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Abstract We present DiPerF, a DIstributed PER-
formance evaluation Framework, aimed at simpli-
fying and automating performance evaluation of
networked services. DiPerF coordinates a pool of
machines that access a target service and collect
performance measurements, aggregates these
measurements, and generates performance statis-
tics. The aggregate data collected provide infor-
mation on service throughput, service response
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time, service ‘fairness’ when serving multiple
clients concurrently, and on the impact of network
connectivity on service performance. We have
used DiPerF in various environments (PlanetLab,
Grid3, TeraGrid, and a cluster) and with a large
number of services. This paper provides data that
demonstrates that DiPerF is accurate: The ag-
gregate client view matches the tested service
view within a few percents, and scalable: DiPerF
can handle more than 10,000 clients and 100,000
transactions per second. Moreover, rapid adoption
and extensive use demonstrate that the ability to
automate performance characteristics extraction
makes DiPerF a valuable tool.

Key words performance evaluation · Grid
computing · Globus Toolkit

1. Introduction

Although performance evaluation is an ‘everyday’
task, testing harnesses are often built from scratch
for each particular service. To address this issue,
we have developed DiPerF, a DIstributed PER-
formance evaluation Framework, aimed to simpli-
fy and automate service performance evaluation.
DiPerF coordinates a pool of machines that access
a target service and client-centric performance
measurements, aggregates these performance
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measurements, and generates performance statis-
tics. The aggregate data collected provide infor-
mation on service throughput, service response
time, service ‘fairness’ when serving multiple cli-
ents concurrently, and on the impact of network
latency on service performance.

Actual service performance experienced by
heterogeneous, geographically distributed clients
with different levels of connectivity cannot be eas-
ily gauged using LAN-based testbeds. As a re-
sult, significant effort is often required to deploy
and control the testing platform itself. With wide-
area, heterogeneous deployment platforms like
the PlanetLab [1] or Grid3 [2] testbeds, DiPerF
can provide accurate estimation of the service
performance as experienced by a geographically
diverse set of clients. Additionally homogeneous
cluster deployments allow us to conduct experi-
ments to estimate performance in homogeneous
LAN environments. The ability to conduct both
LAN and WAN based evaluations of the same ser-
vice makes DiPerF a useful resource planning tool
for administrators managing large-scale systems,
such as Grids [3].

Automated performance evaluation across a
distributed testbed is complicated by multiple
factors:

• Clock synchronization for a large set of testing
machines to control performance estimation
accuracy. The accuracy of the performance
metrics collected depends heavily on the ac-
curacy of the timing mechanisms used and
on accurate clock synchronization among the
participating machines. DiPerF synchronizes
the time between client nodes with an aver-
age synchronization error smaller than 100 ms.
Additionally, DiPerF detects client failures
that occur during the test and impact on re-
ported result accuracy.

• The heterogeneity of WAN environments
poses a challenging problem for any large scale
performance evaluation platform due to dif-
ferent remote access methods, administrative
domains, hardware architectures, and hosting
environments. We have demonstrated DiPerF
flexibility to operate in heterogeneous envi-
ronments by deploying and operating it over
four testbeds (Grid3 [2], PlanetLab [1], Tera-

Grid [33], and a cluster) with different facilities
to deploy clients, manage computations, and
retrieve data.

• Coordination of a large number of resources.
Scalability of the framework itself is important
in order to push a service under stress-test
a service to its limits. We insure scalability
by loosely coupling participating components.
DiPerF has been designed and implemented
to scale to at least 10,000 clients that can
generate 100,000 transactions per second. In
our tests DiPerF has processed up to 200,000
transactions per second via TCP and up to
15,000 transactions per second via SSH-based
communication. DiPerF implementation has
been carefully tuned to use the lightweight
protocols and tools in order to improve scal-
ability. For example, the communication pro-
tocol built on TCP uses a single process and
the select() function to multiplex between
thousands of concurrent client connections.
The structures used to store and transfer the
performance metrics have been optimized for
space and efficiency. Similarly, each TCP con-
nection’s buffering is kept to a minimum in or-
der to lower the memory footprint of DiPerF
central node and improve scalability.

In summary, DiPerF has been designed from
the ground aiming for scalability, performance,
flexibility, and accuracy, and, based on the results
we present in this study, we believe these goals
have been achieved. After 18 months since its
original implementation, DiPerF has proved to be
a valuable tool for automated extraction of service
performance characteristics and scalability stud-
ies and has been adopted by numerous research
teams. Projects using DiPerF we are aware of in-
clude: DI-GRUBER [4, 5], predictive scheduling
[7], workload performance measurements [8],
GridFTP [9], WS-MDS [6, 32], and GRAM [6, 10].

The rest of this paper is organized as follows.
The following section discusses related work while
Section 3 presents the DiPerF design in detail
and focuses on scalability issues, client code distri-
bution, clock synchronization, client control, met-
ric aggregation, and the performance analyzer.
Section 4 covers the scalability, performance, and
validation study of DiPerF while Section 5 briefly
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outlines results from using DiPerF to evaluate the
performance of various Globus Toolkit compo-
nents. Section 6 summarizes this paper and pres-
ents future work.

2. Related Work

2.1. Distributed Performance Measurement
Studies

A number of wide-area measurement projects fo-
cus on generic network monitoring and analysis,
rather than on services or specifically on Grid ser-
vice. We briefly summarize this work and highlight
differences when compared to DiPerF.

The IETF Internet Protocol Performance Met-
rics (IPPM) [11, 12] working group’s mission is to
“develop a set of standard metrics that can be ap-
plied to the quality, performance, and reliability of
Internet data delivery services.” The Surveyor [13]
project, grown out of the IPPM work, is focused
on one-way measurements of packet delay and
loss between a relatively small numbers of systems
deployed world-wide. From our perspective, the
most important aspect of this system is that it uses
Global Positioning Satellite (GPS) clocks which
enable precise clock synchronization of participat-
ing systems.

