
To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

Swift: Fast, Reliable, Loosely Coupled Parallel Computation

Yong Zhao

1
, Mihael Hategan

2
, Ben Clifford

2
, Ian Foster

1,2,3
,

Gregor von Laszewski
2,3

, Ioan Raicu
1
, Tiberiu Stef-Praun

2
, Mike Wilde

2,3

1
Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

2
Computation Institute, University of Chicago & Argonne National Laboratory

3
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

{yongzh,iraicu}@cs.uchicago.edu, benc@hawaga.org.uk, {foster,gregor,hategan,tiberius,wilde}@mcs.anl.gov

Abstract

A common pattern in scientific computing involves

the execution of many tasks that are coupled only in the

sense that the output of one may be passed as input to one

or more others—for example, as a file, or via a Web

Services invocation. While such “loosely coupled”

computations can involve large amounts of computation

and communication, the concerns of the programmer tend

to be different than in traditional high performance

computing, being focused on management issues relating

to the large numbers of datasets and tasks (and often, the

complexities inherent in “messy” data organizations)

rather than the optimization of interprocessor

communication. To address these concerns, we have

developed Swift, a system that combines a novel scripting

language called SwiftScript with a powerful runtime

system based on CoG Karajan and Falkon to allow for the

concise specification, and reliable and efficient execution,

of large loosely coupled computations. Swift adopts and

adapts ideas first explored in the GriPhyN virtual data

system, improving on that system in many regards. We

describe the SwiftScript language and its use of XDTM to

describe the logical structure of complex file system

structures. We also present the Swift system and its use of

CoG Karajan, Falkon, and Globus services to dispatch

and manage the execution of many tasks in different

execution environments. We summarize application

experiences and detail performance experiments that

quantify the cost of Swift operations.

1. Introduction

Consider the following painful but all-too-familiar

scenario: A neuroscientist needs to analyze ten thousand

functional magnetic resonance imaging (fMRI) files. The

analysis program is a complex Perl script. Files are

stored in a collection of UNIX directories, with metadata

coded in directory and file names. Local computing

facilities are inadequate. Thus, the scientist must

manually extract files, copy them to a remote cluster, start

a home-grown script to dispatch tasks, and check exit

codes and output files to see which tasks succeeded and

failed. And when the computation is finally completed, the

problem remains of documenting what was done.

Such difficulties have motivated our design of Swift,

a parallel programming system that integrates the

following elements to meet the needs of scientists tackling

such problems.

• A scripting language, SwiftScript, allows users to

express operations on datasets in terms of their

logical organization; the XML Dataset Typing and

Mapping (XDTM) [10] notation is used to define a

mapping between that logical organization and the

underlying physical structure.

• An execution engine, CoG Karajan [9], a

lightweight provisioning and job submission

system, Falkon [13], and a compiler and associated

runtime libraries, execute tasks specified via

SwiftScript programs, on local or remote

computers.

• A provenance-recording component, Kickstart

[18], captures execution details for diagnosis and

eventual recording in a provenance database.

These elements together make it possible for a few

lines of SwiftScript to specify computations involving

extremely large numbers (tens or hundreds of thousands)

of files and tasks, and for those computations to be

executed efficiently and reliably on many distributed

computers. The impact on end users such as our

unfortunate neuroscientist can be enormous. Code sizes

can be reduced by an order of magnitude or more [19]. In

another example, a 160-member climate model ensemble

took 2.5 months when performed manually; a 250-

member ensemble was finished within 4 days—

admittedly on a faster computer—when automated with a

precursor to Swift [11]. Other users are found in the

physical, biological, and social sciences, and in the

humanities, computer science, and education.

Swift grew out of work on the GriPhyN Virtual Data

System (VDS) [7], which provided a simple virtual data

language, planners (including Pegasus [6]) for program

optimization and scheduling, the DAGMan task

management system for task management [4], kickstart,

and a virtual data catalog [20]. Swift improves on VDS in

several regards, in particular its use of XDTM to define

logical views of datasets; SwiftScript and CoG Karajan

support for iteration operations, which together allow for

more concise specifications of computations over larger

datasets; and Falkon for efficient task dispatch.

