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Abstract 

 
A common pattern in scientific computing involves 

the execution of many tasks that are coupled only in the 

sense that the output of one may be passed as input to one 

or more others—for example, as a file, or via a Web 

Services invocation. While such “loosely coupled” 

computations can involve large amounts of computation 

and communication, the concerns of the programmer tend 

to be different than in traditional high performance 

computing, being focused on management issues relating 

to the large numbers of datasets and tasks (and often, the 

complexities inherent in “messy” data organizations) 

rather than the optimization of interprocessor 

communication. To address these concerns, we have 

developed Swift, a system that combines a novel scripting 

language called SwiftScript with a powerful runtime 

system based on CoG Karajan and Falkon to allow for the 

concise specification, and reliable and efficient execution, 

of large loosely coupled computations. Swift adopts and 

adapts ideas first explored in the GriPhyN virtual data 

system, improving on that system in many regards. We 

describe the SwiftScript language and its use of XDTM to 

describe the logical structure of complex file system 

structures. We also present the Swift system and its use of 

CoG Karajan, Falkon, and Globus services to dispatch 

and manage the execution of many tasks in different 

execution environments. We summarize application 

experiences and detail performance experiments that 

quantify the cost of Swift operations. 

 

1. Introduction 
 

Consider the following painful but all-too-familiar 

scenario: A neuroscientist needs to analyze ten thousand 

functional magnetic resonance imaging (fMRI) files. The 

analysis program is a complex Perl script. Files are 

stored in a collection of UNIX directories, with metadata 

coded in directory and file names. Local computing 

facilities are inadequate. Thus, the scientist must 

manually extract files, copy them to a remote cluster, start 

a home-grown script to dispatch tasks, and check exit 

codes and output files to see which tasks succeeded and 

failed. And when the computation is finally completed, the 

problem remains of documenting what was done. 

Such difficulties have motivated our design of Swift, 

a parallel programming system that integrates the 

following elements to meet the needs of scientists tackling 

such problems. 

• A scripting language, SwiftScript, allows users to 

express operations on datasets in terms of their 

logical organization; the XML Dataset Typing and 

Mapping (XDTM) [10] notation is used to define a 

mapping between that logical organization and the 

underlying physical structure. 

• An execution engine, CoG Karajan [9], a 

lightweight provisioning and job submission 

system, Falkon [13], and a compiler and associated 

runtime libraries, execute tasks specified via 

SwiftScript programs, on local or remote 

computers. 

• A provenance-recording component, Kickstart 

[18], captures execution details for diagnosis and 

eventual recording in a provenance database. 

These elements together make it possible for a few 

lines of SwiftScript to specify computations involving 

extremely large numbers (tens or hundreds of thousands) 

of files and tasks, and for those computations to be 

executed efficiently and reliably on many distributed 

computers. The impact on end users such as our 

unfortunate neuroscientist can be enormous. Code sizes 

can be reduced by an order of magnitude or more [19]. In 

another example, a 160-member climate model ensemble 

took 2.5 months when performed manually; a 250-

member ensemble was finished within 4 days—

admittedly on a faster computer—when automated with a 

precursor to Swift [11]. Other users are found in the 

physical, biological, and social sciences, and in the 

humanities, computer science, and education. 

Swift grew out of work on the GriPhyN Virtual Data 

System (VDS) [7], which provided a simple virtual data 

language, planners (including Pegasus [6]) for program 

optimization and scheduling, the DAGMan task 

management system for task management [4], kickstart, 

and a virtual data catalog [20]. Swift improves on VDS in 

several regards, in particular its use of XDTM to define 

logical views of datasets; SwiftScript and CoG Karajan 

support for iteration operations, which together allow for 

more concise specifications of computations over larger 

datasets; and Falkon for efficient task dispatch. 
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The rest of the paper is organized as follows. We 

introduce SwiftScript and the Swift system design in 

Sections 2 and 3. We present system evaluation results 

and applications in Sections 4 and 5. We discuss related 

work in the specification and execution of loosely coupled 

problems in Section 6, and summarize in Section 7.   