Keynote Systems, Inc. [14] owns an infrastruc-
ture of over 1,000 measurement systems deployed
world wide used to evaluate the performance (e.g.
observed download times) of individual Web sites
and, to a lesser extent, Internet Service Providers.
Keynote’s system provides only DNS response
time and document download time, and does not
differentiate between network and server related
components of response time. Keynote also pub-
lishes a ‘performance index’ that attempts to as-
sign a single ‘health’ value to the 40 most heavily
used consumer and business Web.

The CoSMoS system [15] is a performance
monitoring tool for distributed programs execut-
ing on loosely coupled systems such as worksta-
tion clusters. The monitor is capable of capturing
measurement data at the application, operating
system, and hardware level. In order to compen-
sate for the lack of a globally synchronous clock
on loosely coupled systems, similar to DiPerF, the

monitor provides a mechanism for synchronizing
the measurement data from different machines.

Remos [16] provides resource information to
distributed applications. Scalability, flexibility, and
portability are achieved through an architecture
that allows components to be positioned across the
network to collect information about each local
network.

Finally, Web server performance has been a
topic of significant research. The Wide Area Web
Measurement (WAWM) Project for example de-
signs an infrastructure distributed across the In-
ternet allowing simultaneous measurement of web
client performance, network performance, and
web server performance [17]. Banga et al. [18]
measure the capacity of web servers under realistic
loads. Both systems could have benefited from a
generic performance evaluation framework such
as DiPerF.

Each of the projects mentioned above measures
or analyzes some aspect of Internet/network per-
formance. Most focus on general network moni-
toring and analysis, rather than service/application
performance, and the few projects that do con-
centrate on service level performance, have often
been deployed on small testbeds and do not con-
sider a wide-area environment; furthermore, some
of these frameworks require client and/or server
side source code modifications.

2.2. Grid Performance Studies

NetLogger [19] targets instrumentation of Grid
middleware and applications, and attempts to con-
trol and adapt the amount of monitoring data
produced. NetLogger focuses on monitoring and
requires client code modification; additionally,
NetLogger does not address automated client dis-
tribution and automatic data analysis.

GridBench [20] provides benchmarks for char-
acterizing Grid resources and a framework for
running these benchmarks and for collecting,
archiving, and publishing results. While DiPerF
focuses on performance exploration for entire ser-
vices, GridBench uses synthetic benchmarks and
aims to test specific characteristics of a Grid node.

The development team of the Globus Toolkit
has performed extensive component testing in
LAN environments [21, 22]. Some of these tests
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are more complex than those we perform with
DiPerF; however, they have the downside of an ar-
tificial environment, with multiple clients running
on few, well connected, physical machines. We
believe that our results obtained using hundreds
of geographically distributed machines present a
more realistic picture of performance characteris-
tics of various Globus Toolkit components.

Gloperf [23] was developed as part of the
Globus Toolkit to address the selection of hosts
based on available bandwidth. Gloperf is designed
for ease of deployment and makes simple, end-to-
end TCP measurements requiring no special host
permissions. Scalability is addressed by a hierar-
chy of measurements based on group membership
and by limiting overhead to a small, acceptable,
fixed percentage of the available bandwidth.

The Network Weather Service (NWS) [24] is
a distributed monitoring and forecasting system.
A distributed set of performance sensors feed
forecasting modules. There are two important dif-
ferences compared to DiPerF. First, NWS does
not attempt to control the offered load on the
target service but merely to monitor it. Second,
the performance testing framework deployed by
DiPerF is built on the fly, and removed as soon as

the test ends; while NWS sensors aim to monitor
network performance over long periods of time.

3. The DiPerF Framework

DiPerF [6, 10] aims to simplify and automate
service performance evaluation. DiPerF coordi-
nates a pool of machines that access a centralized
or distributed target service and collect perfor-
mance metrics. Centralized DiPerF components
then, aggregate these performance measurements
and generate performance statistics (Figure 1).
The aggregate data collected provides information
on service throughput, service response time, ser-
vice ‘fairness’ when serving multiple clients con-
currently, and on the impact of network latency
on service performance. All steps involved in this
process are automated.

DiPerF consists of four major components
(Figures 1 and 2): The analyzer, the controller, the
submitters and the testers. A user of the framework
provides to the controller the location of the target
service to be evaluated and the client code to
access the service. The controller then coordinates

Figure 1 DiPerF
framework overview.
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Figure 2 DiPerF
deployment scenario.

the performance evaluation experiment: It distrib-
utes the client code to testers via submitters and
coordinates testers’ activity. Each tester runs the
client code on its local machine and times their
(RPC-like) access to the target service. Finally, the
controller collects all the measurement data from
testers and performs additional operations (e.g.,
reconciles time stamps from various testers) to
compute aggregated performance views. Sophisti-
cated clients can have complex interactions with
the target service and return periodic feedback
and user defined metrics to the tester be propa-
gated back to the controller.

Figure 2 presents a DiPerF deployment sce-
nario over different testbeds: PlanetLab, Grid3,

and a cluster. Note the different client deployment
mechanisms between the different testbeds: Glo-
busToolkit GRAM based submission for Grid3
and ssh-based tools for the other testbeds. An-
other difference is that in Grid3 the controller
communicates only with a resource manager, and
the resource manager deploys and launches the
tester/client code on physical machines; in the
other testbeds, the controller is directly respon-
sible of having a complete list of available ma-
chines and communicates directly to each remote
machine.

We support two different interfaces between
client code and testers: First, a generic inter-
face, for clients that are unmodified standalone
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executables and make one RPC-like call to the
service. And, second, a proprietary interface, for
clients that pass information to the tester periodi-
cally, in a predefined format. The first approach is
good in the event that the client code source code
is not available or the client cannot be changed.
On the other hand, the second approach is ideal if
multiple service calls are made in each client exe-
cution (i.e. when just starting the client executable
is expensive as is the case in many Java programs).
The drawback of this latter approach is the need to
instrument the client code with calls that explicitly
report the necessary performance metrics. The
proprietary interface includes the following five
pieces of information that are streamed by clients
on their standard output and parsed by testers:
Metric name, value, local time, host name, and a
locally unique client ID. The metric name is es-
sential to support arbitrary metrics. The local time
is necessary to be able to correctly identify the
time when the sample was taken. The host name is
needed to be able to identify the origin host of the
metric sample. Finally, the locally unique client ID
allows for multiple concurrent clients on the same
physical machine.

