Utilization

0.001

0.01

0.1

1

10

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20
20

40

Time (sec)

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20
20

40

Time (sec)

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

Data Diffusion:
Good-cache-compute

1GB

1.5GB 0.01

0.1

1

10

100

1000

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

0.01

0.1

1

10

100

1000

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

0 001

0.01

0.1

1

10

100

1000

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

0 001

0.01

0.1

1

10

100

1000

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

101

2GB

4GB

0.001

0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

Time (sec)

0

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0

30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

Time (sec)

0

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60

Time (sec)

0

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60

Time (sec)

0

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

100

1000

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

100

1000

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

100

1000

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

100

1000

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

Data Diffusion:
Good-cache-compute

10

100

1000

od
es

hp
ut

 (G
b/

s)
od

e
(M

B
/s

)
(x

1K
)

0 6

0.7

0.8

0.9

1

ss
 %10

100

1000

od
es

hp
ut

 (G
b/

s)
od

e
(M

B
/s

)
(x

1K
)

0 6

0.7

0.8

0.9

1

ss
 %

• Data Diffusion vs. ideal: 1436 sec vs 1415 sec

102

0.001

0.01

0.1

1

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

Time (sec)

N
um

be
r o

f N
o

A
gg

re
ga

te
 T

hr
ou

gh
Th

ro
ug

hp
ut

 p
er

 N
o

Q
ue

ue
 L

en
gt

h

0

0.1

0.2

0.3

0.4

0.5

0.6

C
ac

he
 H

it/
M

is

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

Time (sec)

N
um

be
r o

f N
o

A
gg

re
ga

te
 T

hr
ou

gh
Th

ro
ug

hp
ut

 p
er

 N
o

Q
ue

ue
 L

en
gt

h

0

0.1

0.2

0.3

0.4

0.5

0.6

C
ac

he
 H

it/
M

is

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

Data Diffusion:
Throughput and Response Time

Throughput:
– Average: 14Gb/s vs 4Gb/s
– Peak: 100Gb/s vs. 6Gb/s

1

10

100

Th
ro

ug
hp

ut
 (G

b/
s)

Local Worker Caches (Gb/s)
Remote Worker Caches (Gb/s)
GPFS Throughput (Gb/s)

1

10

100

Th
ro

ug
hp

ut
 (G

b/
s)

Local Worker Caches (Gb/s)
Remote Worker Caches (Gb/s)
GPFS Throughput (Gb/s)

103

0.1
Ideal first-

available
good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

max-
cache-hit,

4GB

max-
compute-
util, 4GB

T

0.1
Ideal first-

available
good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

max-
cache-hit,

4GB

max-
compute-
util, 4GB

T

1084

230 287

3.1

114

1569

3.4

1

10

100

1000

10000

first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

max-cache-
hit, 4GB

max-
compute-
util, 4GB

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

) 1084

230 287

3.1

114

1569

3.4

1

10

100

1000

10000

first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

max-cache-
hit, 4GB

max-
compute-
util, 4GB

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

)

Response Time
– 3 sec vs 1569 sec 506X

Data Diffusion: Performance Index,
Slowdown, and Speedup

• Performance Index:
– 34X higher

• Speedup
– 3.5X faster than GPFS

0 3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rf

or
m

an
ce

 In
de

x

2

2.5

3

3.5

up
 (c

om
pa

re
d

to
 L

A
N

 G
PF

S)

Performance Index
Speedup (compared to first-available)

0 3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rf

or
m

an
ce

 In
de

x

2

2.5

3

3.5

up
 (c

om
pa

re
d

to
 L

A
N

 G
PF

S)

Performance Index
Speedup (compared to first-available)

104

0

0.1

0.2

0.3

first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

good-
cache-

compute,
4GB, SRP

max-
cache-hit,

4GB

max-
compute-
util, 4GB

1

1.5

Sp
ee

du

0

0.1

0.2

0.3

first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

good-
cache-

compute,
4GB, SRP

max-
cache-hit,

4GB

max-
compute-
util, 4GB

1

1.5

Sp
ee

du

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 6 8 11 15 20 26 34 45 59 77 10
1

13
2

17
2

22
4

29
2

38
0

49
4

64
3

83
6

10
00

Arrival Rate per Second

Sl
ow

do
w

n

first-available
good-cache-compute, 1GB
good-cache-compute, 1.5GB
good-cache-compute, 2GB
good-cache-compute, 4GB
max-cache-hit, 4GB
max-compute-util, 4GB

