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Distributed Systems Laboratory
University of Chicago

http://dsl-wiki.cs.uchicago.edu/index.php/Main_Page 
• Lead by Dr. Ian Foster 
• Research Areas:

– Distributed systems 
– Grid middleware
– Grid applications
– Designing,
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Designing, 
implementing, and 
evaluating systems, 
protocols, and 
applications

– Data-intensive scientific 
computing

• People:
– 1 faculty (Dr. Ian Foster)
– 12 students
– 2 research staff
– 13 alumnis



Computation Institute
University of Chicago

http://www.ci.uchicago.edu/index.php
• People:

– Director: Ian Foster
– 70 faculty and scientists 
– 30 full-time professional staff
– 14 graduate students

• Focus
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ocus
– Deep Supercomputing
– Data Intensive Computing
– Next Generation Cybertools

• Many high-impact projects
– Open Science Grid
– TeraGrid
– Globus
– National Microbial Pathogen Research Center
– Social Informatics Data Grid
– Chicago Biomedical Consortium



Math and Computer Science Div.
Argonne National Laboratory

http://www.mcs.anl.gov/index.php

• People:
– Associate Director: Ian Foster
– 188 staff, researchers, scientists, developers

R h A
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• Research Areas
– Algorithms, Software, and Applications
– Parallel Tools
– Distributed Systems Research
– Collaborative and Virtual Environments
– Computational Science



About Ian Foster
http://www-fp.mcs.anl.gov/~foster/

• Many awards and titles:
– 1995: “father of grid computing”
– 1996: Globus Toolkit is released
– 2001: Gordon Bell Award
– 2002: R&D Magazine awards Globus “most 

promising new technology” of the year
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– 2003: Infoworld Magazine awards “top 10 
technology inovators”

– 2004: co-founder of Univa Corporation
– 2005: Network World: “The 50 most powerful people 

in networking”
– 2007: “top three most influential computer scientists 

worldwide” h-index 67

• Funding
– NSF: $133M since 1999
– Others: DOE, NASA, Microsoft, IBM



Projects

• GT4: Globus Toolkit 4
– http://www.globus.org/

• Falkon: a Fast and Light-weight tasK executiON framework
– http://dev.globus.org/wiki/Incubator/Falkon

• Swift: Fast, Reliable, Loosely Coupled Parallel Computation
– http://www.ci.uchicago.edu/swift/

• AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis
– http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro_portal.htm

• Haizea: a VM-based Lease Management Architecture
– http://haizea.cs.uchicago.edu/

• AG: Access Grid
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=1

• Collaborative Visualization and the Analysis Pipeline
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=28

• Flash Center Visualization
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=14

• TeraGrid: Visualization and Data Analysis Resource
– http://www.mcs.anl.gov/research/fl/research/index.php?p=proj_detail&id=34
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Resources

• UChicago CS (50+ machines over the UChicago campus)
– http://tools.cs.uchicago.edu/find_cs_hosts/find.cgi

• UChicago TeraPort (274 processors)
– http://teraport.uchicago.edu/

• UC/ANL Cluster (316 processors) 
– http://www.uc.teragrid.org/

• PlanetLab (912 nodes at 470 sites all over the world)
– http://www.planet-lab.org/

• UChicago PADS (7TF, O(1000-cores))
– http://www.ci.uchicago.edu/pads/

• ANL SiCortex 5832 (5832 processors)
– http://www.mcs.anl.gov/hs/hardware/sicortex.php

• Open Science Grid (43K-cores across 80 institutions over the US)
– http://www.opensciencegrid.org/

• IBM Blue Gene/P Supercomputer at ANL (160K processors) 
– https://wiki.alcf.anl.gov/index.php/Main_Page

• TeraGrid (161K-cores across 11 institutions and 22 systems over the US) 
– http://www.teragrid.org/
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Clusters, Grids, Clouds, …
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Supercomputing

Highly-tuned computer clusters using commodity 
processors combined with custom network 

interconnects and customized operating system
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e.g. IBM Blue Gene/P
12



IBM Blue Gene/P
at ANL ALCF

32 Node Cards
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Cabled 8x8x16Rack

Baseline System
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Cluster Computing

Computer clusters using commodity processors, 
network interconnects, and operating system
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e.g. PADS
14



Petascale Active Data Store 
(PADS)
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Grid Computing

Grids tend to be composed of multiple clusters, 
and are typically loosely coupled, yp y y p ,

heterogeneous, and geographically dispersed
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e.g. TeraGrid
16



TeraGrid High Performance Computing 
Systems 2007-8
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What is the TeraGrid?

