
INTERNET PROTOCOLS, TECHNOLOGY AND APPLICATIONS (VoIP)

Comparison of end-system IPv6 protocol stacks

S. Zeadally, R. Wasseem and I. Raicu

Abstract: The Internet Protocol version 6 (also known as IPv6) has been developed to replace the
current IPv4 protocol. Various operating systems running at end-systems now support IPv6
protocol stacks and network infrastructures (hosts, routers) are currently being deployed to support
IPv6 features. IPv6 stacks on end-systems constitute an important component in the migration and
adoption of IPv6. To investigate the impact of IPv6 on user applications, an empirical evaluation
was conducted on the performance of IPv4 and IPv6 protocol stacks on the Linux operating
system for TCP and UDP protocols. The IPv6 performance obtained on Linux was compared with
the performance of IPv6 of other commodity operating systems, namely Solaris 8 and Windows
2000. The experimental results demonstrate that the IPv6 protocol stack for Linux outperforms
IPv6 stacks of these operating systems.

1 Introduction

The Internet Protocol version 4 (IPv4) [1] was developed in
the early 1980s. Since then, it has established itself as a
primary protocol which enables internetworking thereby
allowing a vast array of client/server or peer-to-peer
applications to communicate. TCP/IP engineers and
designers recognised the need for upgrading in the late
1980s when it became apparent that the existing IP protocol
would not be adequate to support the continued exponen-
tial growth of the Internet. In 1994, the Internet Engineering
Steering Group approved a new Internet Protocol, first
called IP next generation (IPng), and later known as
Internet Protocol version 6 (IPv6) [2, 3]. The most
important issue driving the need for IPv6, but not the only
one, is the rapid depletion of IPv4 network addresses. IPv6
main features include: ‘plug and play’ which makes it easier
for new users with not much TCP/IP knowledge to connect
their machines to the network since all configuration will be
done automatically, ‘scalability’ with its 128-bit address
space, ‘security’ which includes encryption, ‘real-time
support’ consideration (using the flow label field) and
others, such as ‘multicasting’ [4].

Most of the existing protocol stacks, systems and
applications run on IPv4-based systems. Changes to these
systems can have significant impact on existing applications
and must therefore be carefully implemented. While a
principal design objective of IPv6 was to ease the transition
from and coexistence with IPv4, the migration of
IPv4-based systems to IPv6 will be a major challenge
despite IPv6’s built-in features that are backward-compa-
tible with IPv4 [3]. Options, such as tunnelling of IPv4
packets over IPv6 and tunnelling IPv6 over IPv4, are
needed for a smooth transition. In the last few years,
network and operating system vendors have started to

include support in many of their network applications and
communication software products.

Migrating from IPv4 to IPv6 in current applications, or
implementation of new IPv6 applications, requires the
support of many components (application programming
interfaces (APIs), protocol stack, routers etc.) of network
systems. In this work however, we focus on the end-system
which constitutes an important component in the deploy-
ment of IPv6-based systems. The IPv6 protocol stack at the
end-system is expected to have a definite impact on end-to-
end performance of emerging IPv6 applications. We have
reported, in previous work [5], an extensive performance
comparison between the IPv6 stacks running on Solaris and
Windows 2000. Given the wide popularity and acceptance
of the Linux operating system, we thought it would be
interesting to carry the comparison obtained with Windows
2000 and Solaris further with the IPv6 stack performance
delivered by Linux. Windows 2000 had the IPv4 stack as a
standard protocol. However, to obtain IPv6 support, an
add-on package was installed. There were two choices, both
written byMicrosoft and they were both in Beta testing. We
chose the newer release of the two, ‘Microsoft IPv6
Technology Preview for Windows 2000’ [6], which is
supported by Winsock 2 as its programming API. Solaris
8 and Linux both have dual production level IPv4/IPv6
stacks. The IPv6 protocol stack has been implemented in
Linux kernel (version 2.1.8) since 1996 and current 2.2.x
and 2.4.x kernel versions fully support IPv6. In this work we
use Linux Red Hat version 7.3 (Valhalla) with kernel
version 2.4.18-3.