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 6 8 11 15 20 26 34 45 59 77 10
1

13
2

17
2

22
4

29
2

38
0

49
4

64
3

83
6

10
00

Arrival Rate per Second

Sl
ow

do
w

n

first-available
good-cache-compute, 1GB
good-cache-compute, 1.5GB
good-cache-compute, 2GB
good-cache-compute, 4GB
max-cache-hit, 4GB
max-compute-util, 4GB

• Slowdown:
– 18X slowdown for

GPFS
– Near ideal 1X

slowdown for large
enough caches

Sin-Wave Workload

900

1000

1800000

2000000

ed

Arrival Rate
Number of Tasks

900

1000

1800000

2000000

ed

Arrival Rate
Number of Tasks

• 2M tasks
– 10MB reads
– 10ms compute

• Vary arrival rate:
– Min: 1 task/sec

⎣ ⎦705.5*)11.0(*)1)859678.2*)11.0((sin(+++= timetimesqrtA

105

0

100

200

300

400

500

600

700

800

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00

Time (sec)

A
rr

iv
al

 R
at

e
(p

er
 s

ec
)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

N
um

be
r o

f T
as

ks
 C

om
pl

et
e

0

100

200

300

400

500

600

700

800

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00

Time (sec)

A
rr

iv
al

 R
at

e
(p

er
 s

ec
)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

N
um

be
r o

f T
as

ks
 C

om
pl

et
e

– Arrival rate function:
– Max: 1000 tasks/sec

• 200 processors
• Ideal case:

– 6505 sec
– 80Gb/s peak

throughput

Sin-Wave Workload

• GPFS 5.7 hrs, ~8Gb/s, 1138 CPU hrs
• DF+SRP 1.8 hrs, ~25Gb/s, 361 CPU hrs
• DF+DRP 1.86 hrs, ~24Gb/s, 253 CPU hrs

106

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

20

40

60

80

100

120

C
ac

he
 H

it/
M

is
s

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

Time (sec)
Cache Miss % Cache Hit Global % Cache Hit Local %
Demand (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

20

40

60

80

100

120

C
ac

he
 H

it/
M

is
s

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

Time (sec)
Cache Miss % Cache Hit Global % Cache Hit Local %
Demand (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

20

40

60

80

100

120

C
ac

he
 H

it/
M

is
s

%

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

Time (sec)
Cache Miss % Cache Hit Global % Cache Hit Local %
Demand (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

20

40

60

80

100

120

C
ac

he
 H

it/
M

is
s

%

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

Time (sec)
Cache Miss % Cache Hit Global % Cache Hit Local %
Demand (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

Sin-Wave Workload

50%
60%
70%
80%
90%
100%

60

80

100

120

Hi
t/M

is
s

%

r o
f N

od
es

hp
ut

 (G
b/

s)
en

gt
h

(x
1K

)

50%
60%
70%
80%
90%
100%

60

80

100

120

Hi
t/M

is
s

%

r o
f N

od
es

hp
ut

 (G
b/

s)
en

gt
h

(x
1K

)

107

0%
10%
20%
30%
40%
50%

0

20

40

60

Ca
ch

e
H

Nu
m

be
r

Th
ro

ug
h

Q
ue

ue
 L

e

Time (sec)
Cache Miss % Cache Hit Global % Cache Hit Local %
Demand (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0%
10%
20%
30%
40%
50%

0

20

40

60

Ca
ch

e
H

Nu
m

be
r

Th
ro

ug
h

Q
ue

ue
 L

e

Time (sec)
Cache Miss % Cache Hit Global % Cache Hit Local %
Demand (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

All-Pairs Workload

• All-Pairs(set A, set B, function F)
returns matrix M:

• Compare all elements of set A to
all elements of set B via function F,

• 500x500
– 250K tasks
– 24MB reads
– 100ms compute
– 200 CPUs

yielding matrix M, such that
M[i,j] = F(A[i],B[j])

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

108

1 foreach $i in A
2 foreach $j in B
3 submit_job F $i $j
4 end
5 end

• 1000x1000
• 1M tasks
• 24MB reads
• 4sec compute
• 4096 CPUs

• Ideal case:
– 6505 sec
– 80Gb/s peak

throughput

All-Pairs Workload
500x500 on 200 CPUs

60%
70%
80%
90%
100%

48
56
64
72
80

M
is

s

(G
b/

s)