• An instrument (cyberinfrastructure) that delivers high-end IT resources -
storage, computation, visualization, and data/service hosting - almost all of 
which are UNIX-based under the covers; some hidden by Web interfaces

– 20 Petabytes of storage (disk and tape)
– over 100 scientific data collections
– 750 TFLOPS (161K-cores) in parallel computing systems and growing

18

– Support for Science Gateways

• The largest individual cyberinfrastructure facility funded by the NSF, which 
supports the national science and engineering research community

• Something you can use without financial cost - allocated via peer review 
(and without double jeopardy)

Scalable Resource Management in Clouds and Grids



Major Grids

• TeraGrid (TG)
• Open Science Grid (OSG)
• Enabling Grids for E-sciencE (EGEE)
• LHC Computing Grid from CERN
• Grid Middleware

– Globus Toolkit
– Unicore

Scalable Resource Management in Clouds and Grids 19



Cloud Computing

A large-scale distributed computing paradigm that is 
driven by economies of scale, in which a pool of 
abstracted, virtualized, dynamically-scalable, 

managed computing power, storage, platforms, 
and services are delivered on demand to external 

customers over the Internet.

Scalable Resource Management in Clouds and Grids

e.g. Amazon EC2
20



Major Cloud Middleware

• Google App Engine
– Engine, Datastore, memcache

• Amazon
EC2 S3 SQS Si l DB– EC2, S3, SQS, SimpleDB

• Microsoft Azure
• Nimbus
• Eucalyptus
• Salesforce

Scalable Resource Management in Clouds and Grids 21



So is “Cloud Computing” 
just a new name for Grid?

• IT reinvents itself every five years
• The answer is complicated…

• YES: the vision is the same

Scalable Resource Management in Clouds and Grids

• YES: the vision is the same
– to reduce the cost of computing
– increase reliability
– increase flexibility by transitioning from self operation to third 

party

22



So is “Cloud Computing” 
just a new name for Grid?

• NO: things are different than they were 10 years ago
– New needs to analyze massive data, increased demand for 

computing 
– Commodity clusters are expensive to operate
– We have low-cost virtualization
– Billions of dollars being spent by Amazon, Google, and 

Microsoft to create real commercial large-scale systems with 
hundreds of thousands of computers

– The prospect of needing only a credit card to get on-demand 
access to *infinite computers is exciting; *infinite<O(1000)

Scalable Resource Management in Clouds and Grids 23



So is “Cloud Computing” 
just a new name for Grid?

• YES: the problems are mostly the same
– How to manage large facilities
– Define methods to discover, request, and use resources
– How to implement and execute parallel computations
– Details differ, but issues are similar

Scalable Resource Management in Clouds and Grids 24



Outline

• Business model
• Architecture
• Resource management
• Programming model• Programming model
• Application model
• Security model
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Business Model

• Grids:
– Largest Grids funded by government
– Largest user-base in academia and government labs to drive 

scientific computing
– Project-oriented: service units 

• Clouds:
– Industry (i.e. Amazon) funded the initial Clouds
– Large user base in common people, small businesses, large 

businesses, and a bit of openn science research
– Utility computing: real money
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Architecture

• Grids:
– Application: Swift, Grid portals (NVO)
– Collective layer: MDS, Condor-G, Nimrod-G
– Resource layer: GRAM, Falkon, GridFTP
– Connectivity layer: Grid Security Infrastructure

Scalable Resource Management in Clouds and Grids  
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– Fabric layer: GRAM, PBS, SGE, LSF, Condor, Falkon

• Clouds:
– Application Layer: Software as a Service (SaaS)
– Platform Layer: Platform as a Service (PaaS)
– Unified Resource: Infrastructure as a Service (IaaS) 
– Fabric: IaaS
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Resource Management

• Compute Model
– batch-scheduled vs. time-shared

• Data Model
D t L lit– Data Locality

– Combining compute and data management
• Virtualization

– Slow adoption vs. central component
• Monitoring
• Provenance

Scalable Resource Management in Clouds and Grids
28



Programming and 
Application Model

• Grids: 
– Tightly coupled

• High Performance Computing (MPI-based)
– Loosely Coupled– Loosely Coupled

• High Throughput Computing
• Workflows

– Data Intensive
• Map/Reduce

• Clouds:
– Loosely Coupled, transactional oriented

Scalable Resource Management in Clouds and Grids
29



Programming Model Issues

• Multicore processors
• Massive task parallelism
• Massive data parallelism
• Integrating black box applications

