9L Argonne

NATIONAL LABORATORY Ames Research Center

The Quest for Scalable Support
of Data Intensive Applications
In Distributed Systems

loan Raicu

Distributed Systems Laboratory
Computer Science Department
University of Chicago

In Collaboration with:
lan Foster, University of Chicago and Argonne National Laboratory
4 Alex Szalay, The Johns Hopkins University

Yong Zhao, Microsoft Corporation
Philip Little, Christopher Moretti, Amitabh Chaudhary, Douglas Thain, University of Notre Dame

IEEE/ACM Supercomputing 2008
Argonne National Laboratory Booth
November 20, 2008

2004 2006 2008 2010 2012 2014 2016 2018

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable Objects, November 9th, 2007 Slide 2

@Eﬂﬂc Projected Performance Development
100F Flops
- #1
10 PFlops - o- #500
-3 Sum
1 PFlops — #1 Trend
Line
100 TRops - — #5300 Trend
- Line
S 10 TFops 7 — Sum Trend
E o, 12 Line
'E 1 TFlops .
£ What will we do
100 GFlops 225 .
o with 1+ Exaflops
Gl and 1M+ cores?
1':":' MFIDFJE Frr -l T T T 1T T 1T 1T 7T T T T 1T ettt et U U U U | e e U | e U s e Fen Ut
% 4 B 2 St © S T
2 =2 2 =2 oS S D

http:/'www top500.0mg/

1000000 = GPFS R

‘e COCAL R e GPFSvs. LOCAL

2 100000 - LOCAL Rew e — Read Throughput
S e 1 node: 0.48Gb/s vs. 1.03Gb/s = 2.15x
g 10000 i / « 160 nodes: 3.4Gb/s vs. 165Gb/s = 48x
§, /'/ e 11Mb/s per CPU vs. 515Mb/s per CPU
E 1000 f/ Ll — Read+Write Throughput:

/ * 1 node: 0.2Gb/s vs. 0.39Gb/s = 1.95x

100 | « 160 nodes: 1.1Gb/s vs. 62Gb/s = 55x
1 10 100 — oMetadata (mkdir / rm -rf)

Number of Nodes « 1 node: 151/sec vs. 199/sec = 1.3x

e 160 nodes: 21/sec vs. 31840/sec = 1516x
* |IBM BlueGene/P
— 160K CPU cores
— GPFS 8GB/s I/O rates (16 servers)
— Experiments on 160K CPU BG/P achieved 0.3Mb/s per CPU core
— Experiments on 5.7K CPU SiCortex achieved 0.06Mb/s per CPU core

Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
—allure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 5

Multicore processors

Massive task parallelism

Massive data parallelism

Integrating black box applications

Complex task dependencies (task graphs)
—allure, and other execution management issues
Dynamic task graphs

Documenting provenance of data products

Data management: input, intermediate, output

Dynamic data access involving large amounts of
data

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 6

Heroic
MPI
Tasks

Many Loosely Coupled Apps

Low
1 1K 1M

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 7

Number of Tasks

Single task, modest data
MPI, etc...

Many Tasks
DAGMan+Pegasus
Karajan+Swift+Falkon

The Quest for Sc

* Loosely coupled applications

— High-performance computations comprising of multiple
distinct activities, coupled via file system operations or
message passing

— Emphasis on using many resources over short time periods

— Tasks can be:

« small or large, independent and dependent, uniprocessor or
multiprocessor, compute-intensive or data-intensive, static or
dynamic, homogeneous or heterogeneous, loosely or tightly coupled,

large number of tasks, large quantity of computing, and large
volumes of data...

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 9

e Purpose

— On-demand “stacks” of
random locations within
~10TB dataset

 Challenge

— Processing Costs:
e O(100ms) per object

— Data Intensive:
e 40MB:1sec

— Rapid access to 10-10K @
“random?” files

— Time-varying load

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems

@” C RS B BN RS BN RN RV |

10

“Significant performance improvements can be
obtained In the analysis of large dataset by leveraging
Information about data analysis workloads rather than

Individual data analysis tasks.”

