


• Funding and Support (2003 – 2009)

– University of Chicago

• Computer Science

• Computational Institute

– Argonne National Laboratory

• Math and Computer Science Division

• Argonne Leadership Computing Facility

– NASA

• Ames Research Center

• Over 60 Collaborators

– Ian Foster (UC/ANL), Rick Stevens (UC/ANL), Alex Szalay (JHU),    

Jim Gray (MSR), Pete Beckman (ANL), Jerry Yan (NASA ARC),    

Mike Wilde (UC/ANL), Douglas Thain (ND), Amitabh Chaudhary (ND), 

Yong Zhao (MS), Zhao Zhang (UC), Catalin Dumitrescu (FNAL),   

Matei Ripeanu (UBC)
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• Worked under Professor Ian Foster 

• Large Group

– Distributed Systems Laboratory, University of Chicago
• http://dsl-wiki.cs.uchicago.edu/index.php/Main_Page

– Computational Institute, University of Chicago 
• http://www.ci.uchicago.edu/index.php

– Math and Computer Science Division, Argonne National Laboratory
• http://www.mcs.anl.gov/index.php

– Argonne Leadership Computing Facility
• http://www.alcf.anl.gov/

• Research Areas:

– Distributed systems, Grid middleware, Grid applications, Systems Design and 
Implementation, Data-intensive Computing, Deep Supercomputing, Next Generation 
Cybertools, Parallel Tools, Collaborative and Virtual Environments, Computational Science

• Many High Impact Projects:

– Open Science Grid, TeraGrid, Globus, National Microbial Pathogen Research Center, 
Social Informatics Data Grid, Chicago Biomedical Consortium, Globus Toolkit, MPI, PVFS, 
IBM Blue Gene/P Supercomputer



• PlanetLab (912 nodes at 470 sites all over the world)

• ANL SiCortex 5832 (6TF, 5832-cores)

• IBM Blue Gene/P Supercomputer at ANL (~557TF, 160K-cores) 

• Sun Constellation Supercomputer (~579TF, 62K-cores)

• Cray XT5 (~1381TF, 150K-cores)

• Open Science Grid (43K-cores across 80 institutions in the US)

• TeraGrid (161K-cores across 11 institutions and 22 systems 

over the US)

4
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[GCE08] “Cloud Computing and Grid Computing 360-Degree Compared”
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Computer clusters using commodity processors, network 
interconnects, and operating systems.
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Computational Resources 
(size approximate - not to scale)

SDSC

TACC

UC/ANL

NCSA

ORNL

PU

IU

PSC

NCAR

2007
(504TF)

2008

(~1PF)
Tennessee

LONI/LSU

Grids tend to be composed of multiple clusters, 
and are typically loosely coupled, 

heterogeneous, and geographically dispersed

Tommy Minyard, TACC
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13.6 GF/s

8 MB EDRAM

4 processors

1 chip, 1x1x1

13.6 GF/s

2 GB DDR

(32 chips  4x4x2)

32 compute, 0-4 IO cards

435 GF/s

64 GB 

32 Node Cards

32 Racks

500TF/s

64 TB 

Cabled 8x8x16Rack

Baseline System

Node Card

Compute Card

Chip

14 TF/s

2 TB 

Highly-tuned computer clusters using commodity 
processors combined with custom network 

interconnects and customized operating system



• HTC: High-Throughput Computing

– Typically applied in clusters and grids

– Loosely-coupled applications with sequential jobs

– Large amounts of computing for long periods of times

– Measured in operations per month or years

• HPC: High-Performance Computing

– Synonymous with supercomputing

– Tightly-coupled applications 

– Implemented using Message Passing Interface (MPI)