Comple task dependencies (task graphs)

Scalable Resource Management in Clouds and Grids

• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Dynamic task graphs
• Documenting provenance of data products 
• Data management: input, intermediate, output
• Dynamic data access involving large amounts of 

data
30



Gateways

• Aimed to simplify usage of complex resources
• Grids

– Front-ends to many different applications
E i t h l i f G id– Emerging technologies for Grids

• Clouds
– Standard interface to Clouds

Scalable Resource Management in Clouds and Grids 31



Gateway to Grids
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Gateway to Clouds
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Security Model

• Grids
– Grid Security Infrastructure (GSI)
– Stronger, but steeper learning curve and wait time 

• Personal verification: phone manager etc• Personal verification: phone, manager, etc

• Clouds
– Weaker, can use credit card to gain access, can 

reset password over plain text email, etc

Scalable Resource Management in Clouds and Grids 34



Conclusion

• Move towards a mix of micro-production and large utilities, with load being 
distributed among them dynamically
– Increasing numbers of small-scale producers (local clusters and embedded 

processors—in shoes and walls) 
– Large-scale regional producers

• Need to define protocols• Need to define protocols
– Allow users and service providers to discover, monitor and manage their 

reservations and payments 
– Interoperability

• Need to combine the centralized scale of today’s Cloud utilities, and the 
distribution and interoperability of today’s Grid facilities

• Need support for on-demand provisioning
• Need tools for managing both the underlying resources and the resulting 

distributed computations
• Security and trust will be a major obstacle for commercial Clouds by large 

companies that have in-house IT resources to host their own data centers
35
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Many-Core Growth Rates

• Increasing attention to
parallel chips
– Many plans for cores

with “In-Order” execution
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On-chip shared memory
Far faster to access on-chip memory than DRAM

Interesting challenges in synchronization (e.g. 
locking)

Inexpensive Low-Power Parallel Chips
Amazing amounts of computing very cheap
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What will we do 
with 1+ Exaflops

and 100M+ cores?



Programming Model Issues

• Multicore processors
• Massive task parallelism
• Massive data parallelism
• Integrating black box applications

Comple task dependencies (task graphs)
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• Complex task dependencies (task graphs)
• Failure, and other execution management issues
• Dynamic task graphs
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• Dynamic data access involving large amounts of 

data
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• Complex task dependencies (task graphs)
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Problem Types
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An Incomplete and Simplistic View of 
Programming Models and Tools

42



MTC: Many Task Computing

• Bridge the gap between HPC and HTC
• Loosely coupled applications with HPC orientations
• HPC comprising of multiple distinct activities, coupled 

via file system operations or message passingvia file system operations or message passing
• Emphasis on many resources over short time periods
• Tasks can be:

– small or large, independent and dependent, uniprocessor or 
multiprocessor, compute-intensive or data-intensive, static or 
dynamic, homogeneous or heterogeneous, loosely or tightly 
coupled, large number of tasks, large quantity of computing, 
and large volumes of data… 43



Obstacles and Solutions

• Obstacles:
1. Long queue times
2. Slow job dispatch rates
3. Poor shared file system scaling
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y g
…many many years of hard work…

• Solution Falkon: a Fast and Light-weight 
tasK executiON framework
1. Streamlined dispatching
2. Multi-level scheduling
3. Data diffusion

System Comments Throughput 
(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49
PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

System Comments Throughput 
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PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22
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Hypothesis

“Significant performance improvements can be 
obtained in the analysis of large dataset by leveraging 
information about data analysis workloads rather than 

individual data analysis tasks ”
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• Important concepts related to the hypothesis
– Workload: a complex query (or set of queries) decomposable into 

simpler tasks to answer broader analysis questions 
– Data locality is crucial to the efficient use of large scale distributed 

systems for scientific and data-intensive applications
– Allocate computational and caching storage resources, co-scheduled to 

optimize workload performance 

individual data analysis tasks.