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

The rest of the paper is organized as follows. We

introduce SwiftScript and the Swift system design in

Sections 2 and 3. We present system evaluation results

and applications in Sections 4 and 5. We discuss related

work in the specification and execution of loosely coupled

problems in Section 6, and summarize in Section 7.

2. Notation: SwiftScript and XDTM

The need to process large numbers of tasks reliably

and efficiently arises in many scientific and engineering

disciplines, for example when performing large-scale data

analysis or when executing large numbers of

computations to study sensitivity to parameter values (in

parameter studies) and/or initial conditions (in ensemble

simulations). Users working on such problems frequently

struggle with bookkeeping tasks due to large numbers of

tasks, datasets, and computational resources.

Users need a concise and readable notation to

simplify the description, maintenance, and debugging of

problem specifications. Such a notation should also

facilitate high-performance execution by revealing

opportunities for concurrent execution. Conventional

scripting languages such as UNIX Shell or Perl,

frequently used to implement the sorts of application that

we target here, are not concise, readable, easily

parallelizable or analyzable, and are not amenable to the

automation of provenance tracking. We overcome these

problems with XDTM and SwiftScript.

XDTM

Even logically simple applications can become

complicated when they must deal with “messy” data

stored in odd formats and storage organizations. For

example, compare the logical and physical layouts in

Figure 1. The logical organization is a clean hierarchy of

studies, groups, subjects (patients), runs (series of

volumes), and volumes (brain scans), while the physical

layout is a complex mix of directory structures and files

[8]. (The uninformed reader will be hard pressed to

determine that ‘/knottastic’ is a Study, which contains

Group ‘AA’, which in turn contains Subject ‘04nov06aa,’

etc.) The result, in the absence of Swift, was complex and

hard-to-maintain application orchestration code.

We address this problem by using XDTM, which

allows logical datasets to be defined in a manner that is

independent of the datasets’ concrete physical

representations. XDTM employs a two-level description

of datasets, defining separately via a type system based on

XML Schema the abstract structure of datasets, and the

mapping of that abstract data structure to physical

representations.

A dataset’s logical structure is specified via a subset

of XML Schema, which defines primitive scalar data

types such as Boolean, Integer, String, Float, and Date,

and also allows for the definition of complex types via the

composition of simple and complex types. The use of

XML Schema as a type system has the benefit of

supporting powerful standardized query languages such as

XPath in our selection methods.

Figure 1: fMRI logical data structure (left) vs. physical file system layout (right)

./knottastic

total 58

drwxr-xr-x 4 yongzh users 2048 Nov 12 14:15 AA

drwxr-xr-x 4 yongzh users 2048 Nov 11 21:13 CH

drwxr-xr-x 4 yongzh users 2048 Nov 11 16:32 EC

./knottastic/AA:

total 4

drwxr-xr-x 5 yongzh users 2048 Nov 5 12:41 04nov06aa

drwxr-xr-x 4 yongzh users 2048 Dec 6 12:24 11nov06aa

. /knottastic//AA/04nov06aa:

total 54

drwxr-xr-x 2 yongzh users 2048 Nov 5 12:52 ANATOMY

drwxr-xr-x 2 yongzh users 49152 Dec 5 11:40 FUNCTIONAL

. /knottastic/AA/04nov06aa/ANATOMY:

total 58500

-rw-r--r-- 1 yongzh users 348 Nov 5 12:29 coplanar.hdr

-rw-r--r-- 1 yongzh users 16777216 Nov 5 12:29 coplanar.img

. /knottastic/AA/04nov06aa/FUNCTIONAL:

total 196739

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0001.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0001.img

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0002.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0002.img

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0003.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0003.img

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

Figure 2 A Swift program (fragment) and the resulting task graph

A dataset’s physical representation is then defined by

a mapping descriptor, which describes how each element

in the dataset’s logical schema is stored in/fetched from

physical structures such as directories, files, and database

tables. In order to permit reuse for different datasets,

mapping descriptors typically refer to external parameters

for such things as dataset location(s).