60%
70%
80%
90%
100%

48
56
64
72
80

M
is

s

(G
b/

s)

Efficiency: 75%

109

0%
10%
20%
30%
40%
50%

0
8

16
24
32
40

Ca
ch

e
Hi

t/

Th
ro

ug
hp

ut
 (

Time (sec)

Cache Miss %
Cache Hit Global %
Cache Hit Local %
Throughput (Data Diffusion)
Maximum Throughput (GPFS)
Maximum Throughput (Local Disk)

0%
10%
20%
30%
40%
50%

0
8

16
24
32
40

Ca
ch

e
Hi

t/

Th
ro

ug
hp

ut
 (

Time (sec)

Cache Miss %
Cache Hit Global %
Cache Hit Local %
Throughput (Data Diffusion)
Maximum Throughput (GPFS)
Maximum Throughput (Local Disk)

All-Pairs Workload
1000x1000 on 4K emulated CPUs

120
140
160
180
200

t (
G

b/
s)

60%
70%
80%
90%
100%

/M
is

s

Cache Miss %120
140
160
180
200

t (
G

b/
s)

60%
70%
80%
90%
100%

/M
is

s

Cache Miss %

Efficiency: 86%

110

0
20
40
60
80

100

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80

Time (sec)

Th
ro

ug
hp

ut

0%
10%
20%
30%
40%
50%

C
ac

he
 H

it/Cache Miss %
Cache Hit Global %
Cache Hit Local %
Throughput (Data Diffusion)
Maximum Throughput (GPFS)
Maximum Throughput (Local Memory)

0
20
40
60
80

100

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80

Time (sec)

Th
ro

ug
hp

ut

0%
10%
20%
30%
40%
50%

C
ac

he
 H

it/Cache Miss %
Cache Hit Global %
Cache Hit Local %
Throughput (Data Diffusion)
Maximum Throughput (GPFS)
Maximum Throughput (Local Memory)

All-Pairs Workload
Data Diffusion vs. Active Storage
• Push vs. Pull

– Active Storage:
• Pushes workload

working set to all nodes 20%
30%
40%
50%
60%
70%
80%
90%

100%

Ef
fic

ie
nc

y

Best Case (active storage)
Falkon (data diffusion)
Falkon (GPFS)

20%
30%
40%
50%
60%
70%
80%
90%

100%

Ef
fic

ie
nc

y

Best Case (active storage)
Falkon (data diffusion)
Falkon (GPFS)

g
• Static spanning tree

– Data Diffusion
• Pulls task working set
• Incremental spanning

forest

0%
10%

500x500
200 CPUs

1 sec

500x500
200 CPUs

0.1 sec

1000x1000
4096 CPUs

4 sec

0%
10%

500x500
200 CPUs

1 sec

500x500
200 CPUs

0.1 sec

1000x1000
4096 CPUs

4 sec

Experiment Approach
Local

Disk/Memory
(GB)

Network
(node-to-node)

(GB)

Shared
File

System
(GB)

Best Case
(active storage) 6000 1536 12

Falkon
(data diffusion) 6000 1698 34

Best Case
(active storage) 6000 1536 12

Falkon
(data diffusion) 6000 1528 62

Best Case
(active storage) 24000 12288 24

Falkon
(data diffusion) 24000 4676 384

500x500
200 CPUs

1 sec

500x500
200 CPUs

0.1 sec

1000x1000
4096 CPUs

4 sec

Experiment Approach
Local

Disk/Memory
(GB)

Network
(node-to-node)

(GB)

Shared
File

System
(GB)

Best Case
(active storage) 6000 1536 12

Falkon
(data diffusion) 6000 1698 34

Best Case
(active storage) 6000 1536 12

Falkon
(data diffusion) 6000 1528 62

Best Case
(active storage) 24000 12288 24

Falkon
(data diffusion) 24000 4676 384

500x500
200 CPUs

1 sec

500x500
200 CPUs

0.1 sec

1000x1000
4096 CPUs

4 sec

All-Pairs Workload
Data Diffusion vs. Active Storage
• Best to use active storage if

– Slow data source
– Workload working set fits on local node storage
– Good aggregate network bandwidth

• Best to use data diffusion if
– Medium to fast data source
– Task working set << workload working set
– Task working set fits on local node storage
– Good aggregate network bandwidth