 Important concepts related to the hypothesis

— Workload: a complex query (or set of queries) decomposable into
simpler tasks to answer broader analysis questions

— Data locality is crucial to the efficient use of large scale distributed
systems for scientific and data-intensive applications

— Allocate computational and caching storage resources, co-scheduled to
optimize workload performance

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 11

« AMDASK: An Abstract Model for DAta-centric taSK farms

— Task Farm: A common parallel pattern that drives independent
computational tasks
 Models the efficiency of data analysis workloads for the MTC
class of applications

o Captures the following data diffusion properties
— Resources are acquired in response to demand
— Data and applications diffuse from archival storage to new resources
— Resource “caching” allows faster responses to subsequent requests
— Resources are released when demand drops
— Considers both data and computations to optimize performance

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 12

e Data Stores: Persistent & Transient

— Store capacity, load, ideal bandwidth, available
bandwidth

e Data Objects:
— Data object size, data object’s storage location(s),
copy time

» Transient resources: compute speed,
resource state

o Task: application, input/output data

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 13

Dispatch Policy

— next-available, first-available, max-compute-util, max-cache-hit
Caching Policy

— random, FIFO, LRU, LFU

Replay policy

Data Fetch Policy

— Just-in-Time, Spatial Locality

Resource Acquisition Policy

— one-at-a-time, additive, exponential, all-at-once, optimal
Resource Release Policy

— distributed, centralized

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 14

B: Average Task Execution Time'

— K: Stream of tasks Z (x)
— M(k): Task k execution time |K | keKﬂ
* Y:Average Task Execution Time Wlth Overheads:
— o(Kk): Dispatch overhead
— ¢(8,7): Time to get data Y = |K|:§<[ﬂ(K)+O(K)] Pednoed
lKlZ[,u(K)+O(K)+§(§)], 0¢¢(r),0eQ

V: Workload Execution Time;
— A: Arrival rate of tasks V = max(i, 1 j*l K|
— T Transient Resources | T| A

W: Workload Execution Time with Overheads

W = max L,i *| K |
I T|" A

o Efficiency .
1, Y sl
_V T A
= —) |
W B |T| Y 1
MY axy) |T|>A
e Speedup :
S=E*|T|

 Optimizing Efficiency
— Easy to maximize either efficiency or speedup independently

— Harder to maximize both at the same time
* Find the smallest number of transient resources |T| while maximizing
speedup*efficiency

« Stacking service (large scale astronomy application)

e 92 experiments

558K files

— Compressed: 2MB each = 1.1TB
— Un-compressed: 6MB each = 3.3TB

~30%
o

[120% |

S 0
S10%

—8—GPFS (G2)
= ® - Data Diffusion (FIT) - Locality 1

- Data Diffusion (FIT) - Locality 1.38 — — Data Diffusion (GZ) - Locality 1.38

- A - Data Diffusion (FIT) - Locality 30

- B -GPFS (FIT)
—o— Data Diffusion (GZ) - Locality 1

—— Data Diffusion (GZ) - Locality 30

=
0%

L30% Tl
o
520% 1

10%

2 4

—=—GPES (GZ

- - GPFS (FI

- » - Data Diffusion gFIT}
—e— Data Diffusion (GZ

Mode

0% -

3 4 5
Data Locality

17

 Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

 Combines three components:

— a streamlined task dispatcher

— resource provisioning through multi-level scheduling
techniques

— data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

 |ntegration into Swift to leverage many applications

— Applications cover many domains: astronomy, astro-physics,
medicine, chemistry, economics, climate modeling, etc

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 18

 Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

 Combines three components:

— a streamlined task dispatcher

— resource provisioning through multi-level scheduling
techniques

— data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

 |ntegration into Swift to leverage many applications

— Applications cover many domains: astronomy, astro-physics,
medicine, chemistry, economics, climate modeling, etc

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 19

Task Dispatcher

Persistent Storage
Data-Aware Scheduler

Dynamic
Resource
Provisioning

Available Resources
(GRAM4)

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 20

Resource acquired Iin
response to demand

Data and applications diffuse
from archival storage to N
. as| ispatcher
nEWIy achIrEd resources Data_Aware%ChedUIer Persistent Storage

Resource “caching” allows -
faster responses to
subseqguent requests
— Cache Eviction Strategies: L
RANDOM, FIFO, LRU, LFU
Resources are released
when demand drops