Abstract Model

• AMDASK: An Abstract Model for DAta-centric taSK farms
– Task Farm: A common parallel pattern that drives independent 

computational tasks
• Models the efficiency of data analysis workloads for the 

split/merge class of applications
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split/merge class of applications
• Captures data diffusion properties

– Resources are acquired in response to demand
– Data and applications diffuse from archival storage to new resources 
– Resource “caching” allows faster responses to subsequent requests 
– Resources are released when demand drops 
– Considers both data and computations to optimize performance



AMDASK:
Base Definitions

• Data Stores: Persistent & Transient
– Store capacity, load, ideal bandwidth, available 

bandwidth
• Data Objects:

Scalable Resource Management in Clouds and Grids 49

• Data Objects:
– Data object size, data object’s storage location(s), 

copy time
• Transient resources: compute speed, 

resource state
• Task: application, input/output data



AMDASK:
Execution Model Concepts

• Dispatch Policy
– next-available, first-available, max-compute-util, max-cache-hit

• Caching Policy
– random, FIFO, LRU, LFU

• Replay policy

Scalable Resource Management in Clouds and Grids 50

Replay policy
• Data Fetch Policy

– Just-in-Time, Spatial Locality
• Resource Acquisition Policy 

– one-at-a-time, additive, exponential, all-at-once, optimal
• Resource Release Policy 

– distributed, centralized



AMDASK:
Performance Efficiency Model

• B: Average Task Execution Time: 
– K: Stream of tasks
– µ(k): Task k execution time ∑

Κ∈Κ
=Β

k
)(

||
1 κµ

• Y: Average Task Execution Time with Overheads: 
– ο(k): Dispatch overhead ⎧ Ω∑ δφδ )()]()([1
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• V: Workload Execution Time:  
– A: Arrival rate of tasks 
– T: Transient Resources

• W: Workload Execution Time with Overheads  
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AMDASK:
Performance Efficiency Model

• Efficiency

• Speedup
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• Speedup

• Optimizing Efficiency
– Easy to maximize either efficiency or speedup independently
– Harder to maximize both at the same time

• Find the smallest number of transient resources |T| while maximizing 
speedup*efficiency

||* TES =



Model Validation

• Stacking service (large scale astronomy application)
• 92 experiments
• 558K files 

– Compressed: 2MB each 1.1TB
Un compressed 6MB each 3 3TB

53

– Un-compressed: 6MB each 3.3TB
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Falkon: a Fast and Light-weight 
tasK executiON framework

• Goal: enable the rapid and efficient execution of 
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher

i i i th h lti l l h d li
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– resource provisioning through multi-level scheduling 
techniques

– data diffusion and data-aware scheduling to leverage the 
co-located computational and storage resources

• Integration into Swift to leverage many applications
– Applications cover many domains: astronomy, astro-physics, 

medicine, chemistry, economics, climate modeling, etc



Falkon Overview
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Distributed Falkon Architecture
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Dispatch Throughput
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Executor Implementation and Various SystemsRunning 1 Million Jobs in 10 Minutes via the Falkon Fast and Light-weight 
tasK executiON framework
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Condor (v6.9.3) - Development 11
Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22
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Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22



Efficiency
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Resource Provisioning
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- 18 Stages
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- 17,820 CPU seconds
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• End-to-end execution time: 
– 1260 sec in ideal case
– 4904 sec 1276 sec

• Average task queue time: 
– 42.2 sec in ideal case
– 611 sec 43.5 sec

• Trade-off:
– Resource Utilization for 

Execution Efficiency

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Time to 
complete 

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce 

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution 
Efficiency 26% 72% 75% 84% 85% 99% 100%
Resource 

Allocations 1000 11 9 7 6 0 0

1 2 4 8 16 32
1 3 20 18 16 8 4 2 1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Stage Number

0
0

0 580.386 1156.853 1735.62
Time (sec)

0
0 494.438 986.091 1477.3

Time (sec)

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Queue 
Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2
Execution 
Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution 

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%



Falkon Endurance Test

Falkon, a Fast and Light-weight tasK executiON framework for Clusters, 
Grids, and Supercomputers

61



Falkon Monitoring

• Workload
• 160K CPUs

1M tasks

Falkon, a Fast and Light-weight tasK executiON framework for Clusters, 
Grids, and Supercomputers

62

• 1M tasks
• 60 sec per task

• 17.5K CPU hours in 7.5 min
• Throughput: 2312 tasks/sec
• 85% efficiency



Falkon Activity History 
(10 months)

Falkon, a Fast and Light-weight tasK executiON framework for Clusters, 
Grids, and Supercomputers

63



Virtual Node(s)Abstract
computation

S iftS i t

Specification Execution

Virtual Node(s)

file1

Scheduling

Execution Engine
(Karajan w/

Swift Runtime)

