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Exascale Compuiing
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‘'oday (2010): Petascale Computing

— 5K~50K nodes
— 50K~200K processor-cores
* Near future (=2018). Exascale Computing

— ~1M nodes (20X~200X)
— ~1B processor-cores/threads (5000X~20000X)
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Cloud Computiing

* Relatively new paradigm... 3 years old
 Amazon in 2009

— 40K servers split over 6 zones
« 320K-cores, 320K disks
« $100M costs + $12M/year in energy costs
* Revenues about $250M/year

« Amazon in 2018
— Will likely look similar to exascale computing
 100K~1M nodes, ~1B-cores, ~1M disks
« $100M~$200M costs + $10M~$20M/year in energy
* Revenues 100X~1000X of what they are today
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Comimon Challenges

* Power efficiency
— Wil imit the number of cores on a chip (Manycore)
— Wil limit the number of nodes in cluster (Exascale and

Cloud)
— WIll dictate a significant part of the cost of ownership

* Programming models/languages

— Automatic parallelization

— Threads, MPI, workflow systems, etc
— Functional, imperative

— Languages vs. Middlewares
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Common Challenges

 Bottlenecks Iin scarce resources

— Storage (Exascale and Clouds)
— Memory (Manycore)

* Reliability
— How to keep systems operational in face of failures
— Checkpointing (Exascale)
— Node-level replication enabled by virtualization
(Exascale and Clouds)
— Hardware redundancy and hardware error correction
(Manycore)
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Research Directions

« Decentralization is critical
— Computational resource management (e.g. LRMs)
— Storage systems (e.g. parallel file systems)

« Data locality must be maximized, while
preserving I/O interfaces
— POSIX I/O on shared/parallel file systems ignore locality

— Data-aware scheduling coupled with distributed file
systems that expose locality is the key to scalability over
the next decade
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Storage Sysiem Architecture
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Plan of Work

« Building on my own research (e.g. data-diffusion), parallel
file systems (PVFS), and distributed file systems (e.g. GFS)

« Build a distributed file system for HEC
— It should complement parallel file systems, not replace them

 Critical issues:
— Must mimic parallel file systems interfaces and features in order to get
wide adoption
— Must handle some workloads currently run on parallel file systems
significantly better
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« Access Interfaces and Semantics
— POSIX-like compliance for generality (e.g. via FUSE)
— Relaxed semantics to increase scalability
» Eventual consistency on data modifications
« Write-once read-many data access patterns
« Distributed metadata management
— Employ structured distributed hash tables like data-structures
— Must have O(1) put/get costs
— Can leverage network-aware topology overlays

 Distribute data across many nodes
— Must maintain and expose data locality in access patterns
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Access Patiterns

1-many read (all processes read the same file
and are not modified)

many-many read/write (each process
read/write to a unigque file)

write-once read-many (files are not modified
after it is written)

append-only (files can only be modified by
appending at the end of files)

metadata (metadata is created, modified, and/or
destroyed at a high rate).
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Usage Scenarios

machine boot-up (e.g. reading OS image on all nodes)

application loading (e.g. reading scripts, binaries, and
libraries on all nodes/processes)

common user data loading (e.g. reading a common
read-only database on all nodes/processes)

checkpointing (e.g. writing unigue files per
node/process)

log writing (writing unique files per node/process)

many-task computing (each process reads some files,
unique or shared, and each process writes unique files)
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Collaborations

Mike Wilde

— Swift: allow Swift to scale better where parrallel file
systems pose a scalability bottleneck

Matei Ripeanu (who is also working with Mike
Wilde)

— Integrate research results into MosaStore (e.qg.
distributed meta-data)

Rob Ross
— Guidance and comparison with PVFS

Others: lan Foster, Kamil Iskra, Pete Beckman
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* More information:
— http://www.cs.iit.edu/~iraicu/

— lraicu@cs.liit.edu
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