-
ceo
[e
IS -
- oo
e
-
e

-
c~eo
-
-
e

e
-
hES
A] LY
) < -
-
‘\

-

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 21

e Considers both data and computations to optimize
performance
— Supports data-aware scheduling

— Can optimize compute utilization, cache hit performance, or
a mixture of the two

e Decrease dependency of a shared file system
— Theoretical linear scalability with compute resources

— Significantly increases meta-data creation and/or
modification performance

e Central for “data-centric task farm” realization

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 22

e first-available:
— simple load balancing
e max-cache-hit
— maximize cache hits
e max-compute-util
— maximize processor utilization

e good-cache-compute

— maximize both cache hit and processor utilization at
the same time

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 23

w H ol
|

N

—

CPU Time per Task (ms)

Bl Task Submit o
_ m Notification for Task Availabilit 5000
Bl Task Dispatch (data-aware scheduler)
" Task Results (data-aware scheduler)
Notification for Task Results
— B WS Communication 4000
- Throughput (tasks/sec)

'__

+ 3000

2000

+ 1000

Throughput (tasks/sec)

0
first- first- ax- max-cache- good-
available available compute-utll hit cache-
without I/O with I/O compute

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 24

 Purpose

— On-demand “stacks” of random
locations within ~10TB dataset

« Challenge

— Rapid access to 10-10K “random” files s e

— Time-varying load
o Sample Workloads

Locality | Number of Objects | Number of Files
1 111700 111700
1.38 154345 111699
2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790

Purpo~~

_ On 450
loce 400

e Challe 30
B Ra[300

M open

radec2xy
W readHDU+getTile+curl+convertArray
M calibration+interpolation+doStacking
B writeStacking

Locali ty
1

1.38

CALGZ GPFSFIT

Filesystem and Image Form:

I IIC VUCDL IUI OL'G.IG.IJIC OU'J}JUI LUl wata II eiisive I'\ppll\.;al.l'b'nw-rn—d'lbl.l IUULCU Q_YDLCI fis" 7

28

2000 —e—Data Diffusion (GZ)

-e (D;%thD(if(f;uzs)ion (FIT)
. —
Low data locality =>» R o = GPFS (FIT)]
(®) N .
— Similar (but better) 3 1400
performance to GPFS § 1200
® 1000
(] v’
s 2 800 - =
D Diff Gz — 0
2000 ~~ Data Diffusion EFIT)) e 600 | 3
1800 ——GPFS (G2) < Y
2 - = GPFS (FIT) R s — M —
8 1600 . I: 200 :- = = =fis = == #f==:=:=14 P
9 1400 - .
X
§ 1200 - 2 4 8 16 32 64 128
o 1000 - ’ Number of CPUs
2 800 =
é 600 - —.___./._——-]]
g a0 e €High data locality

2001 %

- = m -!— - . o=
2 4 8 16 32 64
Number of CPUs

— Near perfect scalability

128

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 29

e Aggregate throughput:

e Reduced load on GPFS
— 0.49Gb/s
— 1/10 of the original load

2000
1800

oY
& 1600 -

S 1400
E 1200

=
o
o
o

Time (ms) per s

0

— 39Gb/s

— 10X higher than GPFS

- » Data Diffusion (GZ)

800 -
600 -
400 -
200 -

——Data D(iffusjion (FIT) |
i -®= GPFS (GZ
LN —=—GPFS (FIT
N—— i

Locality

10

20

30

Ideal

50 [Data Diffusion Throughput Local

[Data Diffusion Throughput Cache-to-Cache
45 Il Data Diffusion Throughput GPFS

0 === GPFS Throughput (FIT)
8 40 -®= GPFS Throughput (GZ)
= 35
-g.
5 30 -
>
°© 25
=
© 20 -
15 -
Q
§ 10

5

0

1 1.38 2 3 4 5 10 20 30
Locality

e Big performance gains
as locality increases

30

250K tasks

— 10MB reads 1000 . — Arrival Rate per sec 250000
— Tasks completed
— 10ms compute 900 |1 —Ideal Throughput Mb/s J
Vary arrival rate: g 200000
— Min: 1 task/sec 2 150000
— Increment function: ii
* —
CEILING(*1.3) g 100000
— Max: 1000 tasks/sec @
128 processors z - 50000
|deal case:
— 1415 sec 0
— 80Gb/s peak |
throughput Time (sec)