 

2. Notation: SwiftScript and XDTM 
 

The need to process large numbers of tasks reliably 

and efficiently arises in many scientific and engineering 

disciplines, for example when performing large-scale data 

analysis or when executing large numbers of 

computations to study sensitivity to parameter values (in 

parameter studies) and/or initial conditions (in ensemble 

simulations). Users working on such problems frequently 

struggle with bookkeeping tasks due to large numbers of 

tasks, datasets, and computational resources. 

Users need a concise and readable notation to 

simplify the description, maintenance, and debugging of 

problem specifications. Such a notation should also 

facilitate high-performance execution by revealing 

opportunities for concurrent execution. Conventional 

scripting languages such as UNIX Shell or Perl, 

frequently used to implement the sorts of application that 

we target here, are not concise, readable, easily 

parallelizable or analyzable, and are not amenable to the 

automation of provenance tracking. We overcome these 

problems with XDTM and SwiftScript. 

 

XDTM 
 

Even logically simple applications can become 

complicated when they must deal with “messy” data 

stored in odd formats and storage organizations. For 

example, compare the logical and physical layouts in 

Figure 1. The logical organization is a clean hierarchy of 

studies, groups, subjects (patients), runs (series of 

volumes), and volumes (brain scans), while the physical 

layout is a complex mix of directory structures and files 

[8]. (The uninformed reader will be hard pressed to 

determine that ‘/knottastic’ is a Study, which contains 

Group ‘AA’, which in turn contains Subject ‘04nov06aa,’ 

etc.) The result, in the absence of Swift, was complex and 

hard-to-maintain application orchestration code.  

We address this problem by using XDTM, which 

allows logical datasets to be defined in a manner that is 

independent of the datasets’ concrete physical 

representations. XDTM employs a two-level description 

of datasets, defining separately via a type system based on 

XML Schema the abstract structure of datasets, and the 

mapping of that abstract data structure to physical 

representations. 

A dataset’s logical structure is specified via a subset 

of XML Schema, which defines primitive scalar data 

types such as Boolean, Integer, String, Float, and Date, 

and also allows for the definition of complex types via the 

composition of simple and complex types. The use of 

XML Schema as a type system has the benefit of 

supporting powerful standardized query languages such as 

XPath in our selection methods. 

 
Figure 1: fMRI logical data structure (left) vs. physical file system layout (right) 

./knottastic 

total 58 

drwxr-xr-x  4 yongzh users 2048 Nov 12 14:15 AA 

drwxr-xr-x  4 yongzh users 2048 Nov 11 21:13 CH 

drwxr-xr-x  4 yongzh users 2048 Nov 11 16:32 EC 

 

./knottastic/AA: 

total 4 

drwxr-xr-x  5 yongzh users 2048 Nov  5 12:41 04nov06aa 

drwxr-xr-x  4 yongzh users 2048 Dec  6 12:24 11nov06aa 

 

. /knottastic//AA/04nov06aa: 

total 54 

drwxr-xr-x  2 yongzh users  2048 Nov  5 12:52 ANATOMY 

drwxr-xr-x  2 yongzh users 49152 Dec  5 11:40 FUNCTIONAL 

 

. /knottastic/AA/04nov06aa/ANATOMY: 

total 58500 

-rw-r--r--  1 yongzh users      348 Nov  5 12:29 coplanar.hdr 

-rw-r--r--  1 yongzh users 16777216 Nov  5 12:29 coplanar.img 

 

. /knottastic/AA/04nov06aa/FUNCTIONAL: 

total 196739 

-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0001.hdr 

-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0001.img 

-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0002.hdr 

-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0002.img 

-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0003.hdr 

-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0003.img 
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Figure 2 A Swift program (fragment) and the resulting task graph 

A dataset’s physical representation is then defined by 

a mapping descriptor, which describes how each element 

in the dataset’s logical schema is stored in/fetched from 

physical structures such as directories, files, and database 

tables. In order to permit reuse for different datasets, 

mapping descriptors typically refer to external parameters 

for such things as dataset location(s). 

We use a virtual integration approach to implement 

the mapping mechanism. Each data source is regarded as 

a virtual XML source, with its structure described in an 

XML Schema. A mapper is responsible for accessing the 

data source and converting its data to/from an XML 

document or stream that conforms to the XML schema. 

