Avoiding Achilles’ Heel In
Exascale Computing with
Distributed File Systems

loan Raicu
Computer Science Department, lllinois Institute of Technology
Math and Computer Science Division, Argonne National Laboratory

January 14%, 2011

Number of Cores

Manycore Compuiing

300 L 100
Q0
250 « Today (2010): Multicore Computing
200 — 1=12 cores commodity architectures
150 |~ 80 cores proprietary architectures
— 480 GPU cores
100 « Near future (~2018): Manycore Computing
5o — —1000 cores commodity-architectures
0 Fﬂk — - ‘ ‘ - 0

2004 2006 2008 2010 2012 2014 2016 2018

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable
Objects, November 9t, 2007

Exascale Compuiing

300,000

250,000

200,000

1(

Top500 Core-Max (# of cores)
=
[]

—-Top500 Core-Max
-=Top500 Core-Sum

I; 5,000,000

soo‘

‘'oday (2010): Petascale Computing

— 5K~50K nodes
— 50K~200K processor-cores
* Near future (=2018). Exascale Computing

— ~1M nodes (20X~200X)
— ~1B processor-cores/threads (5000X~20000X)

Projected Performance Development

hitp://'www .top500.0rg/

Top500 Projected Development,

http://www.top500.org/lists/2009/11/performance development

http://www.top500.org/lists/2009/11/performance_development
http://www.top500.org/

Cloud Computiing

* Relatively new paradigm... 3 years old
 Amazon in 2009

— 40K servers split over 6 zones
« 320K-cores, 320K disks
« $100M costs + $12M/year in energy costs
* Revenues about $250M/year

« Amazon in 2018
— Will likely look similar to exascale computing
 100K~1M nodes, ~1B-cores, ~1M disks
« $100M~$200M costs + $10M~$20M/year in energy
* Revenues 100X~1000X of what they are today

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems

Comimon Challenges

* Power efficiency
— Wil imit the number of cores on a chip (Manycore)
— Wil limit the number of nodes in cluster (Exascale and

Cloud)
— WIll dictate a significant part of the cost of ownership

* Programming models/languages

— Automatic parallelization

— Threads, MPI, workflow systems, etc
— Functional, imperative

— Languages vs. Middlewares

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems

Common Challenges

 Bottlenecks Iin scarce resources

— Storage (Exascale and Clouds)
— Memory (Manycore)

* Reliability
— How to keep systems operational in face of failures
— Checkpointing (Exascale)
— Node-level replication enabled by virtualization
(Exascale and Clouds)
— Hardware redundancy and hardware error correction
(Manycore)

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems

Research Directions

« Decentralization is critical
— Computational resource management (e.g. LRMs)
— Storage systems (e.g. parallel file systems)

« Data locality must be maximized, while
preserving I/O interfaces
— POSIX I/O on shared/parallel file systems ignore locality

— Data-aware scheduling coupled with distributed file
systems that expose locality is the key to scalability over
the next decade

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 7

Storage Sysiem Architecture

A - L=
N WINA > VN >) \\Q,\\A
{
Y WINA = Vo > W\ = U
{ -
& - TN = W\ > N W = i
\ & I\ > W\ > I\ - Vi
— @ ,,V B
4 (&) _ |WH
\w\\ W e Wi\ W > WA = Wi
) ,,w (s
\/ —~ U \ A.u
\ N > W\ - WA A > Ve
o :
L RS IR V)R Y- e V- JEE
2 o z
= (© e
> v
o A
< (XL A
< (LA
LA

Plan of Work

« Building on my own research (e.g. data-diffusion), parallel
file systems (PVFS), and distributed file systems (e.g. GFS)

« Build a distributed file system for HEC
— It should complement parallel file systems, not replace them

 Critical issues:
— Must mimic parallel file systems interfaces and features in order to get
wide adoption
— Must handle some workloads currently run on parallel file systems
significantly better

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 9

P 3ﬁ @EF W@ Fk (cont)

« Access Interfaces and Semantics
— POSIX-like compliance for generality (e.g. via FUSE)
— Relaxed semantics to increase scalability
» Eventual consistency on data modifications
« Write-once read-many data access patterns
« Distributed metadata management
— Employ structured distributed hash tables like data-structures
— Must have O(1) put/get costs
— Can leverage network-aware topology overlays

 Distribute data across many nodes
— Must maintain and expose data locality in access patterns

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems

10

Access Patiterns

1-many read (all processes read the same file
and are not modified)

many-many read/write (each process
read/write to a unigque file)

write-once read-many (files are not modified
after it is written)

append-only (files can only be modified by
appending at the end of files)

metadata (metadata is created, modified, and/or
destroyed at a high rate).

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 11

Usage Scenarios

machine boot-up (e.g. reading OS image on all nodes)

application loading (e.g. reading scripts, binaries, and
libraries on all nodes/processes)

common user data loading (e.g. reading a common
read-only database on all nodes/processes)

checkpointing (e.g. writing unigue files per
node/process)

log writing (writing unique files per node/process)

many-task computing (each process reads some files,
unique or shared, and each process writes unique files)

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 12

Collaborations

Mike Wilde

— Swift: allow Swift to scale better where parrallel file
systems pose a scalability bottleneck

Matei Ripeanu (who is also working with Mike
Wilde)

— Integrate research results into MosaStore (e.qg.
distributed meta-data)

Rob Ross
— Guidance and comparison with PVFS

Others: lan Foster, Kamil Iskra, Pete Beckman

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems

13

* More information:
— http://www.cs.iit.edu/~iraicu/

— lraicu@cs.liit.edu

Avoiding Achilles’ Heel in Exascale Computing with Distributed File Systems 14

http://www.cs.iit.edu/~iraicu/
mailto:iraicu@cs.iit.edu