We use a virtual integration approach to implement

the mapping mechanism. Each data source is regarded as

a virtual XML source, with its structure described in an

XML Schema. A mapper is responsible for accessing the

data source and converting its data to/from an XML

document or stream that conforms to the XML schema.

The case is somewhat different from a traditional data

integration approach, since we need to deal with

writing/updating to data sources as well as querying them.

We define a standard mapping interface so that

different data providers can implement the interface to

support access to various data representations. We

provide default mapping implementations for string

mapping, file system mapping, and CSV (comma

separated-value) files.

SwiftScript

The SwiftScript scripting language builds on XDTM

to allow for the definition of typed data structures and

procedures that operate on such data structures.

SwiftScript procedures define logical data types and

operations on those logical types; the SwiftScript

implementation uses mappers to access the corresponding

physical data. In addition to providing the usual

advantages of strong typing (type checking, self-

documenting code, etc.), this approach allows SwiftScript

programs to express opportunities for parallel execution

easily, for example by applying transformations to each

component of a hierarchically defined logical structure.

As an example, the logical structure of the fMRI

dataset shown in Figure 1 can be represented by the

SwiftScript type declarations in the upper left of Figure 2.

Here, Study is declared as containing an array of Group,

which in turn contains an array of Subject, etc. Similarly,

an fMRI Run is a series of brain scans called volumes,

with a Volume containing a 3D image of a volumetric

slice of a brain image, represented by an Image (voxels)

and a Header (scanner metadata).

Figure 3 includes two example procedures. We

examine reorientRun first. This is what we call a

compound procedure, meaning it calls one or more other

SwiftScript procedures. Note the typed input arguments

(to the right of the procedure name) and output argument

(to the left). The procedure takes in a run ir and applies

the procedure reorient (which rotates a brain image along

a certain axis) to each volume in the run to produces a

reoriented run or. Because the multiple calls to reorient

operate on independent data elements, they can proceed in

parallel.

The procedure reorient in Figure 3 is atomic,

corresponding to an invocation of an executable program

or a Web Service. This procedure has typed input

parameters iv, direction and overwrite and one output ov.

The body of this particular procedure specifies that it

invokes a program (conveniently, also called reorient) that

will be dynamically mapped to a binary executable. (This

executable will execute at an execution site chosen by the

Swift runtime system.) The body also specifies how input

parameters map to command line arguments. The notation

type Study { type Run {
Group g[]; Volume v[];

} }

 type Volume {
type Group { Image img;
 Subject s[]; Header hdr;
} }

 type AirVector {
type Subject { Air a[];
 Volume anat; }
 Run run[];
}

(Run resliced) reslice_wf (Run r) {

 Run yR = reorientRun(r , "y", "n");

 Run roR = reorientRun(yR , "x", "n");

 Volume std = roR.v[1];

 AirVector roAirVec =

 alignlinearRun(std, roR, 12, 1000, 1000, "81 3 3");

 resliced = resliceRun(roR, roAirVec, "-o", "-k");

}

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

@filename is a built-in mapping function that maps a

logical data structure to a physical file name.

Figure 3 fMRI procedure declarations

A compound procedure can also comprise a series of

procedure calls, using variables or datasets to establish

data dependencies. Such procedures can themselves be

called by other procedures, thus defining a potentially

large and complex execution graph.

The procedure reslice_wf (Figure 2, lower left)

applies reorientRun to a run first in the x axis and then in

the y axis, and then aligns each image in the resulting run

with the first image. The program alignlinear determines

how to spatially adjust an image to match a reference

image, and produces an air parameter file. The actual

alignment is done by the program reslice. Note that

variable yR, being the output of the first step and the input

of the second step, defines the data dependencies between

the two steps. More complex procedures can be composed

in similar fashion, combining with iterations and other

control constructs.

The reslice_wf example defines a simple four-step

pipeline computation. The pipeline is illustrated in the

center of Figure 2, while on the right we show the

expanded graph for a 20-volume run. Each volume

comprises an image file and a header file, so there are a

total of 40 input files and 40 output files. We can also

apply the same procedure to a run containing hundreds or

thousands of volumes.