– Large of amounts of computing for short periods of time

– Usually requires low latency interconnects

– Measured in FLOPS 9



• Bridge the gap between HPC and HTC

• Applied in clusters, grids, and supercomputers

• Loosely coupled apps with HPC orientations

• Many activities coupled by file system ops

• Many resources over short time periods

– Large number of tasks, large quantity of computing, 
and large volumes of data

[MTAGS08 Workshop] Workshop on Many-Task Computing on Grids and Supercomputers 2008

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
10
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[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
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Pat Helland, Microsoft, The Irresistible Forces Meet the Movable 
Objects, November 9th, 2007

Top500 Projected Development, 
http://www.top500.org/lists/2008/11/performance_development
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--2.2X2.2X
--99X99X --15X15X

--438X438X

• Local Disk:

– 2002-2004: ANL/UC TG Site 

(70GB SCSI)

– Today: PADS (RAID-0, 6 

drives 750GB SATA)

• Cluster:

– 2002-2004: ANL/UC TG Site 
(GPFS, 8 servers, 1Gb/s each)

– Today: PADS (GPFS, SAN)

• Supercomputer:

– 2002-2004: IBM Blue Gene/L 
(GPFS)

– Today: IBM Blue Gene/P (GPFS)



• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and 

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

14



• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and 

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

15



• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and 

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

16



• Segregated storage and compute

– NFS, GPFS, PVFS, Lustre

– Batch-scheduled systems: Clusters, Grids, and 

Supercomputers

– Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute

– HDFS, GFS

– Data centers at Google, Yahoo, and others

– Programming paradigm: MapReduce

– Others from academia: Sector, MosaStore, Chirp

17

Compute & Storage

Resources 

Network 

Fabric



What if we could combine the 
scientific community’s existing 

programming paradigms, but yet 
still exploit the data locality that 

naturally occurs in scientific 
workloads? 

18
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• Streamlined task dispatching

• Dynamic resource provisioning

– Multi-level scheduling

– Resources are acquired/released in response to demand

• Data diffusion

– Data diffuses from archival storage to transient resources 

– Resource “caching” allows faster responses to subsequent 
requests 

– Co-locate data and computations to optimize performance

20

[HPDC09] “The Quest for Scalable Support of Data Intensive Workloads in Distributed Systems”
[DIDC09] “Towards Data Intensive Many-Task Computing”
[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
[UC07] “Harnessing Grid Resources with Data-Centric Task Farms”
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”
[TG07] “Dynamic Resource Provisioning in Grid Environments”



• Abstract model
– Models the efficiency and speedup of entire 

workloads

– Captures techniques to support MTC
• Streamlined task dispatching, dynamic resource 

provisioning, data diffusion

– Lead to proof of O(NM) competitive caching

• Middleware to support MTC
– Falkon: a fast a light-weight execution framework

– Reference Implementation of the abstract model
[TPDS10] “Middleware Support for Many-Task Computing”, under preparation

[DIDC09] “Towards Data Intensive Many-Task Computing”

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”
21
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• Goal: enable the rapid and efficient execution of 
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher

– resource provisioning through multi-level scheduling 
techniques

– data diffusion and data-aware scheduling to leverage the 
co-located computational and storage resources

• Integration into Swift to leverage many applications
– Applications cover many domains: astronomy, astro-physics, 

medicine, chemistry, economics, climate modeling, etc
[SciDAC09] “Extreme-scale scripting: Opportunities for large task-parallel applications on petascale computers”

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”
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[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”
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• Falkon is a real system

– Late 2005: Initial prototype, AstroPortal

– January 2007: Falkon v0

– November 2007: Globus incubator project v0.1

• http://dev.globus.org/wiki/Incubator/Falkon

– February 2009: Globus incubator project v0.9

• Implemented in Java (~20K lines of code) and C 
(~1K lines of code)

– Open source: svn co https://svn.globus.org/repos/falkon

• Source code contributors (beside myself)

– Yong Zhao, Zhao Zhang, Ben Clifford, Mihael Hategan
[Globus07] “Falkon: A Proposal for Project Globus Incubation”