2 Related works

The main motivation behind our work was driven by the
fact that there are few published performance comparisons
(as discussed below) between IPv4 and IPv6 protocol stacks
at the end-system. This work differs from previous efforts of
other researchers in that we performed a performance
evaluation of three IPv6 protocol stack implementations on
three widely used operating systems, in contrast to most
previous works which compare IPv4 and IPv6 on one
platform only or, as in the case of our previous work, on
two operating systems [5]. We now briefly present some
related work conducted recently and highlight how these

The authors are with the High-Speed Networking Laboratory, Department of
Computer Science, Wayne State University, Detroit, MI, 48034, USA

r IEE, 2004

IEE Proceedings online no. 20040283

doi:10.1049/ip-com:20040283

Paper first received 16th April and in revised form 18th November 2003.
Originally published online 21st May 2004

238 IEE Proc.-Commun., Vol. 151, No. 3, June 2004



efforts differ from ours. Draves et al. [7] presented a
performance evaluation of a small subset of tests (actually
only throughput) on a prototype IPv6 stack for Windows
NT. In [8], a performance comparison was performed
between IPv6 and IPv4 on Linux using a gigabit Ethernet
adapter. The author conducted only some of the tests we
report in this paper and did not compare IPv4/IPv6 stacks
for different operating systems. In [9], the authors evaluate
the performance of data transmission over IPv4 and IPv6
using various security protocols. They utilised end hosts
with FreeBSD 2.2.8 and a KAME [10] IPv6 protocol stack
and did not perform detailed testing based on the metrics
discussed in this work. In [11], the author presented an
evaluation of IPv6 compared to IPv4 using the dual stack
implementation of KAME over a FreeBSD operating
system using the ping utility and an FTP application; the
metrics used were latency and file transfer throughput. They
used the FTP application to find out the throughput rates
over the IPv6 protocol, and used the ping utility to find the
latency. They did not experiment with parameters such as
packet size, connection time or protocol type (since they
could not perform any UDP tests due to the nature of
FTP).

3 Testbed configuration and measurement
procedures

3.1 Testbed configuration
Two identical workstations were connected using a point-
to-point (P2P) link. Using a P2P configuration eliminates
many variables (e.g. router processing) from the experi-
ments on the tested protocols on different operating systems
using the same underlying hardware. Both workstations
were each equipped with an Intel Pentium III 500 MHz
processor, 256 megabytes of SDRAM PC100, 30GB IBM
7200 RPM IDE hard drives and 100 Mbit/s PCI Ethernet
network adapters. The workstations were each loaded with
Windows 2000 Professional, Solaris 8.0 and Linux Red Hat
version 7.3 (Valhalla) (kernel version 2.4.18-3) operating
systems on separate but identical hard drives.

3.2 Measurement procedures and
performance metrics
We repeated similar experimental tests as these conducted in
[5] and used the same performance metrics on the Linux
platform which include: throughput (measured in Mbit/s),
the rate at which bulk data transfers can be transmitted
from one host to another over a sufficiently long period of
time; round-trip time (RTT) (measured in microseconds),
the amount of time it takes for one packet to travel from
one host to another and back to the originating host (it is
worthwhile noting that for TCP throughput and round-trip
latency measurements we enabled the TCP_NODELAY
option which has the effect of disabling the Nagle algorithm
for send coalescing); socket creation time and TCP
connection time, the amount of time (measured in
microseconds) it takes to create a socket and to make a
connection (for TCP), respectively; and web client/server
simulation (measured in number of connections performed
per second), this simulation tested how many connections
could be performed per second. For each test, a socket was
created, a TCP connection was set up, a one-byte message
was sent and received, the connection was then torn down
and the socket destroyed.

We implemented all performance measurement software
used in our tests and for some tests we also used Netperf3
[12]. Most tests were executed for a sufficiently long period
of time using various packet sizes ranging from 64 to 1408

bytes. The reason for this choice for the packet size range
stems from observations that most packet sizes observed on
networks and the Internet are within this range [13, 14].