SwiftScript allows concise definitions of logical data

structures and logical procedures that operate on them,

and complex computations to be composed from simple

and compound procedures. Its support for nested

iterations can allow a compact SwiftScript program (for

example, a nested set of iterations that applies the

program reorient to each volume in a whole Study) to

express hundreds of thousands of parallel tasks. We have

shown that SwiftScript programs can be at least an order

of magnitude smaller in lines of code than other

approaches such as Shell scripts and directed acyclic

graph specifications [19].

3. Implementation

The Swift runtime system (see Figure 4) is a scalable

environment for efficient specification, scheduling,

monitoring and tracking of SwiftScript programs. We

describe its components one by one.

Program specification: computations are defined in

SwiftScript programs, they are compiled by a SwiftScript

compiler into abstract computation plans, which can be

scheduled for execution by the execution engine.

Scheduling: Swift uses CoG Karajan as its

underlying execution engine. Karajan provides a set of

convenience libraries for file operation, data transfer, job

submission, and Grid services access. Such operations can

be organized using language constructs such as sequential

and parallel execution, sequential and parallel iterations,

conditional execution and functional abstraction etc. We

extend Karajan with specific libraries to support the

XDTM type system and logical dataset manipulation,

adapters to access legacy VDS components (for instance,

site catalog), mappers for accessing heterogeneous

physical data storage, and also with fault tolerance

mechanisms. Karajan uses light-weight threading

techniques to instantiate and dispatch tasks, and thus can

execute large scale task graphs (see Section 4).

SwiftScript

Abstract
computation

Virtual Data
Catalog

SwiftScript
Compiler

Specification Execution

Virtual Node(s)

Provenance

data

Provenance

dataProvenance

collector

launcher

launcher

file1

file2

file3

App
F1

App
F2

Scheduling

Execution Engine
(Karajan w/

Swift Runtime)

Swift runtime

callouts

C

C CC

Status reporting

Provisioning

Dynamic
Resource
Provisioner

EC2

Figure 4 Swift system diagram

Execution: Intermediate abstract execution plans

represented in customized Karajan scripts are interpreted

and dispatched by Karajan onto execution sites. We call

these plans abstract because execution can be carried out

in a location independent fashion: tasks are dispatched to

virtual nodes, which can be bound to different kinds of

computing facilities varying from personal desktops and

clusters to multi-site Grid environments. Swift determines

at runtime the actual execution processes such as site

selection, data stage-ins and stage-outs, and error

checking. A set of callouts allow customized functions to

determine where to dispatch tasks, how to group tasks to

increase granularity, and/or when and how to perform

data staging operations etc. Swift also supports advanced

(Volume ov) reorient (Volume iv, string direction,
 string overwrite) {
 app {
 reorient @filename(iv.hdr)

 @filename(ov.hdr)
 direction
 overwrite;

 }
}

(Run or) reorientRun (Run ir, string direction,
 string overwrite) {
 foreach Volume iv, i in ir.v {
 or.v[i] = reorient (iv, direction, overwrite);
 }
}

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

Grid scheduling and optimization, such as load balance,

fault tolerance, computation restart, etc.

Provenance tracking: Individual tasks are invoked

by a launcher program (for instance, kickstart) which

monitors and records the execution process and gathers

provenance information. In the future, we will record this

information in a virtual data catalog (VDC), as first

introduced and implemented in the virtual data system.

Provisioning: Tasks determined to be executable by

Karajan can be submitted directly, via a GRAM job

submission, to a (local or remote) scheduler for execution;

in this way, resource provisioning and task submission are

handled together. The Swift architecture also allows for

those two functions to be separated. Specifically, a

dynamic resource provisioner (right hand side of figure)

can interact with local or remote computing systems to

get computing resources, and then deploy task execution

services onto those resources. The execution services then

interact with a task queue service to obtain tasks to

execute.

4. Evaluation

We report on experiments that evaluate the

performance of various elements of the Swift system.