25

• Workload

• 160K CPUs

• 1M tasks

• 60 sec per task

• 2 CPU years in 453 sec

• Throughput: 2312 tasks/sec

• 85% efficiency

[TPDS09] “Middleware Support for Many-Task Computing”, under preparation
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[TPDS09] “Middleware Support for Many-Task Computing”, under preparation
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Provisioner

Dispatcher

1

Executor

1

Cobalt

Client
Executor

256

Dispatcher

N

Executor

1

Executor

256

Login Nodes

(x10)

I/O Nodes

(x640)

Compute Nodes 

(x40K)

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”



High-speed local disk

Falkon

28

Slower distributed 

storage

ZeptOS

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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text

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Shared File System

Idle Resources

Provisioned Resources

text

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Shared File System

Idle Resources

Provisioned Resources

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

• Resource acquired in response to 
demand

• Data diffuse from archival storage to 
newly acquired transient resources

• Resource “caching” allows faster 
responses to subsequent requests 

• Resources are released when 
demand drops

• Optimizes performance by co-
scheduling data and computations

• Decrease dependency of a 
shared/parallel file systems

• Critical to support data intensive MTC
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System Comments
Throughput 

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

System Comments
Throughput 

(tasks/sec)
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Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2
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Condor (v6.9.3) - Development 11
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[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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• End-to-end execution time: 

– 1260 sec in ideal case

– 4904 sec � 1276 sec

• Average task queue time: 

– 42.2 sec in ideal case

– 611 sec � 43.5 sec

• Trade-off:

– Resource Utilization for 
Execution Efficiency

GRAM

+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 

(32 nodes)
Time to 

complete 

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce 

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution 

Efficiency 26% 72% 75% 84% 85% 99% 100%
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GRAM

+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 

(32 nodes)

Queue 

Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2

Execution 

Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution 

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”
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• Monotonically Increasing Workload
– Emphasizes increasing loads

• Sine-Wave Workload
– Emphasizes varying loads

• All-Pairs Workload
– Compare to best case model of active storage

• Image Stacking Workload (Astronomy)
– Evaluate data diffusion on a real large-scale data-

intensive application from astronomy domain 

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”

[DIDC09] “Towards Data Intensive Many-Task Computing”
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�Throughput:

– Average: 14Gb/s vs 4Gb/s

– Peak: 81Gb/s vs. 6Gb/s

Response Time �

– 3 sec vs 1569 sec � 506X
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[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”

[DIDC09] “Towards Data Intensive Many-Task Computing”



• GPFS � 5.7 hrs,   ~8Gb/s,  1138 CPU hrs

• GCC+SRP � 1.8 hrs,   ~25Gb/s,  361 CPU hrs
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[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review

[DIDC09] “Towards Data Intensive Many-Task Computing”, under review



• Pull vs. Push

– Data Diffusion

• Pulls task working set

• Incremental spanning 

forest

– Active Storage:

• Pushes workload 
working set to all nodes 

• Static spanning tree

38
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[HPDC09] “The Quest for Scalable Support of Data Intensive Applications in Distributed Systems”, under review

[DIDC09] “Towards Data Intensive Many-Task Computing”, under review

Experiment Approach
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Christopher Moretti, Douglas Thain, 

University of Notre Dame
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39[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”
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• Wide range of analyses

– Testing, interactive analysis,

production runs

– Data mining

– Parameter studies
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”
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Falkon: a Fast and Light-weight tasK executiON framework
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• GRAM vs. Falkon: 85%~90% lower run time

• GRAM/Clustering vs. Falkon: 40%~74% lower run time

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”
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B. Berriman, J. Good (Caltech)

J. Jacob, D. Katz (JPL)

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”
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Falkon: a Fast and Light-weight tasK executiON framework
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• GRAM/Clustering vs. Falkon: 57% lower application run time

• MPI* vs. Falkon: 4% higher application run time

• * MPI should be lower bound

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”