The case is somewhat different from a traditional data 

integration approach, since we need to deal with 

writing/updating to data sources as well as querying them. 

We define a standard mapping interface so that 

different data providers can implement the interface to 

support access to various data representations. We 

provide default mapping implementations for string 

mapping, file system mapping, and CSV (comma 

separated-value) files. 
 

SwiftScript 

 
The SwiftScript scripting language builds on XDTM 

to allow for the definition of typed data structures and 

procedures that operate on such data structures. 

SwiftScript procedures define logical data types and 

operations on those logical types; the SwiftScript 

implementation uses mappers to access the corresponding 

physical data. In addition to providing the usual 

advantages of strong typing (type checking, self-

documenting code, etc.), this approach allows SwiftScript 

programs to express opportunities for parallel execution 

easily, for example by applying transformations to each 

component of a hierarchically defined logical structure. 

As an example, the logical structure of the fMRI 

dataset shown in Figure 1 can be represented by the 

SwiftScript type declarations in the upper left of Figure 2. 

Here, Study is declared as containing an array of Group, 

which in turn contains an array of Subject, etc. Similarly, 

an fMRI Run is a series of brain scans called volumes, 

with a Volume containing a 3D image of a volumetric 

slice of a brain image, represented by an Image (voxels) 

and a Header (scanner metadata). 

Figure 3 includes two example procedures. We 

examine reorientRun first. This is what we call a 

compound procedure, meaning it calls one or more other 

SwiftScript procedures. Note the typed input arguments 

(to the right of the procedure name) and output argument 

(to the left). The procedure takes in a run ir and applies 

the procedure reorient (which rotates a brain image along 

a certain axis) to each volume in the run to produces a 

reoriented run or. Because the multiple calls to reorient 

operate on independent data elements, they can proceed in 

parallel.  

The procedure reorient in Figure 3 is atomic, 

corresponding to an invocation of an executable program 

or a Web Service. This procedure has typed input 

parameters iv, direction and overwrite and one output ov. 

The body of this particular procedure specifies that it 

invokes a program (conveniently, also called reorient) that 

will be dynamically mapped to a binary executable. (This 

executable will execute at an execution site chosen by the 

Swift runtime system.) The body also specifies how input 

parameters map to command line arguments. The notation 

type Study {       type Run {  
Group g[ ];                    Volume v[ ]; 

}       } 
 
       type Volume { 
type Group {              Image img; 
   Subject s[ ];             Header hdr;  
}       } 
    
       type AirVector { 
type Subject {              Air a[ ]; 
   Volume anat;      }  
   Run run[ ];   
}        
 

(Run resliced) reslice_wf ( Run r) { 

     Run yR = reorientRun( r , "y", "n" ); 

     Run roR  = reorientRun( yR , "x", "n" ); 

     Volume std = roR.v[1]; 

     AirVector roAirVec =  

          alignlinearRun(std, roR, 12, 1000, 1000, "81 3 3"); 

     resliced = resliceRun( roR, roAirVec, "-o", "-k"); 

} 
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@filename is a built-in mapping function that maps a 

logical data structure to a physical file name. 

 

 
Figure 3 fMRI procedure declarations 

 

A compound procedure can also comprise a series of 

procedure calls, using variables or datasets to establish 

data dependencies. Such procedures can themselves be 

called by other procedures, thus defining a potentially 

large and complex execution graph. 

The procedure reslice_wf (Figure 2, lower left) 

applies reorientRun to a run first in the x axis and then in 

the y axis, and then aligns each image in the resulting run 

with the first image. The program alignlinear determines 

how to spatially adjust an image to match a reference 

image, and produces an air parameter file. The actual 

alignment is done by the program reslice. Note that 

variable yR, being the output of the first step and the input 

of the second step, defines the data dependencies between 

the two steps. More complex procedures can be composed 

in similar fashion, combining with iterations and other 

control constructs.  

The reslice_wf example defines a simple four-step 

pipeline computation. The pipeline is illustrated in the 

center of Figure 2, while on the right we show the 

expanded graph for a 20-volume run. Each volume 

comprises an image file and a header file, so there are a 

total of 40 input files and 40 output files. We can also 

apply the same procedure to a run containing hundreds or 

thousands of volumes. 