The framework is supplied with a set of candi-
date nodes for client placement, and selects those
available as testers. We plan to extend the frame-
work to select a subset of available tester nodes
to satisfy user specified requirements in terms of
link bandwidth, latency, compute power, available
memory, and/or processor load. In the current
version, DiPerF assumes that the target service is
already deployed and running.

Some metrics are collected directly by the
testers (e.g., response time), while others are com-
puted at the controller (e.g., throughput and ser-
vice fairness). Additional metrics (e.g., network
related metrics such as throughput, size of data
transmitted, time to complete a subtask), mea-
sured by clients can be optionally reported to the
testers and eventually back to controller for sta-
tistical analysis. As testers send performance data
to the controller while the test is progressing ser-
vice evolution and performance can be visualized
‘on-line.’

Finally, we address failures by making it
the clients’ responsibility to report them. From
DiPerF’s point of view, errors are simply just a

special performance metric. A client can fail be-
cause of various reasons: Predefined timeout en-
forced by the tester, client machine problems (e.g.,
the client fails to start due to insufficient re-
sources), or service machine related (e.g., service
denied or service not found).

3.1. Performance and Scalability Issues

We have made a number of improvements to our
initial implementation of DiPerF [10] to improve
scalability and performance. Using a submitter
and testers built on top of end-user tools such as
ssh, DiPerF was limited to handling only about
1,000 clients. We therefore concentrated on re-
ducing the amount of processing per performance
reporting transaction, the memory footprint of
the controller, and the number of processes being
spawned throughout the experiment.

In order to make DiPerF as flexible as possi-
ble for a wide range of configurations, we have
stripped down the controller from most of its on-
line data processing tasks and moved them to the
offline data analysis component. This improved
controller scalability, freeing the CPU of unnec-
essary load throughout an experiment. A more
complex controller version is also made available,
if results need to be viewed in real-time as the ex-
periment progresses. Furthermore, for increased
flexibility, the controller can work in two modes:
Write data directly to the hard disk, or keep data
in memory for faster analysis later and reduced
load due to the fact that it does not have to write
to the disk except when the experiment is over.
We also added the support for multiple testers on
the same node by identifying a tester by the node
name followed by its process ID.

To alleviate the biggest bottleneck we have
identified, namely communication based on ssh
tools, we have implemented two other pairs of
submitters and testers on top of TCP and UDP.
Running TCP we can also control connection
buffer sizes to reduce memory usage, especially
since we can sacrifice buffer size without affecting
overall system performance due to the low per-
connection communication volume.

Finally, in order to achieve the best perfor-
mance with the implementation of the commu-
nication over TCP or UDP, we use a single
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controller process which uses the select() system
call [25] to provide synchronous I/O multiplexing
between 1,000s of concurrent connections. select()
waits for a number of file descriptors (found in
the fd_set variable) to change status based on a
specified timeout. First of all, the fd_set is a fixed
size buffer as defined in several system header
files; most Linux-based systems have a fixed size
of 1,024. This means that any given select() func-
tion can only have 1,024 file descriptors (i.e. TCP
sockets) that it is listening on. This is a serious lim-
itation, and would limit any single process DiPerF
implementation over TCP to only 1,024 clients.
After modifying some system files (required root
access) to raise the constant size fd_set from 1,024
to 65,536, we were able to break the 1,024 concur-
rent client barrier. However, we now had another
issue to resolve, namely the expensive operation
of initializing the fd_set (one file descriptor at
a time) every time a complete pass through the
entire fd_set; with an fd_set size of 1,024, this did
not seem to be a problem, but with an fd_set size
of 65,536, it quickly became a bottleneck. The
solution was to keep two copies of the fd_set, and
after a complete pass through all the entire fd_set,
simply do a memory to memory copy from one
fd_set to another. We are currently porting the
select() based implementation to a /dev/poll-based
implementation[26] that is should provide even
lower overheads and improve the performance
when using a large number of TCP connections.

With these improvements, DiPerF can now
scale from 4,000 clients using ssh to 60,000 cli-
ents using TCP to 80,000 clients using UDP. The
achieved throughput increased from 1,000 to
230,000 performance reporting transactions per
second depending on the number concurrent cli-
ents and the communication protocol used.

3.2. Client Code Distribution

The mechanisms used to distribute client code
(e.g., scp, gsi-scp, or gass-server) vary with the de-
ployment environment. Since ssh-family tools are
deployed on just about any Linux/Unix, we base
our distribution system on scp-like tools wherever
possible. More specifically, to deploy client code,
DiPerF uses rsync in a Unix-like environment
(e.g., PlanetLab, clusters) and GT2 GRAM job

submission mechanisms in a Grid environment
(e.g., Grid3).

3.3. Clock Synchronization

DiPerF relies on time synchronization when
aggregating results at the controller; therefore,
automatic time synchronization or clock reconcil-
iation between participating client nodes need to
be provided. In the latter case synchronization is
not be performed on-line; instead, the controller
computes the offset between local and global time
and applies that offset when analyzing aggregated
metrics. The solution to possible clock drift that
might affect result accuracy is to compute clock
offsets during an experiment at regular intervals
that are short enough for the drift to be negligible.

Several off-the-shelf options are available to
synchronize the time between machines (e.g., NTP
[27]). In a previous large scale study [27] geo-
graphically distributed NTP synchronized hosts
had a mean delay of 33 ms, median 32 ms, and a
standard deviation 115 ms from their peer hosts.
At the time of our experiments, although Plan-
etLab testbed used NTP to synchronize clocks
we have found nodes with synchronization differ-
ences in the thousands of seconds. As a result,
DiPerF implements its own clock reconciliation
technique at the user level as a backup mechanism.

DiPerF handles time reconciliation using a cen-
tralized time-stamp server that allows time map-
ping to a common base. The time-stamp server
is lightweight and can easily handle thousands of
concurrent clients. In order to reduce the effects
of clock drift, each client regularly acquires a new
time-stamp. As the time server is lightweight and
time synchronizations are relatively rare during
an experiment (every 300 s), we estimate that
the time server can handle more than a million
concurrent clients. A second important concern is
the case of Grid like environments where often a
tester can run on a cluster node that with no direct
access to the outside Internet. In these situations,
the testers synchronize by means of light-weight
time proxies running on the cluster head-nodes.