• Determination of free 

energies in aqueous solution

– Antechamber – coordinates

– Charmm – solution

– Charmm - free energy

44
[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”
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• 244 molecules � 20497 jobs

• 15091 seconds on 216 CPUs � 867.1 CPU hours

• Efficiency: 99.8%

• Speedup: 206.9x � 8.2x faster than GRAM/PBS

• 50 molecules w/ GRAM (4201 jobs) � 25.3 speedup

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”
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• Classic benchmarks for MapReduce

– Word Count

– Sort

• Swift and Falkon performs similar or better than 
Hadoop (on 32 processors)

Sort
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• CPU Cores: 130816

• Tasks: 1048576

• Elapsed time: 2483 secs

• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Efficiency: 88%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”



start

report

DOCK6

Receptor

(1 per protein:

defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script

parameters

(defines flexible

residues, 

#MDsteps)

Amber Score:

1. AmberizeLigand

3. AmberizeComplex

5. RunNABScript

end

BuildNABScript

NAB

Script

NAB

Script

Template

Amber prep:

2. AmberizeReceptor

4. perl: gen nabscript

FRED

Receptor

(1 per protein:

defines pocket

to bind to)

Manually prep

DOCK6 rec file

Manually prep

FRED rec file

1 
protein
(1MB)

6 
GB
2M 

structures
(6 GB)

DOCK6FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

Select best ~5KSelect best ~5K

For 1 target:
4 million tasks

500,000 cpu-hrs
(50 cpu-years)48

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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CPU cores: 118784

Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec

Relative Efficiency: 99.7%

(from 16 to 32 racks)

Utilization: 

• Sustained: 99.6%

• Overall: 78.3%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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• Purpose

– On-demand “stacks” of 

random locations within 

~10TB dataset

• Challenge

– Processing Costs: 

• O(100ms) per object

– Data Intensive: 

• 40MB:1sec

– Rapid access to 10-10K 

“random” files

– Time-varying load

AP Sloan

Data

+

+

+

+

+

+

=

+

 Locality Number of Objects Number of Files

1 111700 111700

1.38 154345 111699

2 97999 49000

3 88857 29620

4 76575 19145

5 60590 12120

10 46480 4650

20 40460 2025

30 23695 790
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”
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[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
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�High data locality

– Near perfect scalability

• Aggregate throughput:

– 39Gb/s

– 10X higher than GPFS

• Reduced load on GPFS
– 0.49Gb/s

– 1/10 of the original load
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• There is more to HPC than tightly coupled MPI, 
and more to HTC than embarrassingly parallel 
long jobs
– MTC: Many-Task Computing

– Addressed real challenges in resource 
management in large scale distributed systems to 
enable MTC

– Covered many domains (via Swift and Falkon): 
astronomy, medicine, chemistry, molecular 
dynamics, economic modelling, and data analytics
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• Identified that data locality is crucial to the 
efficient use of large scale distributed systems 
for data-intensive applications � Data Diffusion
– Integrated streamlined task dispatching with data 

aware scheduling policies

– Heuristics to maximize real world performance

– Suitable for varying, data-intensive workloads

– Proof of O(NM) Competitive Caching
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• Embarrassingly Happily parallel apps are trivial to run

– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”

– Total computational requirements can be enormous

– Individual tasks may be tightly coupled

– Workloads frequently involve large amounts of I/O

– Make use of idle resources from “supercomputers” via backfilling 

– Costs to run “supercomputers” per FLOP is among the best

• Loosely coupled apps do not require specialized system software

– Their requirements on the job submission and storage systems can be extremely large