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 31

Tasks Completed
Ideal Throughput (Mb/s)

e GPFS vs. ideal: 5011 sec vs. 1415 sec

1000
62% 10,
s 0=
Z2 =< 1
Y— E (@)]
O o c 1
853
287
523
< 5 0.1
ZE &>
0.01 § —
0.001
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Time (sec)

32
~==|deal Throughput (Gb/s) — Throughput (Gb/s) —— Wait Queue Length == Number of Nodes

Max-compute-util

Max-cache-hit

1000 - 1 1000 -
- 0.9
100 - e J
0.8 2% 100
2o
— ©)

—~ 07 o 2O o
g3 10 Rg=TS 10- 2
=3 \>.</ n o oo X [
o O - 0.6 » o c o ~ (=]
ZzZ < S ZozS =
Y 5 =] S - > C ‘5-, ©
°ag 1 052003 ¢c 1- =
o5 4 529 =
2873 Q ok x5 5
Egs TREeEd 2

< 0.1 2 1
ZF & 0392833 01 ©

<
- 0.2
0.01 - <F 001-
- 0.1
0.001 - -0 0.001 -
O NV O O S OV OO OO OV OO N OO O QO O O QO O O O O O O DO O OO 0N
PV A 507 7 (O AV o O O SV ©° ©° O° 7 »> D” 50 (N AV 7 O A0 W D S O NO WV AQ D
FATEFEA S E L P I FLEE IS PE S EF TG EF IS
Time (sec) Time (sec)
m Cache Hit Local % Cache Hit Global % Hm Cache Miss % I Cache Hit Local % Cache Hit Global % I Cache Miss %
~=ldeal Throughput (Gb/s) —— Throughput (Gb/s) — Wait Queue Length Ideal Throughput (Gb/s) ~ —— Throughput (Gb/s) Wait Queue Length

= Number of Nodes

Number of Nodes - - --CPU Utilization

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems

33

100

10

Queue Length (x1K)
=

o
[

Number of Nodes
Aggregate Throughput (Gb/s)
Throughput per Node (MB/s)

©
o
=

0.001

O O . ®
S &

N
o
N

\ O \)
)) S
N

o ©
SIS
NS

Time (sec)

O & ©
S O
oD o

Cache Hit/Miss %

I Cache Hit Local %
~Ideal Throughput (Gb/s)
— Number of Nodes

Cache Hit Global %

— Throughput (Gb/s)

I Cache Miss %
— Wait Queue Length

Number of Nodes
Aggregate Throughput (Gb/s)
Throughput per Node (MB/s)

Queue Length (x1K)

Time (sec)

i

O N o O N O
& AV F P 59%';19

|1

R W 1]
v [

Cache Hit/Miss %

mm Cache Hit Local %
~Ideal Throughput (Gb/s)
=—Number of Nodes

Cache Hit Global %

— Throughput (Gb/s)

B Cache Miss %
— Wait Queue Length

€ 1GB

1.5GB =>

2% - 0.8
ol
w28 | F0.7 o
o5 o< 10 S
T oo X]
S £ oo 06 2
ZozZz < =
53852 1- 05 2
529 ~ I
ok 55 L 2
ELo> 04 5
2535 01+ S
z g: 25 - 0.3
3E
< - 0.01 0.2
0.1
-0
QO O 0 O O & O O O O & O O O
A S G Gl SRS SN S U
Time (sec)
mmm Cache Hit Local % Cache Hit Global % I Cache Miss %
~Ideal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length
= Number of Nodes
1000 -
e 100 +
59
o
]
==
=TS 101 S
T ascX 7
2 c o 2
Zoz< =
k) g o g’ 1 =
529 T
akF 5% 2
EEgs g
0.1 1
z g; %’8, ‘ L ¥ 8}
SE O
< F 0.01 1 | \\\ “!l“
|
0.001 -
Q (N}) O O Q O N} Q O
KNS D & D P $ \990 RO

Time (sec)

34

I Cache Hit Local %

= Number of Nodes

~Ideal Throughput (Gb/s)