Swift Architecture

Provisioning

Falkon
Resource

Provisioner

SwiftScript

Virtual Data
Catalog

SwiftScript
Compiler

Provenance
data

Provenance
dataProvenance

collector

launcher

launcher

file2

file3

App
F1

App
F2

Swift runtime
callouts

C
C CC

Status reporting
Amazon

EC2
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Functional MRI (fMRI)
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• Wide range of analyses
– Testing, interactive analysis,

production runs
– Data mining
– Parameter studies



Completed Milestones: 
fMRI Application

48085000

6000
GRAM
GRAM/Clustering

• GRAM vs. Falkon: 85%~90% lower run time
• GRAM/Clustering vs. Falkon: 40%~74% lower run time

Scalable Resource Management in Clouds and Grids 66Falkon: a Fast and Light-weight tasK executiON framework
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B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)
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Completed Milestones: 
Montage Application

3000

3500

GRAM/Clustering
MPI

• GRAM/Clustering vs. Falkon: 57% lower application run time
• MPI* vs. Falkon: 4% higher application run time
• * MPI should be lower bound

Scalable Resource Management in Clouds and Grids 68Falkon: a Fast and Light-weight tasK executiON framework

0

500

1000

1500

2000

2500

mProj
ec

t

mDiff/
Fit

mBac
kg

rou
nd

mAdd
(su

b)

mAdd tot
al

Components

Ti
m

e 
(s

)

MPI
Falkon



Hadoop vs. Swift

• Classic benchmarks for MapReduce
– Word Count
– Sort

• Swift performs similar or better than Hadoop 
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p p
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Molecular Dynamics

• Determination of free 
energies in aqueous solution
– Antechamber – coordinates

Charmm solution– Charmm – solution
– Charmm - free energy

70



0 1800 3600 5400 7200 9000 10800 12600 14400
1

Time (sec)

• 244 molecules 20497 jobs
• 15091 seconds on 216 CPUs 867.1 CPU hours
• Efficiency: 99.8%
• Speedup: 206.9x 8.2x faster than GRAM/PBS
• 50 molecules w/ GRAM (4201 jobs) 25.3 speedup

MolDyn Application
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MTC: Many Task Computing

• Bridge the gap between HPC and HTC
• Loosely coupled applications with HPC orientations
• HPC comprising of multiple distinct activities, coupled 

via file system operations or message passingvia file system operations or message passing
• Emphasis on many resources over short time periods
• Tasks can be:

– small or large, independent and dependent, uniprocessor or 
multiprocessor, compute-intensive or data-intensive, static or 
dynamic, homogeneous or heterogeneous, loosely or tightly 
coupled, large number of tasks, large quantity of computing, 
and large volumes of data… 72



Growing Interest on enabling 
HTC/MTC on Supercomputers

• Project Kittyhawk
– IBM Research

• HTC-mode in Cobalt/BG
– IBM

• Condor on BG• Condor on BG
– University of Wisconsin at Madison, IBM

• Grid Enabling the BG
– University of Colorado, National Center for Atmospheric Research

• Plan 9
– Bell Labs, IBM Research, Sandia National Labs

• Falkon/Swift on BG/P and Sun Constellation
– University of Chicago, Argonne National Laboratory

73



• Jaguar (#2)
– DOE, ORNL

• Intrepid (#5)
– DOE, ANL

Many Large Systems available 
for Open Science Research

,
• Ranger (#6)

– NSF, TACC

Toward Loosely Coupled Programming on Petascale Systems
74



Why Petascale Systems for 
MTC Applications?

1. The I/O subsystem of petascale systems offers 
unique capabilities needed by MTC 
applications

2. The cost to manage and run on petascale g
systems is less than that of conventional 
clusters or Grids

3. Large-scale systems that favor large jobs have 
utilization issues

4. Some problems are intractable without 
petascale systems

Toward Loosely Coupled Programming on Petascale Systems 75



MARS Economic Modeling 
on IBM BG/P

• CPU Cores: 2048
• Tasks: 49152
• Micro-tasks: 7077888
• Elapsed time: 1601 secs
• CPU Hours: 894

Scalable Resource Management in Clouds and Grids 76

• CPU Hours: 894
• Speedup: 1993X (ideal 2048)
• Efficiency: 97.3%



Scaling from 1K to 100K CPUs
without Data Diffusion

• At 1K CPUs:
– 1 Server to manage all 1K CPUs
– Use shared file system extensively

• Invoke application from shared file system
• Read/write data from/to shared file system

• At 100K CPUs:• At 100K CPUs:
– N Servers to manage 100K CPUs (1:256 ratio)
– Don’t trust the application I/O access patterns to behave optimally

