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1000000 = GPFS R

‘e COCAL R e GPFSvs. LOCAL

2 100000 - LOCAL Rew e — Read Throughput
S e 1 node: 0.48Gb/s vs. 1.03Gb/s = 2.15x
g 10000 i / « 160 nodes: 3.4Gb/s vs. 165Gb/s = 48x
§, /'/ e 11Mb/s per CPU vs. 515Mb/s per CPU
E 1000 f/ Ll — Read+Write Throughput:

/ * 1 node: 0.2Gb/s vs. 0.39Gb/s = 1.95x

100 | « 160 nodes: 1.1Gb/s vs. 62Gb/s = 55x
1 10 100 — oMetadata (mkdir / rm -rf)

Number of Nodes « 1 node: 151/sec vs. 199/sec = 1.3x

e 160 nodes: 21/sec vs. 31840/sec = 1516x
* |IBM BlueGene/P
— 160K CPU cores
— GPFS 8GB/s I/O rates (16 servers)
— Experiments on 160K CPU BG/P achieved 0.3Mb/s per CPU core
— Experiments on 5.7K CPU SiCortex achieved 0.06Mb/s per CPU core



Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
—allure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data
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Heroic
MPI
Tasks

Many Loosely Coupled Apps

Low
1 1K 1M
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Single task, modest data
MPI, etc...

Many Tasks
DAGMan+Pegasus
Karajan+Swift+Falkon
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* Loosely coupled applications

— High-performance computations comprising of multiple
distinct activities, coupled via file system operations or
message passing

— Emphasis on using many resources over short time periods

— Tasks can be:

« small or large, independent and dependent, uniprocessor or
multiprocessor, compute-intensive or data-intensive, static or
dynamic, homogeneous or heterogeneous, loosely or tightly coupled,

large number of tasks, large quantity of computing, and large
volumes of data...
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e Purpose

— On-demand “stacks” of
random locations within
~10TB dataset

 Challenge

— Processing Costs:
e O(100ms) per object

— Data Intensive:
e 40MB:1sec

— Rapid access to 10-10K @
“random?” files

— Time-varying load

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems
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“Significant performance improvements can be
obtained In the analysis of large dataset by leveraging
Information about data analysis workloads rather than

Individual data analysis tasks.”

 Important concepts related to the hypothesis

— Workload: a complex query (or set of queries) decomposable into
simpler tasks to answer broader analysis questions

— Data locality is crucial to the efficient use of large scale distributed
systems for scientific and data-intensive applications

— Allocate computational and caching storage resources, co-scheduled to
optimize workload performance
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« AMDASK: An Abstract Model for DAta-centric taSK farms

— Task Farm: A common parallel pattern that drives independent
computational tasks
 Models the efficiency of data analysis workloads for the MTC
class of applications

o Captures the following data diffusion properties
— Resources are acquired in response to demand
— Data and applications diffuse from archival storage to new resources
— Resource “caching” allows faster responses to subsequent requests
— Resources are released when demand drops
— Considers both data and computations to optimize performance
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e Data Stores: Persistent & Transient

— Store capacity, load, ideal bandwidth, available
bandwidth

e Data Objects:
— Data object size, data object’s storage location(s),
copy time

» Transient resources: compute speed,
resource state

o Task: application, input/output data
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Dispatch Policy

— next-available, first-available, max-compute-util, max-cache-hit
Caching Policy

— random, FIFO, LRU, LFU

Replay policy

Data Fetch Policy

— Just-in-Time, Spatial Locality

Resource Acquisition Policy

— one-at-a-time, additive, exponential, all-at-once, optimal
Resource Release Policy

— distributed, centralized
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B: Average Task Execution Time'

— K: Stream of tasks Z (x)
— M(k): Task k execution time |K | keKﬂ
* Y:Average Task Execution Time Wlth Overheads:
— o(Kk): Dispatch overhead
— ¢(8,7): Time to get data Y = |K|:§<[ﬂ(K)+O(K)] Pednoed
lKlZ[,u(K)+O(K)+§(§ )], 0¢¢(r),0eQ