4 Experimental results

In this Section we present and discuss the experimental
results obtained from our tests for the IPv6 stacks on the
three operating system platforms.

4.1 Throughput
Figures 1 and 2 show the TCP and UDP throughput results
for different packet sizes. From the TCP throughput results
in Fig. 1, we observe that for Solaris, there is a significant
difference in throughput between IPv4 and IPv6 for
message sizes less than 256 bytes. Actually, IPv4 yields
almost three times higher throughput than IPv6 for these
message sizes. However, the throughput differences decrease
with increasing message sizes as shown in Fig. 1 (from 1024
bytes onwards). In the case of Windows 2000, throughput
results are quite different. In this case, we observe that for
small message sizes, we obtain very close throughput for
both IPv4 and IPv6. However, above 512-byte messages, we
note that IPv4 yields about 11% higher throughput than
IPv6. In contrast, throughput for Linux is consistently high
for all message sizes tested (around 93Mbit/s) for both IPv4
and IPv6. There is only a minor throughput degradation of
about 1Mbit/s with IPv6 on Linux, with one exception at a
message size of 256 bytes, where it drops to 70 Mbit/s for
IPv6 compared to 94 Mbit/s with IPv4.

0

20

40

60

80

100

0 128 256 384 512 640 768 896 1024 1152 1280 1408

packet size, bytes

th
ro

ug
hp

ut
, M

bi
t/s

TCP/IPv4 W2K

TCP/IPv4 Solaris8

TCP/IPv4 LinuxTCP/IPv6 W2K

TCP/IPv6 Solaris8

TCP/IPv6 Linux

Fig. 1 TCP throughput for IPv4 and IPv6 over Windows 2000,
Solaris 8 and Linux for packet sizes ranging from 64 to 1408 bytes

0

20

40

60

80

100

th
ro

ug
hp

ut
, M

bi
t/

s

UDP/IPv4 W2K

UDP/IPv4 Solaris8

UDP/IPv4 LinuxUDP/IPv6 W2K

UDP/IPv6 Solaris8

UDP/IPv6 Linux

0 128 256 384 512 640 768 896 1024 1152 1280 1408
packet size, bytes

Fig. 2 UDP throughput for IPv4 and IPv6 over Windows 2000,
Solaris 8 and Linux with packet sizes ranging from 64 to 1408 bytes

IEE Proc.-Commun., Vol. 151, No. 3, June 2004 239



For UDP throughput (Fig. 2), the results obtained are
quite different. In this case, for Solaris, we observe similar
performance for both IPv4 and IPv6 even for small message
sizes (less than 256 kbytes) compared to the performance
obtained with TCP (Fig. 1). Similarly, on Windows 2000,
we obtained similar throughput for both IPv4 and IPv6 for
small messages. However, as message size increases, we
observe a lower throughput for IPv6. Actually, beyond 1
kbyte message size, IPv6 results in 25% lower throughput
than that obtained with IPv4. UDP throughput on Linux
was close to those obtained on Solaris and shows similar
trends for IPv4 and IPv6.

A plausible speculation that could explain the reason why
we obtain better IPv4 and IPv6 performance for both TCP
and UDP protocols on the UNIX platforms (Solaris and
Linux) compared to Windows 2000 is probably due to the
way kernel network buffers are allocated and used by
Solaris and Linux operating systems. On Solaris, the
STREAMS [15] subsystem is used in the implementation
of its transport and network protocol stacks and network
buffers of different sizes are pre-allocated by the kernel. The
STREAMS subsystem uses a best-fit strategy for data
buffer requests. When a network application transmits data,
the underlying STREAMS subsystem uses one or more of
the pre-allocated buffers (thereby avoiding overheads
associated with buffer allocations). In the case of Linux,
which is based on the traditional BSD socket implementa-
tion, we also have pre-allocation of a number of fixed-sized
memory buffers called ‘mbufs’. A typical mbuf size is
around 256 bytes (depending on the underlying operating
system). When a network application transmits network
data larger than the mbuf size, a series of mbufs, chained
together is used; the exact number of mbufs depends on
some defined threshold value (typically around 900 bytes).
When the application’s data exceeds this threshold, the first
mbuf is then chained to a larger memory buffer called a
‘cluster’ (cluster sizes also vary among operating systems).
We hypothesise that pre-allocated kernel buffers (for
network transmission) on both Solaris and Linux probably
account for the close throughput performance obtained on
these platforms for IPv4 and IPv6 for message sizes greater
than 512 bytes. However, for smaller message sizes, we do
observe lower throughput for IPv6, probably because the
overheads of the IPv6 address size is more significant. For
instance, for a message size of 128 bytes, overheads due to
the address size is 12.5% and 3% for IPv6 and IPv4,
respectively, whereas for a message size of 512 bytes, the
overheads drop to 3% and 0.78% for IPv6 and IPv4,
respectively.