• Copy applications and input data to RAM
• Read input data from RAM, compute, and write results to RAM
• Archive all results in a single file in RAM
• Copy 1 result file from RAM back to GPFS

• Great potential for improvements
– Could leverage the Torus network for high aggregate bandwidth
– Collective I/O (CIO) Primitives
– Roadblocks: machine global IP connectivity, Java support, and time 77



Managing 160K CPUs

High-speed local disk

Falkon

78Scalable Resource Management in Clouds and Grids

Slower shared storage



MARS Economic Modeling 
on IBM BG/P (128K CPUs)
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• CPU Cores: 130816
• Tasks: 1048576
• Elapsed time: 2483 secs
• CPU Years: 9.3

Speedup: 115168X (ideal 130816)
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Many Many Tasks:
Identifying Potential Drug Targets

2M+ ligandsProtein        x
target(s)          

(Mike Kubal, Benoit Roux, and others)
81Scalable Resource Management in Clouds and Grids



start

DOCK6
Receptor

(1 per protein:
defines pocket

to bind to)

ZINC
3-D

structures

NAB script
parameters

(defines flexible
residues, 
#MDsteps)

BuildNABScript

NAB
Script

NAB
Script

Template

Amber prep:
2. AmberizeReceptor
4. perl: gen nabscript

FRED
Receptor

(1 per protein:
defines pocket

to bind to)

Manually prep
DOCK6 rec file

Manually prep
FRED rec file

1 
protein
(1MB)

6 
GB
2M 

structures
(6 GB)

DOCK6FRED ~4M x 60s x 1 cpu
~60K cpu-hrs

PDB
protein

descriptions

Many Many Tasks:
Identifying Potential Drug Targets

report ligands complexes

Amber Score:
1. AmberizeLigand
3. AmberizeComplex
5. RunNABScript

end

Amber ~10K x 20m x 1 cpu
~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu
~500K cpu-hrsGCMC

Select best ~5KSelect best ~5K

For 1 target:
4 million tasks

500,000 cpu-hrs
(50 cpu-years)82Scalable Resource Management in Clouds and Grids



DOCK on SiCortex

• CPU cores: 5760
• Tasks: 92160
• Elapsed time: 12821 sec
• Compute time: 1.94 CPU years

Scalable Resource Management in Clouds and Grids 83

• Average task time: 660.3 sec
• Speedup: 5650X (ideal 5760)
• Efficiency: 98.2%



DOCK on the BG/P

CPU cores: 118784
Tasks: 934803
Elapsed time: 2.01 hours
Compute time: 21.43 CPU years
Average task time: 667 sec
Relative Efficiency: 99 7%

84

Relative Efficiency: 99.7%
(from 16 to 32 racks)
Utilization: 
• Sustained: 99.6%
• Overall: 78.3%

Time (secs)



Related Work: 
Task Farms

• [Casanova99]: Adaptive Scheduling for Task Farming with Grid 
Middleware

• [Heymann00]: Adaptive Scheduling for Master-Worker 
Applications on the Computational Grid

• [Danelutto04]: Adaptive Task Farm Implementation Strategies

Scalable Resource Management in Clouds and Grids 85

[ ] p p g
• [González-Vélez05]: An Adaptive Skeletal Task Farm for Grids
• [Petrou05]: Scheduling Speculative Tasks in a Compute Farm
• [Reid06]: Task farming on Blue Gene

Conclusion: none addressed the proposed “data-centric” part of 
task farms, and the implementations were not as light-weight as 
ours



Related Work:
Resource Provisioning

• [Appleby01]: Oceano - SLA Based Management of a 
Computing Utility 

• [Frey02, Mehta06]: Condor glide-ins
• [Walker06]: MyCluster (based on Condor glide-ins)
• [Ramakrishnan06]: Grid Hosting with Adaptive Resource 

Control

Scalable Resource Management in Clouds and Grids 86

Control 
• [Bresnahan06]: Provisioning of bandwidth
• [Singh06]: Simulations

Conclusion: None allows for dynamic resizing of resource pool 
(independent of application logic) based on system load



Talk Overview

I. Introductions
– University of Chicago, DSL
– University of Chicago, CI
– Argonne National Laboratory, MCS

II. Comparing Grids and Clouds
III. Scalable resource management challenges 

and solutions
– Dispatch
– Provisioning
– Data Management

Scalable Resource Management in Clouds and Grids 87



Data Diffusion

• Resource acquired in 
response to demand

• Data and applications diffuse 
from archival storage to 
newly acquired resources

text

Task Dispatcher
Data-Aware Scheduler Persistent Storage

Shared File System

Idle Resources

text

Task Dispatcher
Data-Aware Scheduler Persistent Storage

Shared File System

Idle Resources

The Quest for Scalable Support of Data Intensive Applications in 
Distributed Systems