We consider first the size of the computations that

can be executed correctly. Figure 5 shows the maximum

number of tasks (measured by the number of nodes in a

task graph) that Swift can process and dispatch with

certain amount of available memory. The system can

support about 4000 nodes with 32MB of memory and

160,000 nodes with 1GB memory.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000 1200

Memory (MB)

N
u
m

b
e
r
o
f
N

o
d
e
s

Figure 5 Swift system scalability

Swift addresses reliability issues at several levels. At

the software development level, its type checking

capabilities allow it to identify potential problems in a

program prior to execution. Its support for virtual nodes

makes it easy to first test a program using local host

submission mechanism with a small set of datasets, and

then move to larger problems and execution sites.

During execution, the underlying Karajan engine

supports flexible exception handling mechanism.

Transitory problems are recovered by retrying the faulty

tasks (for instance, retry a transfer if a GridFTP server is

busy), and host level faults (where a resource exhibits

problems with unknown duration) are dealt with by

rescheduling a task on a different site.

Swift also keeps a restart log, allowing it to resume

the state of a computation in case of premature

termination (for instance, caused by a machine reboot).

We have tested restartability by repeatedly interrupting

program execution, and verified that our programs

continue from where they were interrupted. We also note

some (good) side effects to this mechanism: (1) new

inputs can be added after a computation has been run for

some time, and once we restart the computation, the

system is able to figure out that these new inputs are

present and not processed, and thus schedule their

executions. (2) We can make modifications to a program

and restart it, as long as the modifications do not affect

data flows that have already happened. This effect is

useful for debugging and testing purposes. The Swift

restart log is similar to a Condor rescue DAG, except that

Condor tags jobs that are finished, where we log datasets

that are successfully produced.

Swift engages the following mechanisms to improve

efficiency:

Pipelining: which refers to the ability to optimize

execution by executing dependent iterations incrementally.

Swift is built on data-driven mechanism, so once an item

in a collection is processed, any processes that are

dependent on that data item can proceed right away

without waiting for the whole collection to finish.

Clustering: many scientific computations are

composed of large number of short running jobs, for

instance, the reorient program in the sample fMRI

computation usually finishes in a few seconds. The

initialization and scheduling of large number of such jobs

can pose significant overhead. To address this we

(optionally) bundle groups of (mostly independent) jobs

and submit them as a single job.

Pluggable execution providers: Swift can schedule

the execution of a program on different compute

resources based on an abstract provider interface in CoG

Karajan. Karajan provides support for local host

execution, cluster scheduler submission, GRAM job

submission, etc. We have also integrated Swift with the

Falkon (Fast and Lightweight Task Execution) service [13]

by implementing the provider interface for the Falkon

service. Falkon is a Web Services-based system whose

main goal is to support the efficient execution of large

numbers of small tasks in batch scheduled environments

that are typically found in most production Grids. We

measure the speedups of running synthetic jobs over the

Falkon provider and we show the results in Figure 6.

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Number of workers

S
p
e
e
d
u
p

ideal
sleep 0
sleep 1
sleep 2
sleep 4
sleep 8
sleep 16
sleep 32

Figure 6 Swift speedup with Falkon provider

In the experiment, Swift executed computations

comprising 960 test jobs (which simply sleep), from a

submit host located at the University of Chicago, which

we refer to as UC_SUB, to a Falkon service running on

the TeraGrid ANL cluster. We varied the sleep durations

and also configured Falkon to allocate different number of

nodes to execute the tasks. The ideal speedup is equal to

the number of nodes used. We observe that the service

can keep a large number of workers busy even for short

jobs (one second duration) and process them efficiently,.

and for relatively longer running jobs, we get linear

speedups that are close to the ideal speedup. For instance,

with a cluster of 48 nodes, the Swift system can achieve

close to 47 times speedup for jobs with a duration of 32

seconds.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

Number of Workers

T
h
ro

u
g
h
p
u
t

Swift + Falkon (ANL->ANL)

Swift + Falkon (UC->ANL)

Figure 7 Swift throughput with Falkon provider

Figure 7 shows Swift throughput with the Falkon

provider. In the experiment, the Falkon service ran on the

TeraGrid ANL site and we submitted both from a separate

node within that cluster (ANL->ANL), and from

UC_SUB (UC->ANL). We measured the throughput,

defined as the number of sleep(0) jobs completed per

second. Swift was able to achieve up to 56 jobs/second in

the LAN setting and 46 jobs/second in the remote setting..