Cache Hit Global %
— Throughput (Gb/s)

Bl Cache Miss %
— Wait Queue Length

» Data Diffusion vs. ideal: 1436 sec VS 1415 sec

- 0.9
Oy 100~ - 08
O m
Nl é P - 0.7 o
35 g S 10 - >
S asX 06 9
Z O . —
Z oz < =
‘S 3 o = 1 105 =
5 i’ :
ELE3 H \ 048
0.1-
2335 | \ HH |l 0.3 ©
§|§ ” I. d}. 0.2
0.01 M\ P
’ H“ 01
0.001 L0
Q Q Q Q Q QO Q Q Q Q Q Q Q
NV S SR CA G S S VI
Time (sec)
B Cache Hit Local % Cache Hit Global % mm Cache Miss % 35
~|deal Throughput (Gb/s) — Throughput (Gb/s) — Wait Queue Length
= Number of Nodes

W Local Worker Caches (Gh/s)
Remote Worker Caches (Gb/s)

100 i B GPFS Throughput (Gb/s)
w | 1 ‘
1 ‘ ‘
e I
5
(=8
e
(=2}
=}
2
| 17 I I I
01 a l
Ideal first- good- good- good- good-
available cache- cache- cache- cache- cache hlt, compute-
compute, compute, compute, compute, 4GB util, 4GB

1GB 1.5GB 2GB 4GB

Response Time =

— 3 sec vs 1569 sec = 506X

€ Throughput:

— Average: 14Gb/s vs 4Gb/s
— Peak: 100Gb/s vs. 6Gb/s

Average Response Time (sec)

10000

1000 +

100

10 A

1569

1,

1084
I I ﬁ) I I:
first- good- good- good- good- max-cache-
available cache- cache- cache- cache- hit, 4GB compute-
compute, compute, compute, compute, 6 util, 4GB
1GB 1.5GB 2GB 4GB

 Performance Index:
— 34X higher
e Speedup
— 3.5X faster than GPFS

_| mPerformance Index
I Speedup (compared to first-available)

°
~

°
o

Performance Index
o
(4]

0.4
0.3
18 —=—first-available 02
17 - » good-cache-compute, 1GB 4
good-cache-compute, 1.5GB /e
16 - » good-cache-compute, 2GB]’
ii -_:-_good-cache-qompute, 4GB ’ " first- good- good- good- good- good- max- max-
max-caChe-hlt’ 4'GB / ot available cache- cache- cache- cache- cache- cache-hit, compute-
13 = max-compute-util, 4GB ; com + comp
) pute, compute, compute, compute, compute, 4GB util, 4GB
12 ' 1GB 15GB 2GB 4GB 4GB, SRP
$11 - A
§uo -+ Slowdown:
o
= 8 - n
)
T — 18X slowdown for
5 GPFS
3 .
2 | — Near ideal 1X
Y150 2000 B P 0 S ASILPISSPES slowdown for large 3

Arrival Rate per Second

enough caches

35

N
w

N
o
Speedup (compared to LAN GPFS)

2M tasks
— 10MB reads
— 10ms compute

Vary arrival rate:
— Min: 1 task/sec
— Arrival rate function:
— Max: 1000 tasks/sec

200 processors

ldeal case:
— 6505 sec

— 80GDb/s peak
throughput

o
Arrival Rate (per sec)

1000
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100 -

0

P PSS S
G IR S S S

— Arrival Rate
— Number of Tasks

-+ 800000
-+ 600000
-+~ 400000
-+~ 200000

S P .
PR Y

Time (sec)

A= |_(sin(sqrt(time+ 0.11)*2.859679 +1)*(time+0.1]) *5.705J

2000000

-+ 1800000
()]
+ 1600000 %
=
1 1400000 E
+ 1200000 ©

=
o
o
o
o
o
o

Number of Tasks

0

38

 GPFS =» 5.7 hrs,
* DF+SRP = 1.8 hrs,

e DF+DRP =» 1.86 hrs, ~24Gb/s, 253 CP

Time (sec)