• If task working set does not fit on local node storage
– Use parallel file system (i.e. GPFS, Lustre, PVFS, etc)

Limitations of Data Diffusion

• Needs Java 1.4+
• Needs IP connectivity between hosts
• Needs local storage (disk, memory, etc)
• Per task workings set must fit in local storage
• Task definition must include input/output files

metadata
• Data access patterns: write once, read many

The Quest for Scalable Support of Data Intensive Applications in
Distributed Systems

113

Related Work:
Data Management

• [Beynon01]: DataCutter
• [Ranganathan03]: Simulations
• [Ghemawat03,Dean04,Chang06]: BigTable, GFS, MapReduce
• [Liu04]: GridDB
• [Chervenak04,Chervenak06]: RLS (Replica Location Service),

DRS (D t R li ti S i)

Scalable Resource Management in Clouds and Grids 114

DRS (Data Replication Service)
• [Tatebe04,Xiaohui05]: GFarm
• [Branco04,Adams06]: DIAL/ATLAS
• [Kosar06]: Stork
• [Thain08]: Chirp/Parrot

Conclusion: None focused on the co-location of storage and
generic black box computations with data-aware scheduling
while operating in a dynamic environment

Mythbusting

• Embarrassingly Happily parallel apps are trivial to run
– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”
– Total computational requirements can be enormous
– Individual tasks may be tightly coupled

W kl d f tl i l l t f I/O

Scalable Resource Management in Clouds and Grids 115

– Workloads frequently involve large amounts of I/O
– Make use of idle resources from “supercomputers” via backfilling
– Costs to run “supercomputers” per FLOP is among the best

• BG/P: 0.35 gigaflops/watt (higher is better)
• SiCortex: 0.32 gigaflops/watt
• BG/L: 0.23 gigaflops/watt
• x86-based HPC systems: an order of magnitude lower

• Loosely coupled apps do not require specialized system software
• Shared file systems are good for all applications

– They don’t scale proportionally with the compute resources
– Data intensive applications don’t perform and scale well

Conclusions & Contributions

• Defined Many-Task Computing Paradigm
• Addressed real challenges in resource management in large

scale distributed systems
– Slow dispatch rates
– Long wait queue times

116

– Poor scaling of parallel file systems
• Show effectiveness of streamlined task dispatching and

dynamic resource provisioning:
– Astronomy, medicine, chemistry, molecular dynamics, economic

modelling, and data mining
• Show effectiveness of data diffusion:

– Real large-scale astronomy application and a variety of synthetic
workloads

Scalable Resource Management in Clouds and Grids

More Information

• More information: http://people.cs.uchicago.edu/~iraicu/
• Related Projects:

– Falkon: http://dev.globus.org/wiki/Incubator/Falkon
– Swift: http://www.ci.uchicago.edu/swift/index.php

• Dissertation Committee:
Ian Foster The University of Chicago & Argonne National Laboratory

Scalable Resource Management in Clouds and Grids 117

– Ian Foster, The University of Chicago & Argonne National Laboratory
– Rick Stevens, The University of Chicago & Argonne National Laboratory
– Alex Szalay, The Johns Hopkins University

• Funding:
– NASA: Ames Research Center, Graduate Student Research Program

• Jerry C. Yan, NASA GSRP Research Advisor
– DOE: Mathematical, Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy

– NSF: TeraGrid

Recent Collaborators
(2005 – Present)

• University of Chicago
and/or Argonne National
Laboratory

– William Allcock
– Pete Beckman
– John Bresnahan
– Ian Foster

• Fermi National Laboratory
– Catalin Dumitrescu

• Indiana University
– Marlon Pierce

• National Science
Foundation

– Jennifer Schoph

• University of British
Columbia

– Matei Ripeanu
• University of Notre Dame

– Amitabh Chaudhary
– Douglas Thain

• University of Southern
– Kamil Iskra
– Kate Keahey
– Michael Papka
– Rick Stevens
– Mike Wilde