The scheduling of each sleep job actually involved many

extra steps such as site selection, execution directory set

up, exit code checking, and clean up. But comparing with

a standard setting where we use GT2 GRAM and PBS

cluster scheduler where we can only get up to 2 jobs per

second, the throughput of this combination is improved

by a factor of 23.

We also measured the turn-around time for the fMRI

workflow defined in Figure 1, with various input sizes

(number of volumes) and different scheduling strategies.

We submitted from UC_SUB to the TeraGrid ANL

cluster, and we repeat the experiment a few times. We

show the results in Figure 8, in which error bars indicate

the standard deviation of measurements.

1239

2510

3683

4808

456

866 992 1123

120
327

546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480

Input Data Size (Volumes)

T
im

e
 (

s
)

GRAM

GRAM/Clustering

Falkon

Figure 8 Execution time for the fMRI workflow
Since for each volume, all the four stages in the

workflow ran very fast on a cluster node (a few seconds

each), it is quite inefficient to schedule each job over

GRAM and PBS, since the overhead of GRAM job

submission and PBS resource allocation is large

compared with the short execution time. The GRAM

(over PBS) submission had low throughput although it

could have potentially used all the available nodes on the

site. With the clustering mechanism the execution time

was reduced by up to 4 times (jobs were bundled into

roughly 8 group), as the overhead was amortized by the

bundled jobs. The Falkon execution service (with 8

worker nodes) however further cuts down the execution

time by 40-70%, as each job was dispatched efficiently to

the workers.

5. Swift Applications

Swift has been applied to a variety of science

applications in disciplines such as physical sciences,

biological sciences, social sciences, humanities, computer

science, and science education. We summarize some

applications and their scales in Table 1.

Table 1: Example Swift applications

Application #Jobs/

Run

#Levels

fMRI AIRSN Image Processing 100s 12

fMRI Aphasia Study 500 4

NVO/NASA Photorealistic Montage 1000s 16

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

QuarkNet/I2U2*

Physics Science Education

10s 3-6

Radiology Classifier Training 1000s 5

SIDGrid EEG Wavelet Processing,

Gaze Analysis

100s 20

The applications involve computations with various

complexities, shown with the number of jobs in a typical

analysis run, and the number of levels (or stages) in such

analyses.

6. Related Work

MapReduce [5] is another programming tool for large

parallel computations. However, MapReduce is limited to

processing key-value based data, and the runtime

environment requires Google File System. Swift targets

various scientific applications that process heterogeneous

data formats, and can schedule computations in a

location-independent way.

Pegasus [6] and DAGMan [4] can also schedule large

scale computations in Grid environments. DAGMan

provides a workflow engine that manages Condor jobs

organized as directed acyclic graphs (DAGs) in which

each edge corresponds to an explicit task precedence. It

has no knowledge of data flow, and in distributed

environments works best with a higher-level, data-

cognizant layer. DAGMan also lacks dynamic features

such as iteration or conditional execution. Pegasus is

primarily a set of DAG transformers that can translate a

workflow graph into a location-specific DAGMan input

file; prune tasks for files that exist; select sites for jobs;

and cluster jobs based on various criteria. A weakness is

that planners must operate on an entire workflow

statically, and execution sites can not be changed after

Pegasus processes a workflow, which can be long before

a job runs, a strategy that may not work well in dynamic

environments.

BPEL [3] has primarily been applied in service

composition and orchestration. It lacks the specification

for iteration which would result in large size of workflow

specification, although the problem is being addressed in

its latest 2.0 specification. In addition, the complex XML

specification is cumbersome to write compared with our

compact scripting language.