88

• Resource “caching” allows 
faster responses to 
subsequent requests 
– Cache Eviction Strategies: 

RANDOM, FIFO, LRU, LFU
• Resources are released 

when demand drops 

Shared File System

Provisioned Resources

Shared File System

Provisioned Resources



Data Diffusion

• Considers both data and computations to optimize 
performance
– Supports data-aware scheduling
– Can optimize compute utilization, cache hit performance, or 

The Quest for Scalable Support of Data Intensive Applications in 
Distributed Systems

89

a mixture of the two
• Decrease dependency of a shared file system

– Theoretical linear scalability with compute resources
– Significantly increases meta-data creation and/or 

modification performance
• Central for “data-centric task farm” realization



Scheduling Policies

• first-available: 
– simple load balancing

• max-cache-hit
– maximize cache hits

The Quest for Scalable Support of Data Intensive Applications in 
Distributed Systems

90

maximize cache hits
• max-compute-util

– maximize processor utilization
• good-cache-compute

– maximize both cache hit and processor utilization at 
the same time



Data-Aware Scheduler Profiling
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AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of 

random locations within 
~10TB dataset

Ch ll

+

+
+
+

+

+

+

Scalable Resource Management in Clouds and Grids
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• Challenge
– Processing Costs: 

• O(100ms) per object

– Data Intensive: 
• 40MB:1sec

– Rapid access to 10-10K 
“random” files

– Time-varying load

AP Sloan
Data

+

=

 Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790



AstroPortal Stacking Service

• Purpose
– On-demand “stacks” of random 

locations within ~10TB dataset

• Challenge
– Rapid access to 10-10K “random” files

+

+
+
+

+

+

=

+
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radec2xy
readHDU+getTile+curl+convertArray
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ap d access to 0 0 a do es
– Time-varying load

• Sample Workloads
S4 Sloan

Data

=

Web page 
or Web 
Service

 Locality Number of Objects Number of Files
1 111700 111700

1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790
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AstroPortal Stacking Service
with Data Diffusion

Low data locality 
– Similar (but better) 

performance to GPFS
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– Near perfect scalability0
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AstroPortal Stacking Service
with Data Diffusion

• Aggregate throughput:
– 39Gb/s
– 10X higher than GPFS

• Reduced load on GPFS
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– 0.49Gb/s
– 1/10 of the original load
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• Big performance gains 
as locality increases
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Monotonically Increasing Workload

• 250K tasks 
– 10MB reads
– 10ms compute

• Vary arrival rate:
– Min: 1 task/sec
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– Increment function: 
CEILING(*1.3)

– Max: 1000 tasks/sec
• 128 processors
• Ideal case:

– 1415 sec
– 80Gb/s peak 

throughput
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Data Diffusion: 
First-available (GPFS)

• GPFS vs. ideal: 5011 sec vs. 1415 sec
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Data Diffusion:
Max-compute-util & max-cache-hit
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Data Diffusion:
Good-cache-compute
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Data Diffusion:
Good-cache-compute
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• Data Diffusion vs. ideal: 1436 sec vs 1415 sec
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Data Diffusion:
Throughput and Response Time

Throughput:
– Average: 14Gb/s vs 4Gb/s
– Peak: 100Gb/s vs. 6Gb/s
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Data Diffusion: Performance Index, 
Slowdown, and Speedup

• Performance Index:
– 34X higher

• Speedup
– 3.5X faster than GPFS
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• Slowdown:
– 18X slowdown for 

GPFS
– Near ideal 1X 

slowdown for large 
enough caches



Sin-Wave Workload
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• 2M tasks 
– 10MB reads
– 10ms compute

• Vary arrival rate:
– Min: 1 task/sec
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– Arrival rate function:
– Max: 1000 tasks/sec

• 200 processors
• Ideal case:

– 6505 sec
– 80Gb/s peak 

throughput



Sin-Wave Workload

• GPFS 5.7 hrs,   ~8Gb/s,  1138 CPU hrs
• DF+SRP 1.8 hrs,   ~25Gb/s,  361 CPU hrs
• DF+DRP 1.86 hrs, ~24Gb/s,  253 CPU hrs
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Sin-Wave Workload
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All-Pairs Workload

• All-Pairs( set A, set B, function F ) 
returns matrix M: 