V: Workload Execution Time;
— A: Arrival rate of tasks V = max(i, 1 j*l K|
— T Transient Resources | T| A

W: Workload Execution Time with Overheads

W = max L,i *| K |
I T|" A



o Efficiency .
1, Y sl
_V T A
= —) |
W B |T| Y 1
MY axy ) |T|>A
e Speedup :
S=E*|T|

 Optimizing Efficiency
— Easy to maximize either efficiency or speedup independently

— Harder to maximize both at the same time
* Find the smallest number of transient resources |T| while maximizing
speedup*efficiency



« Stacking service (large scale astronomy application)

e 92 experiments

558K files

— Compressed: 2MB each = 1.1TB
— Un-compressed: 6MB each = 3.3TB

~30%
o
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 Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

 Combines three components:

— a streamlined task dispatcher

— resource provisioning through multi-level scheduling
techniques

— data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

 |ntegration into Swift to leverage many applications

— Applications cover many domains: astronomy, astro-physics,
medicine, chemistry, economics, climate modeling, etc
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Task Dispatcher

Persistent Storage
Data-Aware Scheduler

Dynamic
Resource
Provisioning

Available Resources
(GRAM4)
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Resource acquired Iin
response to demand

Data and applications diffuse
from archival storage to N
. as| ispatcher
nEWIy achIrEd resources Data_Aware%ChedUIer Persistent Storage

Resource “caching” allows -
faster responses to
subseqguent requests
— Cache Eviction Strategies: L
RANDOM, FIFO, LRU, LFU
Resources are released
when demand drops
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e Considers both data and computations to optimize
performance
— Supports data-aware scheduling

— Can optimize compute utilization, cache hit performance, or
a mixture of the two

e Decrease dependency of a shared file system
— Theoretical linear scalability with compute resources

— Significantly increases meta-data creation and/or
modification performance

e Central for “data-centric task farm” realization
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e first-available:
— simple load balancing
e max-cache-hit
— maximize cache hits
e max-compute-util
— maximize processor utilization

e good-cache-compute

— maximize both cache hit and processor utilization at
the same time
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w H ol
|

N

—

CPU Time per Task (ms)

Bl Task Submit o
_ m Notification for Task Availabilit 5000
Bl Task Dispatch (data-aware scheduler)
" Task Results (data-aware scheduler)
Notification for Task Results
— B WS Communication 4000
- Throughput (tasks/sec)

'\_\_

+ 3000

2000

+ 1000

Throughput (tasks/sec)

0
first- first- ax- max-cache- good-
available available compute-utll hit cache-
without I/O  with I/O compute

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 24



 Purpose

— On-demand “stacks” of random
locations within ~10TB dataset

« Challenge

— Rapid access to 10-10K “random” files s e

— Time-varying load
o Sample Workloads

Locality | Number of Objects | Number of Files
1 111700 111700
1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790
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e Aggregate throughput:

e Reduced load on GPFS
— 0.49Gb/s
— 1/10 of the original load
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=
o
o
o
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0

— 39Gb/s

— 10X higher than GPFS
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e Big performance gains
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250K tasks

— 10MB reads 1000 .  — Arrival Rate per sec 250000
— Tasks completed
— 10ms compute 900 |1  —Ideal Throughput Mb/s J
Vary arrival rate: g 200000
— Min: 1 task/sec 2 150000
— Increment function: ii
* —
CEILING(*1.3) g 100000
— Max: 1000 tasks/sec @
128 processors z - 50000
|deal case:
— 1415 sec 0
— 80Gb/s peak |
throughput Time (sec)
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e GPFS vs. ideal: 5011 sec vs. 1415 sec
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Max-compute-util

Max-cache-hit
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» Data Diffusion vs. ideal: 1436 sec VS 1415 sec
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W Local Worker Caches (Gh/s)
Remote Worker Caches (Gb/s)