Taverna [12], Triana [17], Kepler [1] have also been

applied in science problems. However, they do not

abstract dataset types or provide location transparency.

Data movement and Grid job submission all need to be

explicitly specified and organized. Their support for

multi-site Grid execution is also of limited scale.

As discussed earlier, Swift integrates CoG Karajan

[9]. Karajan provides the libraries and primitives for job

scheduling, data transfer, and Grid job submission; Swift

adds support for high-level abstract specification of large

parallel computations, data abstraction, and workflow

restart, and also (via Falkon) fast, reliable execution over

multiple Grid sites.

7. Summary and Future Work

Swift is a parallel programming system that addresses

important end-to-end issues in large-scale loosely coupled

parallel computation. Swift imposes elegant order on a

messy complex world of distributed and failure-prone

applications. It provides the XDTM model for clean

separation of logical data structures and physical storage

formats, a scripting language SwiftScript for concise

specification and convenient composition of large

complex workflows, and a scalable runtime system that

manage and dispatch hundreds of thousands parallel

computations, onto a variety of parallel and distributed

computation facilities.

As we have described here, the Swift system provides

a wide range of capabilities to support the formulation,

execution and management of large compute- and data-

intensive computations:

Scalability in Grid environments: Swift has

demonstrated large-scale execution of extremely large

computations on both parallel computers and distributed

systems.

Scripting: Scientists often seem to prefer scripting

languages to more cumbersome alternatives. SwiftScript

meets this need with a simple, familiar, and expressive

notation.

Dataset typing and iteration: Swift allows the

declaration of logical data structures and typed procedures

to iterate over such datasets. A nested approach of such

iterations can easily scale up to thousands or even

millions of data objects.

Dataset mapping: This feature is critical for

automating task execution with location independence.

Systems need to know how to access dataset components

and how to pack datasets and transport them to an

execution site. Swift’s dataset layout description model

allows users to work at a clean abstract level.

Application service interoperability: Swift can

integrate both service-oriented and command-oriented

applications based on the XDTM model. While Service

Oriented Architecture is gaining adoption, most scientists

use non service-oriented applications. Swift provides a

bridge between these two models of application

deployment.

Provenance and annotation: Swift integrates

provenance and annotation with computation through a

language that makes data flow explicit and trackable, and

a catalog (soon to be integrated) that records data

derivation activities.

The combination of such distinctive features enables

the automation of scientific data and workflow

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

managements, and improves usability and productivity in

scientific applications and data analyses.

We continue to work to improve Swift’s usability,

functionality, and scalability. In particular, we are

working on more intuitive application interface in

SwiftScript, and we are integrating the data provenance

structures created in VDS to represent programs, metadata,

and runtime provenance [19] to support a wide range of

provenance queries [20], we are also in the process of

benchmarking system components with large scale

application runs.

Acknowledgements

This work was carried out on computing facilities at

the Computation Institute at the University of Chicago,

and at the Teragrid UC/ANL site. This work was

supported by the National Science Foundation GriPhyN

Project, grant ITR-800864 and iVDGL, grant PHY-

122557; I2U2 – Interactions in Understanding the

Universe, grant PHY-0636265; the Mathematical,

Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific

Computing Research, U.S. Department of Energy under

contract DE-AC02-06CH11357; and the National

Institutes of Health, grants NS37470, NS44393 and

DC008638-01. The authors thank Veronika Nefedova,

Rob Jacob, Steven Small, Uri Hasson, Dan Katz,

Maryellen Giger, Andrew Jamieson and the SIDGrid

project (Bennett Bertenthal and Sarah Kenney, NSF

award BCS 05-37849) for their collaboration on the

application of Swift to the scientific investigations

described here.

8. References
[1] Altintas, I., Berkley, C., Jaeger, E., Jones, M.,

Ludäscher, B. and Mock, S., Kepler: An Extensible

System for Design and Execution of Scientific

Workflows. in 16th Intl. Conference on Scientific

and Statistical Database Management, (2004).