~8Gb/s, 1138 CP
~25Gb/s, 361 CP

. T '
0w nX - 90% ~< I I
S5 % W T 80% 3 ég) al
22 | F70%s SO0
53¢ | EwE T5E
05 0o - c 0
€39 | - 40% S 92y
Sc3 | 3% S E23
Z =) c

|—Oa - 20% ZI—S;
| - 10%
- 0%

./

./

./

O O O O
S P P
Time (sec)

M Cache Miss %
~—Demand (Gb/s)
—Number of Nodes

Cache Hit Global % ™= Cache Hit Local %
—Throughput (Gb/s) —Wait Queue Length

B Cache Miss %
~—Demand (Gb/s)
—Number of Nodes

Cache Hit Global % ™ Cache Hif[ocal %
—Throughput (Gb/s) —Wait Queue Length

e
® O N
SO O O

AN
o

Number of Nodes
Throughput (Gb/s)
Queue Length (x1K)

o
o

N
o

Time (sec)

B Cache Miss %
—Demand (Gb/s)
—Number of Nodes

Cache Hit Global % ™ Cache Hit Local %

— T Throughput (Gb/s)

—Wait Queue Length

e 500x500
— 250K tasks
— 24MB reads

— 100ms compute
— 200 CPUs

e 1000x1000
e 1M tasks
e 24MB reads

e 4sec compute
4096 CPUs

 |deal case:
— 6505 sec

— 80GDb/s peak
throughput

o All-Pairs(set A, set B, function F)
returns matrix M:

« Compare all elements of set A to

all e
yielo

ements of set B via function F,
Ing matrix M, such that

MIi,

1 = F(AlILB[])

1 foreach $iin A
2 foreach $jinB

3 submit_job F $i $j
4 end
5 end

€ Quest for Scalable Support of Data Intensive Applications in Distributed Systems 41

EfflCle 75 - 90%

N i ? ! ﬂ \ ”I ' ‘ ([} 80%
aoe 11 L]W]l || ” ’l‘P W’ " HMI’ WM‘] M!H]IIIMHH]”W{ M‘M 0% ¢
@48 -] ' . ’ | ‘ 60%2
§_40 -Cacﬂe Miss I%b o 45183 T
532 | g _Cache i Siobel 10% 2
o —Throughput (Data Diffusion) °3
=16 —Maximum Throughput (GPFS) 20%

3 —Maximum Throughput (Local Disk 10%
0) 0%
Q QQ '\ch q,/\Q (b@Q DEOQ @b‘Q ngQ /\q/Q (b,\Q QQQ o

Time (sec)

B Cache Miss %
Cache Hit Global %
m Cache Hit Local %

— Throughput (Data Diffusion

— Maximum Throughput
— Maximum Throughput

O O O O O O
PR AV P

Time (sec)

2

GPES
Local

R/Iemory)

S
S
S

Cache Hit/Miss

43

e Push vs. Pull

— Active Storage:

 Pushes workload
working set to all nodes

 Static spanning tree
— Data Diffusion

100%

E Falkon (data diffusion)

» Pulls task working set

 Incremental spanning
forest

90%
80% - B Falkon (GPFS)
70% -
> 60% N
S 50% -
<)
'© 40% -
5 30% -
20%
10% -
0% -
500x500 500x500 1000x1000
200 CPUs 200 CPUs 4096 CPUs
1 sec 0.1sec 4 sec
Local Network Sr::eillr:d
Experiment Approach Disk/Memory | (node-to-node)
(GB) (GB) System
(GB)
500x500 Best Case 6000 1536 12
200 CPUs (actlve”s(torage)
Falkon
1 sec (data diffusion) 6000 1698 34
500x500 Best Case 6000 1536 12
200 CPUs (active storage)
Falkon
0.1 sec (data diffusion) 6000 1528 62
1000x1000 Best Case 24000 12288 24
4096 CPUs (active storage)
Falkon
4 sec (data diffusion) 24000 4676 384

e Best to use active storage if
— Slow data source
— Workload working set fits on local node storage
— Good aggregate network bandwidth

* Best to use data diffusion if
— Medium to fast data source
— Task working set << workload working set
— Task working set fits on local node storage
— Good aggregate network bandwidth
o |f task working set does not fit on local node storage
— Use parallel file system (i.e. GPFS, Lustre, PVFS, etc)

e Needs Java 1.4+

 Needs IP connectivity between hosts
 Needs local storage (disk, memory, etc)
e Per task workings set must fit in local storage

