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[GCE08] “Cloud Computing and Grid Computing 360-Degree Compared”
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Computer clusters using commodity processors, network 

interconnects, and operating systems.

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 4



13.6 GF/s

8 MB EDRAM

4 processors

1 chip, 1x1x1

13.6 GF/s

2 GB DDR

(32 chips  4x4x2)

32 compute, 0-4 IO cards

435 GF/s

64 GB 

32 Node Cards

32 Racks

500TF/s

64 TB 

Cabled 8x8x16Rack

Baseline System

Node Card

Compute Card

Chip

14 TF/s

2 TB 

Highly-tuned computer clusters using commodity 

processors combined with custom network 

interconnects and customized operating system 5

Supercomputing ~ HPC
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• Cray XT4 & XT5

– Jaguar #1

– Kraken #3

• IBM BladeCenter Hybrid

– Roadrunner #2

• IBM BlueGene/L & BlueGene/P

– Jugene #4

– Intrepid #8

– BG/L #7

• NUDT (GPU based)

– Tianhe-1 #5

• SGI Altix ICE

– Plaiedas #6

• Sun Constellation

– Ranger #9

– Red Sky #10
6
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Computational Resources 
(size approximate - not to scale)

SDSC

TACC

UC/ANL

NCSA

ORNL

PU

IU

PSC

NCAR

2007
(504TF)

2008

(~1PF)
Tennessee

LONI/LSU

Grids tend to be composed of multiple clusters, 

and are typically loosely coupled, 

heterogeneous, and geographically dispersed

Tommy Minyard, TACC
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Grids ~ Federation



• TeraGrid (TG)

– 200K-cores across 11 institutions and 22 systems 

over the US

• Open Science Grid (OSG)

– 43K-cores across 80 institutions over the US

• Enabling Grids for E-sciencE (EGEE)

• LHC Computing Grid from CERN

• Middleware

– Globus Toolkit

– Unicore

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 8
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Clouds ~ hosting

• A large-scale distributed computing 

paradigm driven by: 
1. economies of scale

2. virtualization

3. dynamically-scalable resources

4. delivered on demand over the Internet
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• Industry

– Google App Engine

– Amazon

– Windows Azure

– Salesforce

• Academia/Government

– Magellan

– FutureGrid

• Opensource middleware

– Nimbus

– Eucalyptus

– OpenNebula
Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing
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• IT reinvents itself every five years

• The answer is complicated…

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing

• YES: the vision is the same

– to reduce the cost of computing

– increase reliability

– increase flexibility by transitioning from self operation to third 

party

13



• NO: things are different than they were 10 years ago

– New needs to analyze massive data, increased demand for 

computing 

– Commodity clusters are expensive to operate

– We have low-cost virtualization

– Billions of dollars being spent by Amazon, Google, and 

Microsoft to create real commercial large-scale systems with 

hundreds of thousands of computers

– The prospect of needing only a credit card to get on-demand 

access to *infinite computers is exciting; *infinite<O(1000)

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing
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• YES: the problems are mostly the same

– How to manage large facilities

– Define methods to discover, request, and use resources

– How to implement and execute parallel computations

– Details differ, but issues are similar

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing
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• Animoto

– Makes it really easy for people to create videos 

with their own photos and music

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 17
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• Why is this a big deal?

– No owned infrastructure 

– All resources rented on demand

• Critical for startups with risky 

business plans

• Not possible without Cloud 

Computing and a credit card

– Launched in 2007/2008 

timeframe

18Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing
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• AstroPortal

– Makes it really easy for astronomers to create 

stackings of objects from the Sloan Digital Sky 

Servey (SDSS) dataset

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing
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http://www.eecs.northwestern.edu/~iraicu/projects/Falkon/astro_portal.htm


• Goal: enable the rapid and efficient execution of 
many independent jobs on large compute resources

• Combines three components:
– a streamlined task dispatcher

– resource provisioning through multi-level scheduling 
techniques

– data diffusion and data-aware scheduling to leverage the 
co-located computational and storage resources

• Integration into Swift to leverage many applications
– Applications cover many domains: astronomy, astro-physics, 

medicine, chemistry, economics, climate modeling, etc

21

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Available Resources 

(GRAM4)

Provisioned Resources

text

Executor

1

Wait Queue

Executor

i

Executor

n

Dynamic 

Resource 

Provisioning

User

[SciDAC09] “Extreme-scale scripting: Opportunities for large task-parallel applications on petascale computers”

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”



• HTC: High-Throughput Computing

– Typically applied in clusters and grids

– Loosely-coupled applications with sequential jobs

– Large amounts of computing for long periods of times

– Measured in operations per month or years

• HPC: High-Performance Computing

– Synonymous with supercomputing

– Tightly-coupled applications 

– Implemented using Message Passing Interface (MPI)