100 i B GPFS Throughput (Gb/s)
w | 1 ‘
1 ‘ ‘
e I
5
(=8
e
(=2}
=}
2
| 17 I I I
01 a l
Ideal first- good- good- good- good-
available  cache- cache- cache- cache- cache hlt, compute-
compute, compute, compute, compute, 4GB util, 4GB

1GB 1.5GB 2GB 4GB

Response Time =

— 3 sec vs 1569 sec = 506X

€ Throughput:

— Average: 14Gb/s vs 4Gb/s
— Peak: 100Gb/s vs. 6Gb/s

Average Response Time (sec)

10000

1000 +

100

10 A

1569

1,

1084
I I ﬁ ) I I:
first- good- good- good- good- max-cache-
available cache- cache- cache- cache- hit, 4GB compute-
compute, compute, compute, compute, 6 util, 4GB
1GB 1.5GB 2GB 4GB




 Performance Index:
— 34X higher
e Speedup
— 3.5X faster than GPFS

_| mPerformance Index
I Speedup (compared to first-available)

°
~

°
o

Performance Index
o
(4]

0.4
0.3
18 —=—first-available 02
17 - » good-cache-compute, 1GB 4
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16 - » good-cache-compute, 2GB ]’
ii -_:-_good-cache-qompute, 4GB ’ " first- good- good- good- good- good- max- max-
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13 = max-compute-util, 4GB ; com + comp
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12 ' 1GB  15GB  2GB 4GB 4GB, SRP
$11 - A
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o
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)
T — 18X slowdown for
5 GPFS
3 .
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2M tasks
— 10MB reads
— 10ms compute

Vary arrival rate:
— Min: 1 task/sec
— Arrival rate function:
— Max: 1000 tasks/sec

200 processors

ldeal case:
— 6505 sec

— 80GDb/s peak
throughput

o
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 GPFS =» 5.7 hrs,
* DF+SRP = 1.8 hrs,

e DF+DRP =» 1.86 hrs, ~24Gb/s, 253 CP

Time (sec)

~8Gb/s, 1138 CP
~25Gb/s, 361 CP

. T '
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B Cache Miss %
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Cache Hit Global % ™ Cache Hif[ocal %
—Throughput (Gb/s) —Wait Queue Length




e
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o
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N
o

Time (sec)

B Cache Miss %
—Demand (Gb/s)
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Cache Hit Global % ™ Cache Hit Local %

— T Throughput (Gb/s)

—Wait Queue Length




e 500x500
— 250K tasks
— 24MB reads

— 100ms compute
— 200 CPUs

e 1000x1000
e 1M tasks
e 24MB reads

e 4sec compute
4096 CPUs

 |deal case:
— 6505 sec

— 80GDb/s peak
throughput

o All-Pairs( set A, set B, function F)
returns matrix M:

« Compare all elements of set A to

all e
yielo

ements of set B via function F,
Ing matrix M, such that

MIi,

1 = F(AlILB[])

1 foreach $iin A
2  foreach $jinB

3 submit_job F $i $j
4 end
5 end
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e Push vs. Pull

— Active Storage:

 Pushes workload
working set to all nodes

 Static spanning tree
— Data Diffusion

100%

E Falkon (data diffusion)

» Pulls task working set

 Incremental spanning
forest

90%
80% - B Falkon (GPFS)
70% -
> 60% N
S 50% -
<)
'© 40% -
5 30% -
20%
10% -
0% -
500x500 500x500 1000x1000
200 CPUs 200 CPUs 4096 CPUs
1 sec 0.1sec 4 sec
Local Network Sr::eillr:d
Experiment Approach Disk/Memory | (node-to-node)
(GB) (GB) System
(GB)
500x500 Best Case 6000 1536 12
200 CPUs (actlve”s(torage)
Falkon
1 sec (data diffusion) 6000 1698 34
500x500 Best Case 6000 1536 12
200 CPUs (active storage)
Falkon
0.1 sec (data diffusion) 6000 1528 62
1000x1000 Best Case 24000 12288 24
4096 CPUs (active storage)
Falkon
4 sec (data diffusion) 24000 4676 384




e Best to use active storage if
— Slow data source
— Workload working set fits on local node storage
— Good aggregate network bandwidth