We further speculate (in the absence of Windows 2000
source code availability) that kernel buffer allocation
strategies are less efficient for the Windows platform
compared to its UNIX counterparts. The inefficient buffer
allocation strategies during network transmission probably
explain why, with increasing message size, throughput (for
both IPv4 and IPv6) is lowest for Windows 2000 since
buffer allocation overheads probably increase with increas-
ing message sizes.

4.2 Round-trip latency
Latency is an important performance metric for many
network-based applications. Continuous media applica-
tions, such as those involving audio and video, are
particularly sensitive to delay. Transactional applications
(involving mostly request–reply operations), such as HTTP
and DNS implementations, are sensitive to round-trip
latency. In this context, in this Section, we present the
impact of IPv6 and IPv4 stacks on end-to-end latency

performance of user applications. The TCP and UDP
round-trip latency results are shown in Figs. 3 and 4. As
Fig. 3, shows, on Windows 2000, the TCP round-trip
latency with IPv6 is about 30% higher (worse) compared to
the IPv4 stack for small messages (up to 1 kbyte). In the
case of Solaris, we observe a 5% increase in latency for IPv6
compared to IPv4. For packet sizes greater than 1 kbyte, on
both Solaris and Windows 2000, we obtain around 1–2%
increase in latency using IPv6 with TCP, most probably due
to the amortisation of overheads associated with larger
packet sizes (larger user payloads).

For the UDP latency results depicted in Fig. 4, we also
obtain around 30% higher latency with IPv6 on Windows
2000 for messages up to 1 kbyte. With increasing message
sizes, the latency difference between IPv4 and IPv6 packets
decreases. In the case of Solaris, we also obtain around 5%
higher latency with IPv6 compared to IPv4. It is interesting
to note also that we do not observe significant latency
differences between TCP and UDP (at least for the message
sizes tested) for both Windows 2000 and Solaris operating
systems despite the fact that TCP has more overheads
associated with it compared to UDP.

From Fig. 3, the round-trip latency results of TCP/IPv6
for Linux were consistently lower than those on Solaris or
Windows 2000 for both IPv4 and IPv6. In fact, for message

0

100

200

300

400

500

600

700

0 128 256 384 512 640 768 896 1024 1152 1280 1408
packet size, bytes

R
T

T
 la

te
nc

y,
 µ

s

TCP/IPv4 W2K

TCP/IPv4 Solaris8

TCP/IPv4 LinuxTCP/IPv6 W2K

TCP/IPv6 Solaris8

TCP/IPv6 Linux

Fig. 3 TCP latency results for IPv4 and IPv6 over Windows 2000,
Solaris 8 and Linux with packet size ranging from 64 to 1408 bytes

0

100

200

300

400

500

600

700

0 128 256 384 512 640 768 896 1024 1152 1280 1408
packet size, bytes

R
T

T
 la

te
nc

y,
 µ

s

UDP/IPv4 W2K

UDP/IPv4 Solaris8

UDP/IPv4 LinuxUDP/IPv6 W2K

UDP/IPv6 Solaris8

UDP/IPv6 Linux

Fig. 4 UDP latency results for IPv4 and IPv6 over Windows
2000, Solaris 8 and Linux with packet size ranging from 64 to 1408
bytes