We have measured the latency from over 100
PlanetLab nodes to our timestamp server de-
ployed at the University Chicago over a period of
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two h. During this interval the (per-node) latency
in the network remained fairly constant and the
majority of the clients had a network latency of
less than 80 ms. The accuracy of the synchroniza-
tion mechanism we implemented is directly cor-
related with the network latency and its variance,
and in the worst case (non-symmetrical network
routes), the synchronization error can be at most
the one-way latency. Using our custom synchro-
nization component, we observed a mean of 62 ms,
median 57 ms, and a standard deviation 52 ms
for the time skew between nodes in our Planet-
Lab testbed. Given that the response time of the
relatively heavy weight services that have been
evaluated (e.g., GRAM, GridFTP, MDS) in this
paper is at least one order of magnitude larger, we
believe the clock synchronization technique im-
plemented does not distort the results presented.

3.4. Client Control and Performance
Metric Aggregation

A DiPerF experiment works as follows: The con-
troller starts tester incrementally with a prede-
fined delay specified in a configuration file in order
to gradually build up the load on the target service
and sends test descriptions. The most important

description parameters are: The duration of the
test experiment, the time interval between client
invocations (think time), an upper bound for client
processing time to detect failed calls due to unre-
sponsive services, the time interval between two
clock synchronizations, and the local command
that has to be invoked to run the client. The
controller also specifies the addresses of the time
synchronization server and the target service.

Individual testers invoke clients, collect service
response times and other service metrics and re-
port them back to the controller. The controller’s
job then is to aggregate these service response
times, correlate them with the offered load and
with the start/stop time of each tester and infer
service throughput, and service ‘fairness’ among
concurrent clients.

Since all metrics collected share a global time-
stamp, it becomes feasible to combine all metrics
in well defined time quanta (seconds, minutes,
etc) to obtain an aggregate view of service perfor-
mance at any level of detail that is coarser than the
collected data, an essential feature for summariz-
ing results containing millions of transactions over
short time intervals (Figure 3). The data analysis
process is completely automated (including graph
generation) at the user-specified time granularity.

Figure 3 Aggregate view
at the controller. Each
tester synchronizes its
clock with the time server
every 300 s.
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3.5. Performance Metrics Collected and the
Performance Analyzer

While using DiPerF, we have realized the need for
a specialized component to analyze performance
data automatically for end-user. Thus, we intro-
duced the performance analyzer, which has been
implemented in C++ and currently consists of over
4,000 lines of code. Its current implementation
this is an off-line process: It assumes that all per-
formance data is available for processing; in the
future, we plan to port the current performance
analyzer to support on-line analysis of incoming
performance data.

We have focused on flexibility in handling large
data analysis tasks completely unsupervised. The
performance analyzer is designed to allow a reduc-
tion of the raw performance data to a summary of
the performance data with samples computed at a
specified time quantum. For example, a particular
experiment can accumulate more than one million
performance samples over a period of and hour,
but after the performance analyzer summarizes
the data for one sample per second, the end result
is reduced to 3,600 samples.

We also introduce the performance metrics con-
sidered by DiPerF’s analyzer. While the perfor-
mance metrics of interest to the user may vary
from case to case, and our system allows the intro-
duction and processing of user specified metrics,
we use the following minimal set of preconfigured
metrics for all the experiment we report in this
paper:

• service processing time: The time from when a
client issues a request to the moment a reply
is received minus the roundtrip time to the
service and minus the execution start-up time
of the client code. This metric is measured
from the point of view of the client.

• service throughput: Number of requests com-
pleted successfully by the service averaged
over a short time interval specified by the user
(e.g., a second or a minute) in order to reduce
the large number of samples. To make the
results easier to understand most of the graphs
below also present moving averages.

• offered load: Number of concurrent service
requests (per second).

• service utilization (per client): Ratio between
the number of requests completed for a spe-
cific client and the total number of requests
completed by the whole service during the
time the client was active.

• service fairness: The standard deviation in ser-
vice utilization measured when all clients are
active concurrently.

• job success rate (per client): The ratio of jobs
that were successfully completed for a particu-
lar client.

• job fail rate (per client): The ratio of jobs that
failed for a particular client.

The performance analyzer has a few additional
features. First of all, it has an option to verify that
the raw input data conforms to the correct format-
ting requirements, and fixes (mostly by deleting)
any inconsistencies it finds. Second, for all of the
above metrics that are computed per client they
can also be computed over the peak portion of the
experiment, when all clients are concurrently ac-
cessing the service. This is an important feature for
computing the service fairness under stress. The
output resulting from the performance analyzer
can be automatically graphed using gnuplot [28]
for ease of inspection, and the output can easily be
manipulated in order to generate complex graphs
combining various metrics such as the ones found
in this paper.

We believe that the end product from the Per-
formance Analyzer can be used to create perfor-
mance models for the tested services to estimate
service performance as a function of service load.

4. DiPerF Scalability and Validation Study

This section presents a performance and scalabil-
ity evaluation of DiPerF main components indi-
vidually (the controller, the time server and the
data analyzer) then an evaluation of the entire
framework testing a lightweight service that that
requires DiPerF to generating and handling a high
test load. The protocols and the various compo-
nents are depicted in Figure 4. Note that we have
used DiPerF as the primary tool to coordinate the
scalability study of each component and of DiPerF
itself.
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Figure 4 Components
and communication
overview.

4.1. Controller Performance

Figure 5 presents the performance and scalabil-
ity of the controller using the three basic commu-
nication methods implemented: TCP, UDP and
ssh. We are mainly interested in two performance
metrics: The number of concurrent testers the con-
troller can handle and the rate of performance
reporting transactions that can be handled.