• Cisco
– Petre Dini

• Delft University of
Technology

– Dick Epema
– Alexandru Iosup

Jennifer Schoph
• Microsoft

– Jim Gray
– Yong Zhao

• NASA Ames Research
Center

– Jerry C. Yan
• The Johns Hopkins

University
– Alex Szalay

University of Southern
California

– Carl Kesselman
– Laura Pearlman

• Wayne State University
– Shiyong Lu
– Loren Schwiebert

118Scalable Resource Management in Clouds and Grids

Publications/Proposals
Central to Dissertation

(2005 – Present)
1. Ioan Raicu, Ian Foster, Yong Zhao, Philip Little, Christopher Moretti, Amitabh Chaudhary, Douglas Thain. “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under

review at USENIX NSDI09
2. Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu. “Cloud Computing and Grid Computing 360-Degree Compared”, to appear at IEEE Grid Computing Environments (GCE08) 2008, co-located with

IEEE/ACM Supercomputing 2008.
3. Zhao Zhang, Allan Espinosa, Kamil Iskra, Ioan Raicu, Ian Foster, Michael Wilde. “Design and Evaluation of a Collective I/O Model for Loosely-coupled Petascale Programming”, to appear at IEEE

Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS08) 2008, co-located with IEEE/ACM Supercomputing 2008.
4. Ioan Raicu, Zhao Zhang, Mike Wilde, Ian Foster, Pete Beckman, Kamil Iskra, Ben Clifford. “Towards Loosely-Coupled Programming on Petascale Systems”, to appear at IEEE/ACM Supercomputing

2008.
5. Ioan Raicu, Zhao Zhang, Mike Wilde, Ian Foster. “Enabling Loosely-Coupled Serial Job Execution on the IBM BlueGene/P Supercomputer and the SiCortex SC5832”, Technical Report, Department of

Computer Science, University of Chicago, April 2008.
6. Ioan Raicu, Ian Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets: Year 2 Status and Year 3 Proposal”, GSRP, Ames Research Center, NASA, March 2008

-- Award funded 10/1/08 - 9/30/09.
7. Quan T. Pham, Atilla S. Balkir, Jing Tie, Ian Foster, Mike Wilde, Ioan Raicu. “Data Intensive Scalable Computing on TeraGrid: A Comparison of MapReduce and Swift”, Poster Presentation, TeraGrid

Conference 2008.

Scalable Resource Management in Clouds and Grids 119

8. Ioan Raicu, Yong Zhao, Ian Foster, Mike Wilde, Zhao Zhang, Ben Clifford, Mihael Hategan, Sarah Kenny. “Managing and Executing Loosely Coupled Large Scale Applications on Clusters, Grids, and
Supercomputers”, Extended Abstract, GlobusWorld08, part of Open Source Grid and Cluster Conference 2008.

9. Yong Zhao, Ioan Raicu, Ian Foster. “Scientific Workflow Systems for 21st Century e-Science, New Bottle or New Wine?”, Invited Paper, IEEE Workshop on Scientific Workflows 2008, co-located with
IEEE International Conference on Services Computing (SCC) 2008.

10. Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. "Accelerating Large-scale Data Exploration through Data Diffusion", International Workshop on Data-Aware Distributed Computing 2008, co-locate
with ACM/IEEE International Symposium High Performance Distributed Computing (HPDC) 2008.

11. Ioan Raicu, Ian Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets: Year 2 Status and Year 3 Proposal”, GSRP, Ames Research Center, NASA, February
2008.

12. Ioan Raicu, Ian Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets: Year 1 Final Report”, GSRP, Ames Research Center, NASA, February 2008.
13. Yong Zhao, Ioan Raicu, Ian Foster, Mihael Hategan, Veronika Nefedova, Mike Wilde. “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”, to appear as a book chapter in

Grid Computing Research Progress, ISBN: 978-1-60456-404-4, Nova Publisher 2008.
14. Ioan Raicu. “Harnessing Grid Resources with Data-Centric Task Farms”, University of Chicago, Computer Science Department, PhD Proposal, December 2007, Chicago, Illinois.
15. Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster and Mike Wilde. “Falkon: A Proposal for Project Globus Incubation”, Globus Incubation Management Project, 2007 – Proposal accepted 11/10/07.
16. Ioan Raicu, Ian Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets: Year 1 Status and Year 2 Proposal”, GSRP, Ames Research Center, NASA, February