* Best to use data diffusion if
— Medium to fast data source
— Task working set << workload working set
— Task working set fits on local node storage
— Good aggregate network bandwidth
o |f task working set does not fit on local node storage
— Use parallel file system (i.e. GPFS, Lustre, PVFS, etc)



e Needs Java 1.4+

 Needs IP connectivity between hosts
 Needs local storage (disk, memory, etc)
e Per task workings set must fit in local storage

« Task definition must include input/output files
metadata

« Data access patterns: write once, read many
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« [BeynonOl]: DataCutter

« [Ranganathan03].: Simulations
 [Ghemawat03,Dean04,Chang06]: BigTable, GFS, MapReduce
o [LiuO4]: GridDB

 [Chervenak04,Chervenak06]: RLS (Replica Location Service),
DRS (Data Repllcatlon Service)

o [Tatebe04,Xiaohui05]: GFarm

e [Branco04,Adams06]: DIAL/ATLAS

o [Kosar06]: Stork

e [Thain08]: Chirp/Parrot

Conclusion: None focused on the co-location of storage and
generic black box computations with data-aware scheduling
while operating in a dynamic environment



« At 1K CPUs:
— 1 Server to manage all 1K CPUs
— Use shared file system extensively

* Invoke application from shared file system
* Read/write data from/to shared file system

e At 100K CPUs:
— N Servers to manage 100K CPUs (1:256 ratio)

— Don't trust the application 1/O access patterns to behave optimally
» Copy applications and input data to RAM
* Read input data from RAM, compute, and write results to RAM
* Archive all results in a single file in RAM
e Copy 1 result file from RAM back to GPFS

» Great potential for improvements
— Could leverage the Torus network for high aggregate bandwidth

— Collective 1/0 (CIO) Primitives
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Ewmmly parallel apps are trivial to run

— Logistical problems can be tremendous

Loosely coupled apps do not require “supercomputers”
— Total computational requirements can be enormous
— Individual tasks may be tightly coupled
— Workloads frequently involve large amounts of I/O
— Make use of idle resources from “supercomputers” via backfilling

— Costs to run “supercomputers” per FLOP is among the best
* BG/P: 0.35 gigaflops/watt (higher is better)
» SiCortex: 0.32 gigaflops/watt
* BG/L: 0.23 gigaflops/watt
» x86-based HPC systems: an order of magnitude lower

Loosely coupled apps do not require specialized system software
Shared file systems are good for all applications

— They don’t scale proportionally with the compute resources
— Data intensive applications don’t perform and scale well



« Defined an abstract model for performance efficiency of data
analysis workloads using data-centric task farms

* Provide a reference implementation (Falkon)

Use a streamlined dispatcher to increase task throughput by several
orders of magnitude over traditional LRMs

Use multi-level scheduling to reduce perceived wait queue time for tasks
to execute on remote resources

Address data diffusion through co-scheduling of storage and
computational resources to improve performance and scalability

Provide the benefits of dedicated hardware without the associated high
cost

Show effectiveness of data diffusion:
» real large-scale astronomy application and a variety of synthetic workloads
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e More Information: http://people.cs.uchicago.edu/~iraicu/

 Related Projects:
— Falkon:
e http://dev.globus.org/wiki/Incubator/Falkon

— AstroPortal:
» http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro portal.htm

— Swift:
e http://www.ci.uchicago.edu/swift/index.php
* Funding:
— (I\IASA: )Ames Research Center, Graduate Student Research Program
GSRP

— DOE: Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy

— NSF: TeraGrid
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