Note that TCP offers the best performance
for almost all cases except for very large num-
ber of concurrent clients (more than 30,000). At
peak, the controller using TCP can process over
230,000 transactions per second, while at the low-

est point, with 60,000 concurrent clients, it could
still process over 15,000 transactions per second.
It is interesting that we were able to reach 60,000
clients especially that TCP port numbers are 8
bit values, which limits the number of concurrent
TCP connections to 65,000. UDP offered perfor-
mance is somewhat lower than with TCP, but it
is much more consistent irrespective of the num-
ber of concurrent clients. Overall, UDP achieved
about 80,000 transactions per second up to the
80,000 concurrent clients we tested. Because the
UDP implementation did not provide a reliable
communication protocol, processing that had to be
done per transaction increased in order to keep

Figure 5 Summary of
communication
performance and
scalability. The figure
presents the controller
throughput as a function
of the number of
concurrent clients
handled for various
protocols: UDP, TCP,
SSH RAW, and SSH.
Note the log scales
on both axes.
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track of the number of messages lost and the
number of concurrent machines.

For ssh, we have investigated two alternatives:
ssh-raw which simply wrote all transactions to a
file for later analysis, while ssh performed some
basic analysis in real-time as it collected all the
metrics, and kept all metrics in memory for later
faster analysis. When using ssh the controller was
able to achieve 15,000 transactions per second
without any analysis in real time and about 2,000
transactions per second with some basic analysis.
Finally, in Figure 5, note the increase in perfor-
mance from one to two concurrent clients across
all communication protocols. This owes to the
fact that a dual processor machine was used in
handling the multiple client requests; therefore, at
least two concurrent clients were needed to reach
the full capacity on both processors.

4.2. Time Server Performance

Time synchronization is an important component
of DiPerF, and hence the performance of the time
server is determinant for overall DiPerF perfor-
mance. The time server uses TCP as its main com-

munication protocol to reply to time queries. It is
interesting to note in Figure 6 that the service re-
sponse time remained relatively constant (a little
over 200 ms) throughout the entire experiment.

A total of 1,000 clients were used for a total
peak rate of about 2,000 queries per second. Note
that the network roundtrip time (marked network
latency in Figure 6) is nearly half the service re-
sponse time; the difference (about 100 ms) can be
attributed to the time it takes a packet to traverse
the network protocol stack, instantiate a TCP
connection via a three-way handshake, transfers
a small amount of information, and tears down
the TCP connection. Our implementation is based
on a simple TCP server that accepts incoming
connections to request the ‘global’ time. We are
currently working on implementing a proprietary
client/server model based on the UDP/IP protocol
in order to make the time server even more light
weight, more scalable, and reduce the response
times the clients observe in half by avoiding the
three-way handshake that our current implemen-
tation based on TCP has. In our new UDP/IP
based implementation, we will have to address
reliability issues by adding some simple reliability
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mechanisms, such as retransmissions and acknowl-
edgements. Figure 6 shows the performance of
the time server as it scales up to 1,000 concurrent
clients; the server exhibits a consistent throughput
and response time with a large number of concur-
rent clients.

4.3. Analyzer Performance

The analyzer component is currently implemented
as an offline process, and hence its performance
is not crucial. Because of the many variables that
affect the performance of the analyzer, it is hard
to generalize the results. Table 1 summarizes ana-
lyzer performance for four different runs.

All four runs first verified that transaction file
that it contained no errors, after which it per-
formed its analysis to extract three metrics: Load,
throughput, and response time. The main deciding
factor in the performance of the analyzer is the
number of machines and the number of transac-
tion that need to be processed. For example, for
a relatively small run with 40 clients, nearly 3,000
transactions which spanned 1,000 s, it took only
1.5 s to both verify that data and extract the three
metrics. On the other hand, for a larger run, which
involved 3,600 clients and 354,000 transactions,
the total time grew significantly to almost 6 min.
The observed transactions per second throughput
achieved by the analyzer varied from 1,000 to as
high as 9,000 transactions per second.

4.4. Overall DiPerF Performance

In the previous few sections, we have presented
the performance of the various individual com-

ponents. This section explores the overall DiPerF
performance. We test the scalability limits of
DiPerF, with the simplest service possible: A ser-
vices that does not require any input and echoes
back a single character. This experiment was car-
ried out over the 20 node cluster connected by
either 100 Mbps network links. Each client was
configured to transmit one transaction per sec-
ond over the TCP-based communication protocol.
In Figure 7 note the near perfect performance
up to about 45,000 clients, when every client re-
quest is correctly handled. Above 45,000 concur-
rent clients, throughput started dropping to about
15 K transactions per second. Note that due to
limitations of TCP’s port number (an 8 bit value),
regardless of how powerful the hardware is, this
implementation cannot support more than 64,000
concurrent clients. When the controller is config-
ured to use UDP based protocols, it is able to
handle up to 80,000 transactions per second from
80,000 concurrent clients generating one transac-
tion per second each.

Performance when using SSH-based communi-
cation is clearly lower. The main limitation results
from the fact that each remote client instanti-
ates a separate SSH connection, which runs in an
isolated process. Therefore, for each new client,
there is a new process starting at the controller.
Additionally, each process has a certain memory
footprint, and each TCP connection has the send
and receive buffers set to the default value (in
our case, 85 KB) and memory usage can quickly
become a bottleneck. In running this experiment
with 4,000 clients, DiPerF used the entire 1 GB
of RAM and the entire 1 GB of swap allocated.
When DiPerF operates solely out of memory, it is

Table 1 Analyzer performance.

Number of
machines

Test length Number of
transactions

Memory
footprint
(MB)

Time
quantum (s)

Time (s) Time/trans
(ms)

Trans (s)

40 1,000 2,900 0.54 1 1.6 0.6 1,812.5
200 11,000 45,000 26 1 5.1 0.1 8,840.9
1,700 6,500 671,000 146 1 166.5 0.2 4,030.0
3,600 12,000 354,000 505 1 359.0 1.0 986.1
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Figure 7 Echo performance via TCP-based communication protocol.

able to achieve over 2,000 transactions per second,
while at the peak with 4,000 concurrent clients,
it can only achieve about 1,000 transactions per
second.