« Task definition must include input/output files
metadata

« Data access patterns: write once, read many

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 46

« [BeynonOl]: DataCutter

« [Ranganathan03].: Simulations
 [Ghemawat03,Dean04,Chang06]: BigTable, GFS, MapReduce
o [LiuO4]: GridDB

 [Chervenak04,Chervenak06]: RLS (Replica Location Service),
DRS (Data Repllcatlon Service)

o [Tatebe04,Xiaohui05]: GFarm

e [Branco04,Adams06]: DIAL/ATLAS

o [Kosar06]: Stork

e [Thain08]: Chirp/Parrot

Conclusion: None focused on the co-location of storage and
generic black box computations with data-aware scheduling
while operating in a dynamic environment

« At 1K CPUs:
— 1 Server to manage all 1K CPUs
— Use shared file system extensively

* Invoke application from shared file system
* Read/write data from/to shared file system

e At 100K CPUs:
— N Servers to manage 100K CPUs (1:256 ratio)

— Don't trust the application 1/O access patterns to behave optimally
» Copy applications and input data to RAM
* Read input data from RAM, compute, and write results to RAM
* Archive all results in a single file in RAM
e Copy 1 result file from RAM back to GPFS

» Great potential for improvements
— Could leverage the Torus network for high aggregate bandwidth

— Collective 1/0 (CIO) Primitives

: - : 48
— Roadblocks: machine global IP connectivity, Java support, and time

Ewmmly parallel apps are trivial to run

— Logistical problems can be tremendous

Loosely coupled apps do not require “supercomputers”
— Total computational requirements can be enormous
— Individual tasks may be tightly coupled
— Workloads frequently involve large amounts of I/O
— Make use of idle resources from “supercomputers” via backfilling

— Costs to run “supercomputers” per FLOP is among the best
* BG/P: 0.35 gigaflops/watt (higher is better)
» SiCortex: 0.32 gigaflops/watt
* BG/L: 0.23 gigaflops/watt
» x86-based HPC systems: an order of magnitude lower

Loosely coupled apps do not require specialized system software
Shared file systems are good for all applications

— They don’t scale proportionally with the compute resources
— Data intensive applications don’t perform and scale well

« Defined an abstract model for performance efficiency of data
analysis workloads using data-centric task farms

* Provide a reference implementation (Falkon)

Use a streamlined dispatcher to increase task throughput by several
orders of magnitude over traditional LRMs

Use multi-level scheduling to reduce perceived wait queue time for tasks
to execute on remote resources

Address data diffusion through co-scheduling of storage and
computational resources to improve performance and scalability

Provide the benefits of dedicated hardware without the associated high
cost

Show effectiveness of data diffusion:
» real large-scale astronomy application and a variety of synthetic workloads

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 50

e More Information: http://people.cs.uchicago.edu/~iraicu/

 Related Projects:
— Falkon:
e http://dev.globus.org/wiki/Incubator/Falkon

— AstroPortal:
» http://people.cs.uchicago.edu/~iraicu/projects/Falkon/astro portal.htm

— Swift:
e http://www.ci.uchicago.edu/swift/index.php
* Funding:
— (I\IASA:)Ames Research Center, Graduate Student Research Program
GSRP

— DOE: Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy

— NSF: TeraGrid

The Quest for Scalable Support of Data Intensive Applications in Distributed Systems 51

EIMTAGS08: Workshop on Many-Task Computing on Grids and Supercompu -0 ﬂ

File Edit Miew History Bookmarks Tools Help F é.
——- "*_‘E' o8
@ A c N | ._] htkp:fidsl cs.uchicago . edu/MTAGSOE! T ||G| - PNl R
-9 [AT
2] Most Visited 2 iGoogle 2 Google | | Inan Raicu's Web Site | | Mew Page2 | | H20 - CMSC 233405 | | Compare.aspx » Linked([[[l S by 2
. "—aﬁg"' .
I::}l E |? .'_!'..' L m G:i‘ .ISI-E |mtag5|:|8 - G SEEIrEh - [Q D {;::_. f{? @ Q % E - [’I S I';'I SEttingr f o 5 ..l-'_h:':ﬂ
— .\'. it - - 3
| | wiki:People - CSiiki | | ©icana: Cloud Computing and Its Applic... |] MTAGS08: Workshop on Many-Ta... &3 B