2007 -- Award funded 10/1/07 - 9/30/08.
17. Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. “A Data Diffusion Approach to Large Scale Scientific Exploration”, Microsoft Research eScience Workshop 2007.
18. Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, Mike Wilde. “Falkon: a Fast and Light-weight tasK executiON framework”, IEEE/ACM SuperComputing 2007.
19. Ioan Raicu, Catalin Dumitrescu, Ian Foster. “Dynamic Resource Provisioning in Grid Environments”, TeraGrid Conference 2007.
20. Yong Zhao, Mihael Hategan, Ben Clifford, Ian Foster, Gregor von Laszewski, Ioan Raicu, Tiberiu Stef-Praun, Mike Wilde. “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”, IEEE Workshop

on Scientific Workflows 2007.
21. Ioan Raicu, Ian Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets”, GSRP, Ames Research Center, NASA, February 2006 -- Award funded 10/1/06 -

9/30/07.
22. Ioan Raicu, Ian Foster, Alex Szalay. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets”, poster presentation, IEEE/ACM SuperComputing 2006.
23. Ioan Raicu, Ian Foster, Alex Szalay, Gabriela Turcu. “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”, TeraGrid Conference 2006, June 2006.
24. Alex Szalay, Julian Bunn, Jim Gray, Ian Foster, Ioan Raicu. “The Importance of Data Locality in Distributed Computing Applications”, NSF Workflow Workshop 2006.

Other Publications
(2002 – 2007)

Disjoint Set from Previous Slide
1. Catalin Dumitrescu, Jan Dünnweber, Philipp Lüdeking, Sergei Gorlatch, Ioan Raicu and Ian Foster. Simplifying Grid Application Programming Using Web-Enabled Code Transfer Tools.

Toward Next Generation Grids, Chapter 6, Springer Verlag, 2007.
2. Catalin Dumitrescu, Alexandru Iosup, H. Mohamed, Dick H.J. Epema, Matei Ripeanu, Nicolae Tapus, Ioan Raicu, Ian Foster. “ServMark: A Framework for Testing Grids Services”, IEEE Grid

2007.
3. Catalin Dumitrescu, Ioan Raicu, Ian Foster. “The Design, Usage, and Performance of GRUBER: A Grid uSLA-based Brokering Infrastructure”, International Journal of Grid Computing, 2007.
4. Catalin Dumitrescu, Ioan Raicu, Ian Foster. “Usage SLA-based Scheduling in Grids”, Journal on Concurrency and Computation: Practice and Experience, 2006.
5. Ioan Raicu, Catalin Dumitrescu, Matei Ripeanu, Ian Foster. “The Design, Performance, and Use of DiPerF: An automated DIstributed PERformance testing Framework”, International Journal

of Grid Computing, Special Issue on Global and Peer-to-Peer Computing, 2006; 25% acceptance rate.
6. Catalin Dumitrescu, Ioan Raicu, Ian Foster. “Performance Measurements in Running Workloads over a Grid”, The 4th International Conference on Grid and Cooperative Computing (GCC

2005); 11% acceptance rate
7. Catalin Dumitrescu, Ioan Raicu, Ian Foster. "DI-GRUBER: A Distributed Approach for Grid Resource Brokering", IEEE/ACM Super Computing 2005 (SC 2005); 22% acceptance rate.
8. William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link, Catalin Dumitrescu, Ioan Raicu, Ian Foster, "The Globus Striped GridFTP Framework and Server," sc, p. 54, ACM/IEEE

SC 2005 Conference (SC'05), 2005; 22% acceptance rate.

Scalable Resource Management in Clouds and Grids 120

9. Ioan Raicu. “A Performance Study of the Globus Toolkit® and Grid Services via DiPerF, an automated DIstributed PERformance testing Framework”, University of Chicago, Computer
Science Department, MS Thesis, May 2005, Chicago, Illinois.

10. Ioan Raicu, Loren Schwiebert, Scott Fowler, Sandeep K.S. Gupta. “Local Load Balancing for Globally Efficient Routing in Wireless Sensor Networks”, International Journal of Distributed
Sensor Networks, 1: 163–185, 2005.

11. Ioan Raicu, Loren Schwiebert, Scott Fowler, Sandeep K.S. Gupta. “e3D: An Energy-Efficient Routing Algorithm for Wireless Sensor Networks”, IEEE ISSNIP 2004 (The International
Conference on Intelligent Sensors, Sensor Networks and Information Processing), Melbourne, Australia, December 2004; top 10% of conference papers, extended version published in
International Journal of Distributed Sensor Networks 2005.