SwiftScript allows concise definitions of logical data 

structures and logical procedures that operate on them, 

and complex computations to be composed from simple 

and compound procedures. Its support for nested 

iterations can allow a compact SwiftScript program (for 

example, a nested set of iterations that applies the 

program reorient to each volume in a whole Study) to 

express hundreds of thousands of parallel tasks. We have 

shown that SwiftScript programs can be at least an order 

of magnitude smaller in lines of code than other 

approaches such as Shell scripts and directed acyclic 

graph specifications [19].  

 

3. Implementation 
 

The Swift runtime system (see Figure 4) is a scalable 

environment for efficient specification, scheduling, 

monitoring and tracking of SwiftScript programs. We 

describe its components one by one. 

Program specification: computations are defined in 

SwiftScript programs, they are compiled by a SwiftScript 

compiler into abstract computation plans, which can be 

scheduled for execution by the execution engine. 

Scheduling: Swift uses CoG Karajan as its 

underlying execution engine. Karajan provides a set of 

convenience libraries for file operation, data transfer, job 

submission, and Grid services access. Such operations can 

be organized using language constructs such as sequential 

and parallel execution, sequential and parallel iterations, 

conditional execution and functional abstraction etc. We 

extend Karajan with specific libraries to support the 

XDTM type system and logical dataset manipulation, 

adapters to access legacy VDS components (for instance, 

site catalog), mappers for accessing heterogeneous 

physical data storage, and also with fault tolerance 

mechanisms. Karajan uses light-weight threading 

techniques to instantiate and dispatch tasks, and thus can 

execute large scale task graphs (see Section 4).  
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Figure 4 Swift system diagram 

 

Execution: Intermediate abstract execution plans 

represented in customized Karajan scripts are interpreted 

and dispatched by Karajan onto execution sites. We call 

these plans abstract because execution can be carried out 

in a location independent fashion: tasks are dispatched to 

virtual nodes, which can be bound to different kinds of 

computing facilities varying from personal desktops and 

clusters to multi-site Grid environments. Swift determines 

at runtime the actual execution processes such as site 

selection, data stage-ins and stage-outs, and error 

checking. A set of callouts allow customized functions to 

determine where to dispatch tasks, how to group tasks to 

increase granularity, and/or when and how to perform 

data staging operations etc. Swift also supports advanced 

(Volume ov) reorient (Volume iv, string direction,  
                                                      string overwrite) { 
        app { 
                reorient  @filename(iv.hdr)  

               @filename(ov.hdr)  
 direction  
 overwrite; 

        } 
} 
 
(Run or) reorientRun (Run ir, string direction,  
                                                string overwrite) { 
        foreach Volume iv, i in ir.v { 
                or.v[i] = reorient (iv, direction, overwrite); 
        } 
} 
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Grid scheduling and optimization, such as load balance, 

fault tolerance, computation restart, etc.  

Provenance tracking: Individual tasks are invoked 

by a launcher program (for instance, kickstart) which 

monitors and records the execution process and gathers 

provenance information. In the future, we will record this 

information in a virtual data catalog (VDC), as first 

introduced and implemented in the virtual data system. 

Provisioning: Tasks determined to be executable by 

Karajan can be submitted directly, via a GRAM job 

submission, to a (local or remote) scheduler for execution; 

in this way, resource provisioning and task submission are 

handled together. The Swift architecture also allows for 

those two functions to be separated. Specifically, a 

dynamic resource provisioner (right hand side of figure) 

can interact with local or remote computing systems to 

get computing resources, and then deploy task execution 

services onto those resources. The execution services then 

interact with a task queue service to obtain tasks to 

execute.  

 

4. Evaluation 
 

We report on experiments that evaluate the 

performance of various elements of the Swift system. 

We consider first the size of the computations that 

can be executed correctly. Figure 5 shows the maximum 

number of tasks (measured by the number of nodes in a 

task graph) that Swift can process and dispatch with 

certain amount of available memory. The system can 

support about 4000 nodes with 32MB of memory and 

160,000 nodes with 1GB memory. 
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Figure 5 Swift system scalability 

 
Swift addresses reliability issues at several levels. At 

the software development level, its type checking 

capabilities allow it to identify potential problems in a 

program prior to execution. Its support for virtual nodes 

makes it easy to first test a program using local host 

submission mechanism with a small set of datasets, and 

then move to larger problems and execution sites. 