240 IEE Proc.-Commun., Vol. 151, No. 3, June 2004



sizes up to 256 bytes, the latency results obtained with
Linux are 50 lower than those obtained on Solaris and
Windows 2000. For large message sizes (above 256 bytes),
Linux gives around 30% better (i.e. smaller) latency than
Solaris and Windows 2000. For UDP/IPv6, we obtained
around 50–60% lower latency (messages up to 256 bytes)
for Linux compared to Solaris and Windows 2000. For
larger messages, Linux gives around 30% and 40% lower
latency than Solaris and Windows 2000, respectively. It is
also interesting to observe from Figs. 3 and 4 that both TCP
and UDP yield around 7–15% lower latencies with IPv6
compared to IPv4. This result is different from the IPv4/
IPv6 trends on Solaris and Windows 2000, where IPv6
latencies are always higher than IPv4.

It is worth commenting on two major results from Fig. 3
and 4 which include: (a) lower latencies with both IPv4 and
IPv6 for Linux compared to those on Solaris and Windows
2000; and (b) lower latency for IPv6 than IPv4 for the Linux
platform. Interestingly, Jobst and Feyrer [16] also concluded
that IPv6 yields better performance than IPv4 for Linux
compared to other operating systems (NetBSD 1.6 and
Windows XP), which resulted in lower latency for IPv4
than IPv6. For us to be able to offer some plausible
explanations for the two results mentioned in (a) and (b), we
need to understand the origin of IPv6 in Linux, the first
IPv6 network code was incorporated into the Linux kernel
2.1.8 in November 1996 and the code was based on the
BSD application programming interface. Today, the
UniverSAl playGround for Ipv6 (USAGI) [17] project
works to deliver production quality IPv6 protocol stack for
Linux. The Linux IPv6 stack code is heavily derived from
the IPv6 code developed by the KAME [10] project: a joint
effort of companies in Japan to provide free IPv6 stack for
BSD variants (FreeBSD, OpenBSD, NetBSD). Thus, we
believe that the design and implementation of the high-
performance IPv6 stack resulting from the KAME project
has also led to the Linux IPv6 stack performing better than
the IPv6 stacks of Solaris and Windows 2000. In fact, this
speculation is confirmed by Jobst and Feyrer [16], who
found through their experimental tests that IPv6 perfor-
mance on the NetBSD operating system was similar to the
IPv6 performance obtained on Linux. We think this is a
plausible explanation for the observation mentioned in (a)
above. As far as the second observation mentioned in (b) is
concerned, we speculate that the better (i.e. lower latency)
performance of IPv6 over IPv4 is also partly due to the code
derived from KAME. In addition, we also speculate that
another possible reason for the lower latency with IPv6 may
be because the IPv6 neighbourhood discovery mechanism is
faster than the IPv4 ARP mechanism on Linux. We plan to
do more testing and code instrumentation of the IPv6 stack
in Linux to verify these hypotheses.

4.3 Socket creation time and TCP
connection time
Figure 5 illustrates the TCP/UDP socket creation times and
the time to set up a TCP connection on Windows 2000,
Solaris, and Linux. It is clear from the results that Linux
outperforms both Solaris 8.0 and Windows 2000 for TCP/
UDP socket creation time and TCP connection time for
both IPv4 and IPv6. Linux gives a sixteen-fold and
nineteen-fold improvement (i.e. lower) over Windows
2000 in socket creation time for TCP/IPv4 and TCP/IPv6,
respectively. However, Linux results in a four-fold decrease
in socket creation time compared to Solaris for TCP/IPv4
and TCP/IPv6. It worthwhile pointing out that for TCP/
IPv6 we observe an increase of 12%, 13% and 31% in
socket creation times for Linux, Solaris and Windows 2000,

respectively. We hypothesise that the difference in the
implementation of sockets between Windows 2000 and the
UNIX operating systems (Solaris and Linux) is probably
the main reason which accounts for the large difference. The
implementation factors responsible for the lower socket
creation time for the UNIX variants (Solaris and Linux) are
probably due to a more efficient BSD socket library than
the socket library (actually called WS2_32.DLL) on
Windows 2000, faster user/kernel switches during system
calls and higher performance protocol stack implementa-
tions (TCP/UDP/IPv4/IPv6) on UNIX platforms (in this
case Solaris and Linux) than on Windows 2000.