12. Catalin Dumitrescu, Ioan Raicu, Matei Ripeanu, Ian Foster. "DiPerF: an automated DIstributed PERformance testing Framework", IEEE/ACM GRID2004, Pittsburgh, PA, November 2004, pp
289 - 296; 22% acceptance rate

13. Sheralli Zeadally, R. Wasseem, Ioan Raicu, "Comparison of End-System IPv6 Protocol Stacks", IEE Proceedings Communications, Special issue on Internet Protocols, Technology and
Applications (VoIP), Vol. 151, No. 3, June 2004.

14. Sherali Zeadally, Ioan Raicu. “Evaluating IPV6 on Windows and Solaris”, IEEE Internet Computing, Volume 7, Issue 3, May June 2003, pp 51 – 57.
15. Ioan Raicu, Sherali Zeadally. “Impact of IPv6 on End-User Applications”, IEEE International Conference on Telecommunications 2003, ICT'2003, Volume 2, Feb 2003, pp 973 - 980, Tahiti

Papeete, French Polynesia; 35% acceptance rate.
16. Ioan Raicu, Sherali Zeadally. “Evaluating IPv4 to IPv6 Transition Mechanisms” , IEEE International Conference on Telecommunications 2003, ICT'2003, Volume 2, Feb 2003, pp 1091 -

1098, Tahiti Papeete, French Polynesia; 35% acceptance rate.
17. Ioan Raicu. “Efficient Even Distribution of Power Consumption in Wireless Sensor Networks”, ISCA 18th International Conference on Computers and Their Applications, CATA 2003, 2003,

Honolulu, Hawaii, USA.
18. Ioan Raicu. “An Empirical Analysis of Internet Protocol version 6 (IPv6)”, Wayne State University, Computer Science Department, MS Thesis, May 2002, Detroit, Michigan.
19. Ioan Raicu. “Routing Algorithms for Wireless Sensor Networks” Grace Hopper Celebration of Women in Computing 2002, GHC2002, 2002, British Columbia, Canada.
20. Ioan Raicu, Owen Richter, Loren Schwiebert, Sherali Zeadally. “Using Wireless Sensor Networks to Narrow the Gap between Low-Level Information and Context-Awareness”, Proceedings of

the ISCA 17th International Conference, Computers and their Applications, San Francisco, CA, 2002.

Service
(2002 – Present)

• IEEE International Workshop on Scientific Workflows (SWF), 2009
• Megajobs BOF: How to Run One Million Jobs, at IEEE/ACM Supercomputing 2008
• IEEE/ACM Workshop on Grid Computing Portals and Science Gateways (GCE08)
• IEEE International Conference on Internet and Web Applications and Services (ICIW 2009)
• IEEE/ACM Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS), co-located with IEEE/ACM Supercomputing 2008
• TeraGrid Conference (TG09)
• IEEE International Conference on Networks (ICN 2009)
• IEEE International Conference on Networking and Services (ICNS 2009)
• Distributed Systems Laboratory Workshop (DSLW08)
• IEEE International Conference on Internet and Web Applications and Services (ICIW08)
• Sixth Annual Conference on Communication Networks and Services Research (CNSR08)
• The Handbook of Technology Management (book to appear in 2008)

TeraGrid Conference (TG08)

Scalable Resource Management in Clouds and Grids 121

• TeraGrid Conference (TG08)
• ACM/IET/ICST International Workshop on Performance and Analysis of Wireless Networks (PAWN08)
• IEEE International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP08)
• IEEE International Conference on Systems and Networks Communications (ICNSC08)
• IEEE International Conference on Networking and Services (ICNS08)
• IEEE International Conference on Networking (ICN08)
• IEEE Internet Computing, Special Issue on Virtual Organizations, 2007
• IEEE/ACM Workshop on Grid Computing Portals and Science Gateways (GCE07)
• IEEE/ACM Grid Conference (SC07)
• Distributed Systems Laboratory Workshop (DSLW07)
• IEEE Internet Computing (IC07)
• The Handbook of Computer Networks (2007)
• IEEE/ACM SuperComputing (SC06)
• Distributed Systems Laboratory Workshop (DSLW06)
• IEEE Transactions on Computers (TC06)
• Journal of Concurrency and Computation: Practice and Experience 2006
• IEEE Communication Letters (CL05)
• High Performance Computing Symposium (HPCC05)
• IEEE Intelligent Sensing and Information Processing (ICISIP05)
• ARC Research Network on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP05)
• IEEE International Conference on Computer Communications and Networks (IC3N02)
• IEEE International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS02)