– Large of amounts of computing for short periods of time

– Usually requires low latency interconnects

– Measured in FLOPS 22



• Bridge the gap between HPC and HTC

• Applied in clusters, grids, and supercomputers

• Loosely coupled apps with HPC orientations

• Many activities coupled by file system ops

• Many resources over short time periods

– Large number of tasks, large quantity of computing, 

and large volumes of data

[MTAGS08 Workshop] Workshop on Many-Task Computing on Grids and Supercomputers 2008

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
23
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[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
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• Local Disk:

– 2002-2004: ANL/UC TG Site 

(70GB SCSI)

– Today: PADS (RAID-0, 6 

drives 750GB SATA)

• Cluster:

– 2002-2004: ANL/UC TG Site 

(GPFS, 8 servers, 1Gb/s each)

– Today: PADS (GPFS, SAN)

• Supercomputer:

– 2002-2004: IBM Blue Gene/L 

(GPFS)

– Today: IBM Blue Gene/P (GPFS)

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 26
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Executor

1

Cobalt

Client
Executor
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[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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High-speed local disk

Falkon

28

Slower distributed 

storage

ZeptOS

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”



text

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Shared File System

Idle Resources

Provisioned Resources

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

• Resource acquired in response to 
demand

• Data diffuse from archival storage to 
newly acquired transient resources

• Resource “caching” allows faster 
responses to subsequent requests 

• Resources are released when 
demand drops

• Optimizes performance by co-
scheduling data and computations

• Decrease dependency of a 
shared/parallel file systems

• Critical to support data intensive MTC
Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 29
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Executor Implementation and Various Systems

System Comments
Throughput 

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22
[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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• Pull vs. Push

– Data Diffusion

• Pulls task working set

• Incremental spanning 

forest

– Active Storage:

• Pushes workload 

working set to all nodes 

• Static spanning tree

33
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• Wide range of analyses

– Testing, interactive analysis,

production runs

– Data mining

– Parameter studies
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”
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Falkon: a Fast and Light-weight tasK executiON framework
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• GRAM vs. Falkon: 85%~90% lower run time

• GRAM/Clustering vs. Falkon: 40%~74% lower run time

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”
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B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation” 37
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Falkon: a Fast and Light-weight tasK executiON framework
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• GRAM/Clustering vs. Falkon: 57% lower application run time

• MPI* vs. Falkon: 4% higher application run time

• * MPI should be lower bound

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”
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• Determination of free 

energies in aqueous solution

– Antechamber – coordinates

– Charmm – solution

– Charmm - free energy

39

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”
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• 244 molecules  20497 jobs

• 15091 seconds on 216 CPUs  867.1 CPU hours

• Efficiency: 99.8%

• Speedup: 206.9x  8.2x faster than GRAM/PBS

• 50 molecules w/ GRAM (4201 jobs)  25.3 speedup

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”



Scalable 

Resource 

Manageme

41

• Classic benchmarks for MapReduce

– Word Count

– Sort

• Swift and Falkon performs similar or better than 

Hadoop (on 32 processors)
Sort

42
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• CPU Cores: 130816

• Tasks: 1048576

• Elapsed time: 2483 secs

• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Efficiency: 88%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”



CPU cores: 118784

Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec

Relative Efficiency: 99.7%

(from 16 to 32 racks)

Utilization: 

• Sustained: 99.6%

• Overall: 78.3%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”
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• Purpose

– On-demand “stacks” of 

random locations within 

~10TB dataset

• Challenge

– Processing Costs: 

• O(100ms) per object

– Data Intensive: 

• 40MB:1sec

– Rapid access to 10-10K 

“random” files

– Time-varying load

AP Sloan
Data

+

+

+

+

+

+

=

+

 Locality Number of Objects Number of Files

1 111700 111700

1.38 154345 111699

2 97999 49000

3 88857 29620

4 76575 19145

5 60590 12120

10 46480 4650

20 40460 2025

30 23695 790
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”
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High data locality

– Near perfect scalability

• Aggregate throughput:

– 39Gb/s

– 10X higher than GPFS

• Reduced load on GPFS
– 0.49Gb/s

– 1/10 of the original load
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• There is more to HPC than tightly coupled MPI, and more to 
HTC than embarrassingly parallel long jobs
– MTC: Many-Task Computing

– Addressed real challenges in resource management in large scale 
distributed systems to enable MTC

– Covered many domains (via Swift and Falkon): astronomy, medicine, 
chemistry, molecular dynamics, economic modelling, and data analytics

• Identified that data locality is crucial to the efficient use of large 
scale distributed systems for data-intensive applications 
Data Diffusion
– Data aware scheduling policies