• Compare all elements of set A to 
all elements of set B via function F, 

• 500x500 
– 250K tasks
– 24MB reads
– 100ms compute
– 200 CPUs

yielding matrix M, such that 
M[i,j] = F(A[i],B[j])
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1 foreach $i in A
2 foreach $j in B
3 submit_job F $i $j
4 end
5 end

• 1000x1000 
• 1M tasks
• 24MB reads
• 4sec compute
• 4096 CPUs

• Ideal case:
– 6505 sec
– 80Gb/s peak 

throughput



All-Pairs Workload
500x500 on 200 CPUs
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All-Pairs Workload
1000x1000 on 4K emulated CPUs
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All-Pairs Workload
Data Diffusion vs. Active Storage
• Push vs. Pull

– Active Storage:
• Pushes workload 

working set to all nodes 20%
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• Static spanning tree

– Data Diffusion
• Pulls task working set
• Incremental spanning 

forest
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All-Pairs Workload
Data Diffusion vs. Active Storage
• Best to use active storage if

– Slow data source
– Workload working set fits on local node storage
– Good aggregate network bandwidth

• Best to use data diffusion if
– Medium to fast data source
– Task working set << workload working set
– Task working set fits on local node storage
– Good aggregate network bandwidth

• If task working set does not fit on local node storage
– Use parallel file system (i.e. GPFS, Lustre, PVFS, etc)



Limitations of Data Diffusion

• Needs Java 1.4+
• Needs IP connectivity between hosts
• Needs local storage (disk, memory, etc)
• Per task workings set must fit in local storage
• Task definition must include input/output files 

metadata
• Data access patterns: write once, read many
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Related Work:
Data Management

• [Beynon01]: DataCutter
• [Ranganathan03]: Simulations
• [Ghemawat03,Dean04,Chang06]: BigTable, GFS, MapReduce
• [Liu04]: GridDB
• [Chervenak04,Chervenak06]: RLS (Replica Location Service), 

DRS (D t R li ti S i )
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DRS (Data Replication Service)
• [Tatebe04,Xiaohui05]: GFarm
• [Branco04,Adams06]: DIAL/ATLAS
• [Kosar06]: Stork
• [Thain08]: Chirp/Parrot

Conclusion: None focused on the co-location of storage and 
generic black box computations with data-aware scheduling 
while operating in a dynamic environment



Mythbusting

• Embarrassingly Happily parallel apps are trivial to run
– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”
– Total computational requirements can be enormous
– Individual tasks may be tightly coupled

W kl d f tl i l l t f I/O
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– Workloads frequently involve large amounts of I/O
– Make use of idle resources from “supercomputers” via backfilling 
– Costs to run “supercomputers” per FLOP is among the best

• BG/P: 0.35 gigaflops/watt (higher is better)
• SiCortex: 0.32 gigaflops/watt
• BG/L: 0.23 gigaflops/watt
• x86-based HPC systems: an order of magnitude lower

• Loosely coupled apps do not require specialized system software
• Shared file systems are good for all applications

– They don’t scale proportionally with the compute resources
– Data intensive applications don’t perform and scale well



Conclusions & Contributions

• Defined Many-Task Computing Paradigm
• Addressed real challenges in resource management in large 

scale distributed systems
– Slow dispatch rates
– Long wait queue times
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– Poor scaling of parallel file systems
• Show effectiveness of streamlined task dispatching and 

dynamic resource provisioning:
– Astronomy, medicine, chemistry, molecular dynamics, economic 

modelling, and data mining
• Show effectiveness of data diffusion:

– Real large-scale astronomy application and a variety of synthetic 
workloads

Scalable Resource Management in Clouds and Grids



More Information

• More information: http://people.cs.uchicago.edu/~iraicu/
• Related Projects: 

– Falkon: http://dev.globus.org/wiki/Incubator/Falkon
– Swift: http://www.ci.uchicago.edu/swift/index.php

• Dissertation Committee:
Ian Foster The University of Chicago & Argonne National Laboratory
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– Ian Foster, The University of Chicago & Argonne National Laboratory
– Rick Stevens, The University of Chicago & Argonne National Laboratory
– Alex Szalay, The Johns Hopkins University

• Funding:
– NASA: Ames Research Center, Graduate Student Research Program

• Jerry C. Yan, NASA GSRP Research Advisor
– DOE: Mathematical, Information, and Computational Sciences Division 

subprogram of the Office of Advanced Scientific Computing Research, 
Office of Science, U.S. Dept. of Energy

– NSF: TeraGrid
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