During execution, the underlying Karajan engine 

supports flexible exception handling mechanism. 

Transitory problems are recovered by retrying the faulty 

tasks (for instance, retry a transfer if a GridFTP server is 

busy), and host level faults (where a resource exhibits 

problems with unknown duration) are dealt with by 

rescheduling a task on a different site.  

Swift also keeps a restart log, allowing it to resume 

the state of a computation in case of premature 

termination (for instance, caused by a machine reboot). 

We have tested restartability by repeatedly interrupting 

program execution, and verified that our programs 

continue from where they were interrupted. We also note 

some (good) side effects to this mechanism: (1) new 

inputs can be added after a computation has been run for 

some time, and once we restart the computation, the 

system is able to figure out that these new inputs are 

present and not processed, and thus schedule their 

executions. (2) We can make modifications to a program 

and restart it, as long as the modifications do not affect 

data flows that have already happened. This effect is 

useful for debugging and testing purposes. The Swift 

restart log is similar to a Condor rescue DAG, except that 

Condor tags jobs that are finished, where we log datasets 

that are successfully produced. 

Swift engages the following mechanisms to improve 

efficiency: 

Pipelining: which refers to the ability to optimize 

execution by executing dependent iterations incrementally. 

Swift is built on data-driven mechanism, so once an item 

in a collection is processed, any processes that are 

dependent on that data item can proceed right away 

without waiting for the whole collection to finish. 

Clustering: many scientific computations are 

composed of large number of short running jobs, for 

instance, the reorient program in the sample fMRI 

computation usually finishes in a few seconds. The 

initialization and scheduling of large number of such jobs 

can pose significant overhead. To address this we 

(optionally) bundle groups of (mostly independent) jobs 

and submit them as a single job.  

Pluggable execution providers: Swift can schedule 

the execution of a program on different compute 

resources based on an abstract provider interface in CoG 

Karajan. Karajan provides support for local host 

execution, cluster scheduler submission, GRAM job 

submission, etc. We have also integrated Swift with the 

Falkon (Fast and Lightweight Task Execution) service [13] 

by implementing the provider interface for the Falkon 

service. Falkon is a Web Services-based system whose 

main goal is to support the efficient execution of large 

numbers of small tasks in batch scheduled environments 

that are typically found in most production Grids. We 

measure the speedups of running synthetic jobs over the 

Falkon provider and we show the results in Figure 6. 
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Figure 6 Swift speedup with Falkon provider 

 

In the experiment, Swift executed computations 

comprising 960 test jobs (which simply sleep), from a 

submit host located at the University of Chicago, which 

we refer to as UC_SUB, to a Falkon service running on 

the TeraGrid ANL cluster. We varied the sleep durations 

and also configured Falkon to allocate different number of 

nodes to execute the tasks. The ideal speedup is equal to 

the number of nodes used. We observe that the service 

can keep a large number of workers busy even for short 

jobs (one second duration) and process them efficiently,. 

and for relatively longer running jobs, we get linear 

speedups that are close to the ideal speedup. For instance, 

with a cluster of 48 nodes, the Swift system can achieve 

close to 47 times speedup for jobs with a duration of 32 

seconds. 
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Figure 7 Swift throughput with Falkon provider 

 

Figure 7 shows Swift throughput with the Falkon 

provider. In the experiment, the Falkon service ran on the 

TeraGrid ANL site and we submitted both from a separate 

node within that cluster (ANL->ANL), and from 

UC_SUB (UC->ANL). We measured the throughput, 

defined as the number of sleep(0) jobs completed per 

second. Swift was able to achieve up to 56 jobs/second in 

the LAN setting and 46 jobs/second in the remote setting.. 

The scheduling of each sleep job actually involved many 

extra steps such as site selection, execution directory set 

up, exit code checking, and clean up. But comparing with 

a standard setting where we use GT2 GRAM and PBS 

cluster scheduler where we can only get up to 2 jobs per 

second, the throughput of this combination is improved 

by a factor of 23. 

We also measured the turn-around time for the fMRI 

workflow defined in Figure 1, with various input sizes 

(number of volumes) and different scheduling strategies. 