The TCP connection times are also higher for IPv6 on all
three operating systems. Figure 5 shows that Linux gives the
lowest connection times for IPv4 and IPv6. The connection
time with IPv6 is around 50% higher than IPv4 for
Windows 2000 and Linux. However, connection time for
IPv6 on Solaris is only around 6% higher than IPv4. The
increase in connection time for IPv6 is mostly likely due to
the overhead caused by the increase in header size for IPv6
and address size (128-bit IPv6 address compared to the
32-bit IPv4 address) when a connection is set up. UDP does
not use a connection mechanism like TCP, so we do not
report its connection time.

4.4 Web client/server simulation
In recent years, we have witnessed the proliferation of a vast
number of web servers. Web servers need to handle many
transactions per second. These transactions are typically of
short duration, and involve operations that are mostly
request–reply in nature. Each of these operations basically
requires a connection setup, performing a given data
transfer, followed by closing down the connection. As a
result, the performance delivered to web clients depends

0

200

400

600

800

1000

1200

0

2000

4000

6000

8000

W2K
(TCP)

W2K
(UDP)

Solaris 8
(TCP)

Solaris 8
(UDP)

Linux

W2K Solaris 8 Linux

(TCP)
Linux

(UDP)

so
ck

et
 c

re
at

io
n 

tim
e,

 µ
s

T
C

P
 c

on
ne

ct
io

n 
tim

e,
 µ

s

IPV4

IPV6

IPV4

IPV6

a

b

Fig. 5 TCP and UDP socket creation time TCP connection time
on Windows 2000 (W2K), Solaris and Linux for both IPv4 and
IPv6
a Socket creation time
b TCP connection time

IEE Proc.-Commun., Vol. 151, No. 3, June 2004 241



partly on how fast these operations can be executed. We
foresee that in the near future many web servers supporting
dual IPv4 and IPv6 stacks will emerge. We were interested
to explore the performance penalty, if any, for IPv6 web
servers compared to IPv4 web servers. On Windows 2000,
we obtained 147 and 115 connections per second for IPv4
and IPv6, respectively. We obtained 430 and 404 connec-
tions per second for IPv4 and IPv6, respectively, on Solaris
8 and 450 (IPv4) and 426 (IPv6) connections second on
Linux. Solaris and Linux give almost similar performances
but can support around four times more IPv6 connections
than Windows 2000. The degradations from IPv4 to IPv6
are 5%, 6% and 22% for Linux, Solaris and Windows
2000, respectively. The more pronounced degradation for
Windows 2000 is most likely because of the high IPv6
socket creation and connection times.

5 Conclusions

In this paper, we have conducted an empirical performance
comparison of IPv4 and IPv6 protocol stack implementa-
tions of the most popular commodity operating systems
including Windows 2000, Solaris and Linux and our
experimental results demonstrate the impact that these
IPv6 stacks are expected to have on end-user IPv6
applications. We found that:

� IPv6 (as well as IPv4) on Linux outperforms Windows
2000 and Solaris 8 IPv6 (and IPv4) implementations for all
the metrics used. It is worthwhile pointing out that we
obtained a minor degradation in throughput and round-trip
latency performances for IPv6 compared to IPv4 on
Windows 2000 and Solaris. However, we obtained
improved (i.e. lower) round-trip latencies for IPv6 com-
pared to IPv4 for Linux possibly because of a better coded
IPv6.

� TCP/IPv4 and TCP/IPv6 socket creation times were
sixteen times and nineteen times lower, respectively, on
Linux compared to those on Windows 2000, and about
four times lower (for TCP/IPv4 and TCP/IPv6) compared
to Solaris.