[2] Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent,

S. and Foster, I., Applying Chimera Virtual Data

Concepts to Cluster Finding in the Sloan Sky

Survey. in SC2002, (Baltimore, MD, 2002).

[3] Business Process Execution Language for Web

Services, Version 1.0, http://www-

106.ibm.com/developerworks/webservices/library/

ws-bpel/, 2002.

[4] The Condor DAGMan (Directed Acyclic Graph

Manager), http://www.cs.wisc.edu/condor/dagman,

2007.

[5] Dean, J. and Ghemawat, S.,MapReduce: Simplified

data processing on large clusters. In OSDI, 2004.

[6] Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil,

Y., Kesselman, C., Mehta, G., Vahi, K., Berriman,

G.B., Good, J., Laity, A., Jacob, J.C. and Katz, D.S.

Pegasus: A Framework for Mapping Complex

Scientific Workflows onto Distributed Systems.

Scientific Programming, 13 (3). 219-237.

[7] Foster, I., Voeckler, J., Wilde, M. and Zhao, Y.,

Chimera: A Virtual Data System for Representing,

Querying, and Automating Data Derivation. in

14th Intl. Conf. on Scientific and Statistical

Database Management, (Edinburgh, Scotland,

2002).

[8] Horn, J.V., Dobson, J., Woodward, J., Wilde, M.,

Zhao, Y., Voeckler, J. and Foster, I. Grid-Based

Computing and the Future of Neuroscience

Computation. in Methods in Mind, MIT Press,

2006.

[9] Laszewski, G.v., Hategan, M. and Kodeboyina, D.

Java CoG Kit Workflow. in Taylor, I.J., Deelman,

E., Gannon, D.B. and Shields, M. eds. Workflows

for eScience, 2007, 340-356.

[10] Moreau, L., Zhao, Y., Foster, I., Voeckler, J. and

Wilde, M., XDTM: XML Data Type and Mapping

for Specifying Datasets. in European Grid

Conference, (2005).

[11] Nefedova, V., Jacob, R., Foster, I., Liu, Y., Liu, Z.,

Deelman, E., Mehta, G. and Vahi, K., Automating

Climate Science: Large Ensemble Simulations on

the TeraGrid with the GriPhyN Virtual Data

System. in 2nd IEEE International Conference on

eScience and Grid Computing, (2006).

[12] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger,

M., Greenwood, M., Carver, T., Glover, K.,

Pocock, M.R., Wipat, A. and Li, P. Taverna: A

Tool for the Composition and Enactment of

Bioinformatics Workflows Bioinformatics Journal,

20 (17). 3045-3054.

[13] Raicu, I., Dumitrescu, C. and Foster, I., “Dynamic

Resource Provisioning in Grid Environments”,

submitted for review to TeraGrid Conference 2007.

[14] Sulakhe, D., Rodriguez, A., Wilde, M., Foster, I.

and Maltsev, N., Using Multiple Grid Resources

for Bioinformatics Applications in GADU. in

IEEE/ACM International Symposium on Cluster

Computing and Grid, (2006).

[15] Swift, http://www.ci.uchicago.edu/swift, 2007

[16] The TeraGrid, http://www.teragrid.org, 2007.

[17] Taylor, I., Shields, M., Wang, I. and Harrison, A.

Visual Grid Workflow in Triana. Journal of Grid

Computing,, 3 (3-4). 153-169.

[18] Vöckler, J.-S., Mehta, G., Zhao, Y., Deelman, E.

and Wilde, M., Kickstarting Remote Applications.

in 2nd International Workshop on Grid Computing

Environments (2006).

[19] Zhao, Y., Dobson, J., Foster, I., Moreau, L. and

Wilde, M. A Notation and System for Expressing

and Executing Cleanly Typed Workflows on

To appear: 2007 IEEE International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A.

Messy Scientific Data. SIGMOD Record 34 (3).

37-43.

[20] Zhao, Y., Wilde, M., Foster, I., Applying the

Virtual Data Provenance Model, Proceedings of the

International Provenance and Annotation

Workshop 2006 (IPAW2006), Lecture Notes in

Computer Science, Springer, 2006.