– Heuristics to maximize real world performance

– Suitable for varying, data-intensive workloads

– Proof of O(NM) Competitive Caching

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 48
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• Falkon is a real system

– Late 2005: Initial prototype, AstroPortal

– January 2007: Falkon v0

– November 2007: Globus incubator project v0.1

• http://dev.globus.org/wiki/Incubator/Falkon

– February 2009: Globus incubator project v0.9

• Implemented in Java (~20K lines of code) and C 

(~1K lines of code)

– Open source: svn co https://svn.globus.org/repos/falkon

• Source code contributors (beside myself)

– Yong Zhao, Zhao Zhang, Ben Clifford, Mihael Hategan
[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[CLUSTER10] “Middleware Support for Many-Task Computing”

• Workload

• 160K CPUs

• 1M tasks

• 60 sec per task

• 2 CPU years in 453 sec

• Throughput: 2312 tasks/sec

• 85% efficiency

http://dev.globus.org/wiki/Incubator/Falkon
https://svn.globus.org/repos/falkon
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[CLUSTER10] “Middleware Support for Many-Task Computing”
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• Embarrassingly Happily parallel apps are trivial to run

– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”

– Total computational requirements can be enormous

– Individual tasks may be tightly coupled

– Workloads frequently involve large amounts of I/O

– Make use of idle resources from “supercomputers” via backfilling 

– Costs to run “supercomputers” per FLOP is among the best

• Loosely coupled apps do not require specialized system software

– Their requirements on the job submission and storage systems can be extremely large

• Shared/parallel file systems are good for all applications

– They don’t scale proportionally with the compute resources

– Data intensive applications don’t perform and scale well

– Growing compute/storage gap

“Impossible only means that you 

haven't found the solution yet.”
Anonymous

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 51



• Hot Topics in Distributed Systems: Data-Intensive Computing
– Northwestern University (EECS495), Instructor

– http://www.eecs.northwestern.edu/~iraicu/teaching/EECS495-DIC/index.html

• Big Data: Data-intensive Computing Methods, Tools, and Apps
– University of Chicago (CMSC 34900), Dr. Ian Foster

– http://dsl-wiki.cs.uchicago.edu/index.php/BigData09

• Networks and Distributed Systems (2006)
– University of Chicago (CMSC 33300), TA

– http://dsl.cs.uchicago.edu/Courses/CMSC33300/index.html

• Grid Computing (2005)
– University of Chicago (CMSC 33340), TA

– http://www.mcs.anl.gov/~itf/CMSC23340/
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ACM ScienceCloud Workshop

@ HPDC2010

Chicago, IL

June 21st, 2010

Scalable Resource Management in Cloud Computing, Grid Computing and Supercomputing 53

http://dsl.cs.uchicago.edu/ScienceCloud2010/


• ScienceCloud: ACM Workshop on Scientific Cloud Computing, 2010

• TPDS: IEEE Transactions on Parallel and Distributed Systems, Special 

Issue on Many-Task Computing, 2010

• HPDC: ACM International Symposium on High Performance Distributed 

Computing, 2010

• SWF: IEEE International Workshop on Scientific Workflows, 2010

• TG: TeraGrid Conference, 2010

• SC: IEEE/ACM Supercomputing Conference, 2010

• MTAGS: ACM Workshop on Many-Task Computing on Grids and 

Supercomputers, 2009

• MTAGS : IEEE Workshop on Many-Task Computing on Grids and 

Supercomputers, 2008

• BegaJob: Bird of Feather Session – “How to Run One Million Jobs”, at 

IEEE/ACM SC08, 2008
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• More information: http://www.eecs.northwestern.edu/~iraicu/

• Related Projects: 
– Falkon: http://dev.globus.org/wiki/Incubator/Falkon

– Swift: http://www.ci.uchicago.edu/swift/index.php

• People contributing ideas, slides, source code, applications, results, etc
– Ian Foster, Alex Szalay, Rick Stevens, Mike Wilde, Jim Gray, Catalin Dumitrescu, 

Yong Zhao, Zhao Zhang, Gabriela Turcu, Ben Clifford, Mihael Hategan, Allan 
Espinosa, Kamil Iskra, Pete Beckman, Philip Little, Christopher Moretti, Amitabh
Chaudhary, Douglas Thain, Quan Pham, Atilla Balkir, Jing Tie, Veronika
Nefedova, Sarah Kenny, Gregor von Laszewski, Tiberiu Stef-Praun, Julian Bunn, 
Andrew Binkowski , Glen Hocky, Donald Hanson, Matthew Cohoon, Fangfang
Xia, Mike Kubal, Alok Choudhary… 

• Funding:
– NASA: Ames Research Center, Graduate Student Research Program

– DOE: Office of Advanced Scientific Computing Research

– NSF: TeragGrid and Computing Research Innovation Fellow Program
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