4.5. Validation

This section validates the results produced by
DiPerF: We test a GridFTP service and compare
the aggregate client view generated by DiPerF
and the server view produced by the Ganglia
Monitor [29]. The Ganglia Monitor reports server
performance once every 60 s (230 samples for the
duration of our experiment) a much lower granu-
larity than DiPerF which generates about 340 per-
formance reporting transactions for each Ganglia
sample. As a result Ganglia reported performance
appears ‘smoother’ in Figure 8 especially for fast
changing metrics. For example, the load metric
changed relatively slow, and was monotonically in-
creasing, which produced about 1% of difference
between DiPerF and Ganglia. On the other hand,
the throughput observed a higher difference of
about 5%. We believe this is due to different sam-
pling resolutions between DiPerF and Ganglia.

Figure 9 presents a scenario where both the
server and clients generate samples once a second.
DiPerF generates nearly 2,000,000 transactions
for each metric to produce client views for the
load and for the throughput depicted in Figure 9.
The server monitor reported the server perfor-
mance once every second; due to there being 1,000
concurrent clients, this still generated nearly 1,000
client view samples for every server view sample.
Due to a finer granularity of samples from the
server side, the results are better than those in
Figure 8; for the load, we obtained less than 1%
difference on average, while for the throughput,
we obtained about 3% difference on average.
Nevertheless, Figures 8 and 9 show that large
scale distributed testing aggregate client view can
match the server’s central view quite well with
only a few percent metric value discrepancies on
average.

5. The Utility of DiPerF: Empirical Case Studies

After only one year since its original implemen-
tation, DiPerF has proved to be a valuable tool
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for automated performance characterization and
scalability studies and has been adopted by a num-
ber of research teams. Some of the projects us-
ing DiPerF, including some of our own work, we
are aware of are: DI-GRUBER [4–6], Predictive
Scheduling [7], workloads performance measure-
ments of [8], GridFTP [6, 9], WS-MDS [6, 32],
and GRAM4 [6, 10]. This section presents a few
examples of DiPerF usage and some of the in-
teresting findings using to the DiPerF tool. We
cover a small subset of performance evaluation of
three important Globus Toolkit components: The
file transfer service (GridFTP), job submission
(GRAM), and information services (WS-MDS).
Before we delve into the experimental, we briefly
discuss the testbeds used in these experiments.

5.1. Testbeds

This section covers the five testbeds (Grid3, Plan-
etLab, TeraGrid, and two clusters at The Univer-
sity of Chicago) that we have used for experiment.
For each set of experiments in this work, we out-
line what testbed we used; this is an important
section since the results of certain tests might vary
with the particular testbed as they have different
characteristics:

• The Grid3 collaboration has deployed an in-
ternational Data Grid with dozens of sites and
thousands of processors. The facility is oper-
ated jointly by the U.S. Grid projects iVDGL,
GriPhyN and PPDG, and the U.S. partici-
pants in the LHC experiments ATLAS and
CMS. Participation is combined across more
than 25 sites which collectively provide more
than 4,000 CPUs and over 2 TB of aggregate
memory. The resources are used by seven dif-
ferent scientific applications, including three
high-energy physics simulations and four data
analyses in high energy physics, bio-chemistry,
astrophysics and astronomy. More than 100
individuals are currently registered with access
to the Grid, with a peak throughput of 500–900
jobs running concurrently [30].

• PlanetLab [31] is a geographically distributed
platform for deploying, evaluating, and access-

ing planetary-scale network services. Planet-
Lab is a shared community effort by a large
international group of researchers, each of
whom gets access to one or more isolated
‘slices’ of PlanetLab’s global resources via a
concept called distributed virtualization. In or-
der to encourage innovation in infrastructure,
PlanetLab decouples the operating system
running on each node from a set of multiple,
possibly third-party network-wide services
that define PlanetLab, a principle referred to
as unbundled management. PlanetLab is de-
ployed on over 500 nodes (Linux-based PCs)
distributed over more than 150 locations
around the world. Due to the large geo-
graphic distribution observed latencies and
achieved bandwidth vary greatly across the
testbed.

• The TeraGrid (TG) [33] is an open scientific
discovery infrastructure combining leadership
class resources at eight partner sites to cre-
ate an integrated, persistent computational re-
source. The deployment of TeraGrid brings
over 40 TFLOPS of computing power (tens
of thousands of compute nodes) and nearly
2 PB of storage, and specialized data analysis
and visualization resources into production,
interconnected at 10–30 GBps via a dedicated
national network. The initial prototype will be
deployed at The University of Chicago / Ar-
gonne National Laboratory (UC/ANL) site,
which has 96 IA-32 nodes and 62 IA-64 nodes
as part of the TG. Each IA-32 node has dual
2.4 GHz Xeon processors, 4 GB RAM, and
SuSE v8.1 Linux OS; each of the IA-64 nodes
has dual 1.5 GHz Itanium 2 processors, 4 GB
RAM, and SuSE v8.1 Linux OS. The nodes
are all connected via 1 Gb/s Ethernet network
within the site.

• The University of Chicago CS cluster (dubbed
‘UC cluster’ in the rest of this paper) contains
over 100 machines that are remotely acces-
sible. The majorities of these machines are
running Debian Linux 3.0, have AMD Athlon
XP Processors at 2.1 GHz, have 512 MB of
RAM, and are connected via a 100 Mb/s Fast
Ethernet switched network. Furthermore, all
machines share a common file system via NFS
(Network File System).
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5.2. GridFTP Performance Study

In order to complement the LAN-based GridFTP
server performance study [9] we have performed
an additional evaluation in a WAN environment
mainly targeting the scalability of the GridFTP
server. The additional test cases can also be found
in more detail in previous work [6].

The metrics collected by DiPerF’s clients, de-
fined in Section 3.5, are: Service processing time,
service throughput, and offered load. Addition-
ally, Ganglia monitoring suite is installed at the
server and monitors the number of processes at
server node, CPU utilization and memory used
at the server, the network usage, computed from
the volume of traffic flowing into the server since
we were performing uploads from clients to the
server.

For each set of tests, the caption below each fig-
ure will describe the particular configuration of the
controller which yielded the respective results. In
the figures below, each series of points represents
a particular metric and is also approximated using
a moving average over a 60 point interval, where
each graphs consists of anywhere from 1,000s to
100,000s of data points. For all tests the testers
synchronize their time every 5 min against a time
server running on UC cluster node.