• Shared/parallel file systems are good for all applications

– They don’t scale proportionally with the compute resources

– Data intensive applications don’t perform and scale well

– Growing compute/storage gap

“Impossible only means that you 

haven't found the solution yet.”
Anonymous



• My publications directly related to MTC

– 27 articles and proposals

– 40+ formal presentations

– 250+ citations

• Activities for broader community engagement

– IEEE Workshop on Many-Task Computing on Grids and 

Supercomputers (MTAGS) 2008, co-located with SC08

– MegaJob08 BOF at SC08

– ACM MTAGS09, co-located with SC09

– IEEE Transactions on Parallel and Distributed Systems (TPDS), 

Special Issue on Many-Task Computing, November 2010 

• Courses

– “Big Data” at University of Chicago (Ian Foster)

– “Data-Intensive Computing” at Northwestern Univ. (Ioan Raicu) 55



• Open source project

– Falkon Incubator Project with Globus

– System wide installs on a variety of large systems

– Dozens of users, 100s of millions of jobs, millions of CPU hours 

• Other people’s work

– 2 PhD students at University of Chicago

– Multiple grant proposals to NSF

• New Science

– Astronomy: faint and transient object discovery

– Pharmaceuticals: drug screening and discovery

– Chemistry: predicting protein structure and recognizing docking partners

– Economic modeling: study economic model sensitivities

– Other domains: Astrophysics, bioinformatics, neuroscience, cognitive 

neuroscience, data analytics, data mining, biometrics  
56



• Falkon

– Needs Java (not portable to the largest supercomputers)

– Needs IP connectivity (an issue in the largest systems)

– Naïve decentralized scheduler

– No support for HPC workloads (e.g. MPI applications)

• Data Diffusion

– Data access patterns: write once, read many

– Task definition must include input/output files metadata

– Per task working set must fit in local storage

– Requires local storage (disk, memory, etc)

– Centralized data-aware scheduler
57



• Distributing Falkon architecture

– Distributed queuing system

– Distributed metadata management

– Scalable distributed data-aware scheduling

– Distributed file storage system

• Interactive HPC 

– Ensemble MPI applications

– Computational steering

• Computational and I/O Benchmarks

– Workflow-based benchmarks

– Characterizing capabilities of I/O systems

– Application-oriented I/O benchmarks

• Generalizing, transparency, and alternative technologies
58



• Cluster Computing on GPUs

• Distributed file/storage systems

• Distributed Operating Systems

• Data-intensive computing in Cloud Computing

• HPC in Cloud Computing

• Parallel programming systems/languages

59
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Hot Topics in Distributed Systems: 
Data-Intensive Computing
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ACM MTAGS09 Workshop

@ SC09
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IEEE TPDS Journal

Special Issue on MTC

Due Date: December 1st, 2009
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• More information: http://people.cs.uchicago.edu/~iraicu/

• Related Projects: 
– Falkon: http://dev.globus.org/wiki/Incubator/Falkon

– Swift: http://www.ci.uchicago.edu/swift/index.php

• People contributing ideas, slides, source code, applications, results, etc
– Ian Foster, Alex Szalay, Rick Stevens, Mike Wilde, Jim Gray, Catalin Dumitrescu, Yong Zhao, Zhao 

Zhang, Gabriela Turcu, Ben Clifford, Mihael Hategan, Allan Espinosa, Kamil Iskra, Pete Beckman, Philip 
Little, Christopher Moretti, Amitabh Chaudhary, Douglas Thain, Quan Pham, Atilla Balkir, Jing Tie, 
Veronika Nefedova, Sarah Kenny, Gregor von Laszewski, Tiberiu Stef-Praun, Julian Bunn, Andrew 
Binkowski , Glen Hocky, Donald Hanson, Matthew Cohoon, Fangfang Xia, Mike Kubal, … 

• Funding:
– NASA: 

• Ames Research Center, Graduate Student Research Program

• Jerry C. Yan, NASA GSRP Research Advisor

– DOE: 
• Mathematical, Information, and Computational Sciences Division subprogram of the Office of 

Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy

– NSF:
• TeraGrid

• CRA/NSF Computation Innovation Fellow