� The web simulation results revealed a four-fold increase
in performance (i.e. number of connections per second) for
IPv6 on Solaris and Linux against IPv6 on Windows 2000.
The fact that we obtained a degradation of 5%, 6% and
22% for Linux, Solaris and Windows 2000, respectively,
demonstrates that IPv6-based web servers running Solaris
or Linux will yield higher performance than those running
Windows 2000.

6 Acknowledgments

This work was supported by grants (EDUD-7824-000145-
US) from Sun Microsystems, Ixia Corporation and
Microsoft. The authors are grateful to Ericsson (Denmark)
for their Ericsson AXI 462 router and to IBM Corporation
(Raleigh) for their IBM 2216 NwaysMultiaccess Connector
Model 400 router. They are also thankful to the anonymous
reviewers for their suggestions and ideas. They thank
C. Metz for his valuable feedback which helped to improve
the originality, presentation and clarity of this paper. His
suggestions to include Linux results led to an important
contribution to this work. The authors express their
gratitude to N. Goel for his ideas on the structuring of
this paper and for his interesting remarks on the Linux
results in particular. They would also like to thank
F. Siddiqui for her help and suggestions on early versions
of this paper and P. Wadehra for his help with the
preparation of the graphs.

7 References

1 Information Sciences Institute, USC: ‘Internet protocol’. RFC 791,
IETF, September 1981

2 Deering, S., and Hinden, R.: ‘Internet protocol, version 6 (IPv6)
specification’. RFC 1883, Internet Engineering Task Force, December
1995

3 Goncalves, M., and Niles, K.: ‘IPv6 networks’ (McGraw–Hill, 1998)
4 Huitema, C.: ‘IPv6: The new internet protocol’ (Prentice Hall, 1997,

2nd edn. )
5 Zeadally, S., and Raicu, I.: ‘Evaluating IPv6 onWindows and Solaris’,

IEEE Internet Comput., 2003, 7, (3)
6 Microsoft Corporation: ‘Microsoft IPv6 technology preview for

Windows 2000’, December 2000, http://www.microsoft.com/
windows2000/technologies/communications/ipv6/default.asp

7 Draves, R. et al.: ‘Implementing IPv6 for Windows NT’. Proc. 2nd
USENIX Windows NT Symposium, Seattle, WA, USA, August
1998

8 Anand, M.: ‘Netperf3 TCP network performance on IPV6 using
2.4.17 kernel’. IBMLinux Technology Center, www-124.
ibm.com/developerworks/opensource/linuxperf/netperf/results/
may_02/netperf3_ipv6_2.4.17resutls.htm, August 2002

9 Ariga, S., Nagahashi, K., Minami, A., Esaki, H., and Murai, J.:
‘Performance evaluation of data transmission using IPSec over IPv6
networks’. Proc. INET 2000, Japan, July 2000

10 KAME, http://www.kame.net
11 Ettikan, K.: ‘IPv6 dual stack transition technique performance

analysis: KAME on FreeBSD as the case’. Faculty of Information
Technology, Multimedia University, Jalan Multimedia, October 2000

12 Jones, R.: Netperf, http://www.netperf.org/netperf/NetperfPage.html
13 Chuah, C., and Katz, R.: ‘Characterizing packet audio streams from

internet multimedia applications’. Proc. IEEE Int. Conf. on Commu-
nications (ICC 2002), New York, NY, USA, April 2002, pp. 1199–
1203

14 Thompson, K., Miller, G., and Wilder, M.: ‘Wide-area Internet traffic
patterns and characteristics’, IEEE Netw., 1997, 11, (6)

15 Ritchie, D.: ‘A stream input-output system’, AT&T Bell Lab. Tech. J.,
1984, 63, (8), pp. 1897–1910

16 Jobst, M., and Feyrer H. ‘IPv6 stack performance tests’. http://
homepages/fh-regensburg.de/Bjom30197

17 USAGI, http://www.linux-ipv6.org

242 IEE Proc.-Commun., Vol. 151, No. 3, June 2004


	footer1: 