5.2.1. GridFTP Scalability

Figure 10 shows results obtained with 1,800 clients
mapped in a round robin fashion on 100 Planet
Lab hosts and 30 UC cluster nodes targeting a
GridFTP server located in Los Angeles running
on a two-processor 1,125 MHz Intel machine
with 1.5 GB memory, 1 GBps Ethernet network
connection, and Linux 2.6.8.1 OS with Web100
patches. A new client is created once a second.
Each client runs for 2,400 s and during this time re-
peatedly requests the transfer of a 10 MB file from
the server’s disk to the client’s /dev/null. A total
of 150.7 GB are transferred in 15,428 transfers.
The left axis indicates load (number of concurrent
clients), response time, and memory allocated,
while the right axis denotes both throughput and
server CPU utilization. The dots in the figure rep-
resent individual client response times, while each
of the lines represents a 60-s running average.

The server sustained 1,800 concurrent requests
with just 70% CPU load and 0.94 MB memory per
request. Furthermore, CPU usage, throughput,
and response time remain reasonable even when
paging is occurring. Total throughput reaches
25 MBps with less than 100 clients and exceeds
40 MBps with around 600 clients. It is interest-
ing to see that the throughput reached around
45 MBps (or 360 MBps) and stayed consistent
throughout despite the fact that the server ran out
of physical memory and started swapping memory
out; with the OS footprint in the neighborhood
of 100 MB, and the 1,700 MB of RAM used by
the GridFTP server to serve the 1,800 concurrent
clients, the system ended up using about 300 MB
of swap and the entire 1.5 GB of RAM. Although
the CPU utilization was significant, but with 25%
CPU resources available and plenty more swap
space left, the server appears to be able to handle
additional clients. From a CPU point of view, we
are not sure how many more clients it could sup-
port since, as long as the aggregate server through-
put does not increase, it is likely that the CPU
will not get utilized significantly more. Another
issue at this scale of tests is the fact that most
operating systems have hard file descriptor usage
limits. With 1,800 clients, the experiment saturated
the network link into the server, but the server’s
raw resources (CPU, memory) were not saturated.

When comparing some of the metrics from
Ganglia and those of DiPerF, it is interesting to
note that the memory used follows pretty tight
the number of concurrent clients. In fact, we com-
puted that the server requires about 0.94 MB of
memory for each new client it has to maintain
state for; we found this to be true for all the tests
we performed within ±1%. Another interesting
observation is that the CPU utilization closely
mimics the achieved throughput, and not neces-
sarily the number of concurrent clients. This clean
separation makes it relatively easy to plan capac-
ity (hardware characteristics for the deployment
platform) in order to achieve the desired quality
of service provided by the server.

5.2.2. GridFTP Fairness

In order to quantify the fairness of the GridFTP
server, we investigated the fairness at two levels.
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Figure 10 GridFTP server performance with 1,800 clients
running on 100 physical nodes in PlanetLab and 30 UC
cluster nodes. Tunable parameters used: 1,800 concurrent
clients, starts a new client every 1 s, each client runs for

2,400 s; 150.7 GB of data transferred over 15,428 file trans-
fers; left axis – load, response time, memory; right axis –
throughput, CPU percent.

First, we look at fairness between the different
machines (about 100 nodes in PlanetLab located
in the USA) in relation to their network connec-
tivity to ISI where the server is located. Second,
we look at the fairness among the different clients
running on the same physical pair of nodes. The
results presented in this sub-section are the subset
of the entire experiment during which all clients
were running in parallel; in other words, we omit-
ted the data when the number of clients were
increasing and decreasing.

Figure 11 shows the amount of data transmitted
from each machine (note that each machine ran
15 clients each). The x-axis represents the net-
work latency to ISI, and the y-axis represents
available bandwidth to ISI server as measured us-
ing iperf available bandwidth measurement tool.
The size of the bubble represents the amount of
data transmitted by each machine throughout the
3 h experiment; the largest bubbles represent a
transfer amount of over 7 GB, while the small-
est bubble represents a transfer of just 0.5 GB.
As expected, latency plays a significant role in
determining achieved TCP throughput and essen-

tially in the achieved performance of the GridFTP
client. Based on the results Figure 11, we observe
that GridFTP server generally gives a fair share of
resources to each machine according to available
bandwidth. However, a small number of machines
transfer a significantly smaller amount of data than
indicated by the available bandwidth.

Figure 12 captures fairness between various
competing flows running between the same pair
of nodes (i.e., the same client node and the ISI
server). The machines have been ordered accord-
ing to their connectivity, with the best connected
machines first. The (blue) horizontal line repre-
sents the average data transferred per client of a
particular machine, while the vertical error bars
represent the standard deviation for traffic gen-
erated by all clients running on the same ma-
chine. Note that the standard deviation is small,
with only a few percent of deviation of perfor-
mance from client to client running on the same
host. Overall, the GridFTP server seems to al-
locate resources fairly across large number of
clients (1,000 s), and across a heterogeneous WAN
environment.
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5.3. GT3.9.4 WS-GRAM Performance Study

We have evaluated the job submission service
(GRAM) bundled with the Globus Toolkit 3.9.4
[10]. We ran the service on a AMD K7 2.16 GHz
machine with 2 GB of memory located at The Uni-
versity of Chicago and about 115 client machines
distributed over the PlanetLab testbed for clients.

As in the previous section the metrics collected
by DiPerF are: Service processing time, service
throughput and offered load. In the figures below,
each series of points presents a particular metric
and is also approximated by a moving average
over a 60 point interval.

Figure 13 presents the performance of WS-
GRAM C clients accessing the Java-based WS-
GRAM service (version 3.9.4). We note the
dramatic performance improvements compared to
the previous service implementation shipped with
Globus Toolkit 3.2 we measured in previous work
[10]. We observe both better scalability (from 20
to 69 concurrent clients) and performance (from
10 jobs/min to over 60 jobs/min). We also note that
response time steadily increase with the increased
number of clients. The throughput increase levels
off over about 15∼20 clients, which indicates that

the service is saturated and adding increasing of-
fered load only increases response time as requests
are queued at the service.