MTAGS
Workshop on Many-Task Computing on Grids and Supercomputers

onference for High Peformance,

In conjunction with IEEE/ACM SuperComputing 2008
Important Dz L ocation: Austin Texas
Call for Papers Papers Due: Date: November 17t 2008

Motification of A
Program Camera Ready Papers Due: ;
Committee Workshop Date: Jovernber 17th, 2008

Important Dates

Paper
Submission Workshop Chairs

Committee Members

d Thao M soft

Venue gonne Mational Laboratory

Registration

Workshop
Program

& Argonne MNational La

15 at Clu

Done

¥)Main Page - MegajobBOF - Mozilla Firefox o]
File Edit ‘Wew History Bookmarks Tools Help Gy

)) @ i:) ﬁ El httpe) faridfarmi007 ues indiana. edufmegajobBOFfindex. php/Main_Page ¥ ' Q-

EFMnst wisited & iGoogls :3 Ioan Raicu's Web Sike :3 MTAGS0E: Warkshop o... @Dashbnard - Google An... :3 IncubataorfFalkon - Glo... ;‘: Qutreach/SC2003 - Glo... I:EHCiI:ESEnarK & Google scholar & Linked([

a #J ;‘% g_j @ Goc nge o Glsearch o [Q ﬁ qf; @ @ @@Eﬁ‘ QM a 'i.? Bookmarks v —2geFank "Ae? Check Q W Autolink 2 '@ Settings ™
= IncubatorfFalkaon - Globus c_.}" = Inan Raicu's Web Site ‘*-':l @ Main Page - MegajobBOF 0 L4
2 Iraicu mytak preferences my watchlist my contributions log out <
article dizcuzsion edit history mave urravstch T
bofinfarmation .
— Main Page
= Prezerters and)
Abstracts Megajobs: How to Run One Million Jobs (=]
u |ogistics
= presenters = What: Birds-of a-Feather Session at Supercomputing 2008, Austin Texas
" organizers = Date: Tuesday, November 15th, 2005
wiki tools = Time: 05:30FPM - 07:00FM 4 3 " r
- Curret sverts - Location: Roem 1327138 ® [N conjunction with IEEE/ACM SuperComputing 2008
B " Primaty Session | eader Location: Austin Texas
= Marlon Pierce (Indiana L
search = Secondary Session Leade: ® Date November 18th, 2008
| = |oan Raicu (University of Chicago)
il Search | = Ruth Paordes (Fermi Mational Laboratory)
Tl = John McGee (Renaizsance Computing Institute)
i = Dick Repasky (Indiana University)
m WWhat links here
= Related changes
u Upload file As large systems surpass 200K CPU cores and as applications increase in complexity, mare scientists need to run thousands to millians of closely related
= Special pages Jjobs that are associated with individual projects. Scientists seek convenient means to specify and manage many jobs, arranging inputs, aggregating outputs,
= Printakle version identifying successful and failed jobs and repairing failures. System administrators seek rmethods to process extraordinary numbers of jobs for multiple users
without overwhelming queuing systems or disrupting fairshare usage policies. Under development are a new generation of gqueuing and scheduling systems
and multi-level schedulers for use with existing queuing and scheduling systems, schedulers designed to handle millions of jobs. This Birds-offeather
session provides a venue for the exchange of information about processing large numbers of jobs. Short presentations of an invited sample of projects will be
followed by discussion.
WWe are currently soliciting participation in the "Megajobs" BOF. We are looking for short, piquant presentations (5-10 minutes) from people who have worked
on this prablem or have a problem like this that needs to be worked on. If you are interested, please send a brief title and abstract (250 words) to Marlon
Fierce 31 by October Z7th, 2005. Please feel free to contact us if you have questions.

Faor the latest information hosted by SCO3, see http/fscyourway. nacse.arg/conferencefiew'bofl 15 7. The Megajobs BOF handout can also be found here 7.)
Related activties at SCO08, that might be of interest to BOF attendees are:

s Grid Computing Environments (GCE) &
= Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS) &

Done