5.4. WS-MDS Index Scalability
and Performance Study

We have also evaluated the performance of the
metadata and directory service (WS-MDS) bun-
dled with the Globus Toolkit versions 3.9.5 and
4.0.1. in local- and wide-area network settings.
As in the previous section the metrics collected
by DiPerF are service processing time, service
throughput, and offered load.

5.4.1. WS-MDS Performance in a Wide Area
Network Setting

Figure 14 presents an experiment in which we have
used a dual AMD Opteron machine with 1 GB
of RAM and 1 GBps NIC located at the Univer-
sity of Chicago to host the WS-MSD server and,
as clients, 97 PlanetLab machines and three other
machines located in the same local network as the
server. The main goal this experiment was to
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explore service fairness: How much the remote cli-
ents (hosted on the PlanetLab nodes) contribute

towards the overall achieved throughput. As a
reminder, the remote clients are connected via
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links throttled at maximum 10 MBps and have net-
work latencies between 20 ms and 200 ms (average
of 60 ms) to the node hosting the service. On the
other hand, the three machines clients in the same
LAN are connected via 1 GBps links with 0.1 ms
latency.

For the peak portion of the experiment when
all 100 clients were running in parallel, the LAN
clients (3% of all clients) obtain about 5% of
the service throughput. This service rate is sig-
nificantly more balanced that that observed in a
previous performance study [6] of an earlier MDS
implementation where local clients were almost
able to starve remote clients.

5.4.2. WS-MDS Performance in a LAN
Environment

Additionally, we have performed experiments in
a more controlled environment, the TeraGrid,
where nodes linked by a 1 GBps LAN. The WS-
MSD server (from Globus Toolkit v4.0.1) and all
clients ran on a dual Intel P4 Xeon node with 1 GB
of memory. Unlike in all previous experiments
where we ramped up load incrementally in this
experiment we ran the concurrent load sustained

at several discrete points. Results in Figures 15
and 16 are presented in the different manner than
other results presented in this paper: Here the
x-axis presents the offered load (i.e., the number
of concurrent clients) while the y-axis presents
measured performance (either throughput or re-
sponse time).

Figure 15 presents WS-MDS v4.0.1 throughput
for various index sizes (1, 10, 25, 50, 100, 250,
and 500) and the performance of an older MDS
version shipped with Globus Toolkit v2 (labeled
the MDS2 in the figure) and configured with 100
entries for comparison purpose. WS-MDS perfor-
mance is consistent and robust, as seen by the flat
throughput achieved once the service is saturated,
regardless of the number of concurrent clients.
Figure 16 presents response times, which, for WS-
MDS v4.0.1, are also stable and consistent once
the service is saturated.

6. Summary and Future Work

Multiple challenges make distributed perfor-
mance measurements difficult: a) accuracy – which
implies synchronizing a distributed measurement



J Grid Computing

platform that might have large communication
latencies, b) flexibility – to deal with heterogeneity
often found in large, geographically distributed
environments, c) scalability – the to coordinate a
large measurement platform, and d) performance
– to process the high rate of performance mea-
surement transactions generated. In attempting to
address these issues, and to simplify and automate
service performance evaluations, we have devel-
oped DiPerF, a DIstributed PERformance testing
Framework.

DiPerF coordinates a pool of machines that test
a networked target service (e.g., a Grid service),
collects and aggregates performance metrics (e.g.,
throughput or service response time) from the
client point of view, and generates new perfor-
mance statistics (e.g., on service ‘fairness’ when
serving multiple clients concurrently or on service
saturation point). Using DiPerF, we have analyzed
the performance characteristics of several compo-
nents of the Globus Toolkit in wide-area as well
as in local networks aiming to better understand
their performance in realistic deployment environ-
ments. Additionally, using the data collected using
DiPerF, it is possible to build predictive models
that accurately estimate service performance as a
function of service load.

The main contribution of our work is the
DiPerF framework itself. DiPerF has been au-
tomated so that once deployed it will: a) check
what machines nodes are available for testing;
b) deploy the client code on the available ma-
chines; c) perform time synchronization; d) run the
client code in a controlled fashion and collect per-
formance metrics; e) stop and clean up the client
code at the end of the experiment; f) aggregate the
performance metrics and summarize the results;
and g) generate graphs to present the performance
characteristics of the tested service.

Additionally, we have also contributed towards
a better understanding of various Globus Toolkit
components such as GRAM, MDS, and GridFTP
services. Using DiPerF in the past 18 months,
Globus developers have been able to quantify
the performance tradeoffs of various implementa-
tion choices and to evaluate the performance of
Globus Toolkit components when accessed from a
large, geographically distributed client base, a task
that would have been tedious and time consum-

ing without DiPerF. These stress tests uncovered
obscure bugs that would not have surfaced with-
out the ability to perform controlled large scale
testing.

Grids will continue their significant growth
and will realize their potential as large-scale in-
frastructures to support shared resource usage
only if efficient usage can be obtained at future
large scale. Efficient resource usage, however, is a
non-trivial problem in large, dynamic, distributed
environments. Today, most Grid services and soft-
ware are designed and characterized largely based
on the designer’s intuition and on ad hoc exper-
imentation. We believe that methodologies and
tools to automatically characterize Grid service
deployments’ performance, accurate performance
models, and algorithms and negotiation protocols
that make use of this information to make better
informed resource management decisions are key
to future Grids success.

We have demonstrated that DiPerF can be used
to extract and model service performance char-
acteristics in a client/server scenario. We believe
this work can be extended to automate perfor-
mance characteristics extraction for more com-
plex distributed applications and services. DiPerF
can be used to build dynamic performance mod-
els to automatically map raw hardware resources
to the performance of a particular distributed
application and its representative workload. In
essence, these dynamic performance models can
be thought of as job profiles used for informed
resource management. The capability to auto-
matically map complex, multi-dimensional per-
formance requirements and service characteristics
among resource providers and consumers is a
necessary step to ensure consistent high resource
utilization. Automatic matching between the soft-
ware characterization and a set of raw or logical
resources is a much needed functionality that is
currently lacking in today’s Grid resource man-
agement infrastructure.
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