We submitted from UC_SUB to the TeraGrid ANL 

cluster, and we repeat the experiment a few times. We 

show the results in Figure 8, in which error bars indicate 

the standard deviation of measurements. 
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Figure 8 Execution time for the fMRI workflow 
Since for each volume, all the four stages in the 

workflow ran very fast on a cluster node (a few seconds 

each), it is quite inefficient to schedule each job over 

GRAM and PBS, since the overhead of GRAM job 

submission and PBS resource allocation is large 

compared with the short execution time. The GRAM 

(over PBS) submission had low throughput although it 

could have potentially used all the available nodes on the 

site. With the clustering mechanism the execution time 

was reduced by up to 4 times (jobs were bundled into 

roughly 8 group), as the overhead was amortized by the 

bundled jobs. The Falkon execution service (with 8 

worker nodes) however further cuts down the execution 

time by 40-70%, as each job was dispatched efficiently to 

the workers.   

 

5. Swift Applications 
 

Swift has been applied to a variety of science 

applications in disciplines such as physical sciences, 

biological sciences, social sciences, humanities, computer 

science, and science education. We summarize some 

applications and their scales in Table 1. 

 

Table 1: Example Swift applications 

Application #Jobs/ 

Run 

#Levels 

fMRI AIRSN Image Processing 100s 12 

fMRI Aphasia Study 500 4 

NVO/NASA Photorealistic Montage 1000s 16 
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QuarkNet/I2U2* 

Physics Science Education 

10s 3-6 

Radiology Classifier Training 1000s 5 

SIDGrid EEG Wavelet Processing, 

Gaze Analysis 

100s 20 

 

The applications involve computations with various 

complexities, shown with the number of jobs in a typical 

analysis run, and the number of levels (or stages) in such 

analyses.  

 

6. Related Work 
 

MapReduce [5] is another programming tool for large 

parallel computations. However, MapReduce is limited to 

processing key-value based data, and the runtime 

environment requires Google File System. Swift targets 

various scientific applications that process heterogeneous 

data formats, and can schedule computations in a 

location-independent way. 

Pegasus [6] and DAGMan [4] can also schedule large 

scale computations in Grid environments. DAGMan 

provides a workflow engine that manages Condor jobs 

organized as directed acyclic graphs (DAGs) in which 

each edge corresponds to an explicit task precedence. It 

has no knowledge of data flow, and in distributed 

environments works best with a higher-level, data-

cognizant layer. DAGMan also lacks dynamic features 

such as iteration or conditional execution. Pegasus is 

primarily a set of DAG transformers that can translate a 

workflow graph into a location-specific DAGMan input 

file; prune tasks for files that exist; select sites for jobs; 

and cluster jobs based on various criteria. A weakness is 

that planners must operate on an entire workflow 

statically, and execution sites can not be changed after 

Pegasus processes a workflow, which can be long before 

a job runs, a strategy that may not work well in dynamic 

environments. 

BPEL [3] has primarily been applied in service 

composition and orchestration. It lacks the specification 

for iteration which would result in large size of workflow 

specification, although the problem is being addressed in 

its latest 2.0 specification. In addition, the complex XML 

specification is cumbersome to write compared with our 

compact scripting language.  

Taverna [12], Triana [17], Kepler [1] have also been 

applied in science problems. However, they do not 

abstract dataset types or provide location transparency. 

Data movement and Grid job submission all need to be 

explicitly specified and organized. Their support for 

multi-site Grid execution is also of limited scale. 

As discussed earlier, Swift integrates CoG Karajan 

[9]. Karajan provides the libraries and primitives for job 

scheduling, data transfer, and Grid job submission; Swift 

adds support for high-level abstract specification of large 

parallel computations, data abstraction, and workflow 

restart, and also (via Falkon) fast, reliable execution over 

multiple Grid sites. 

 

7. Summary and Future Work 
 

Swift is a parallel programming system that addresses 

important end-to-end issues in large-scale loosely coupled 

parallel computation. Swift imposes elegant order on a 

messy complex world of distributed and failure-prone 

applications. It provides the XDTM model for clean 

separation of logical data structures and physical storage 

formats, a scripting language SwiftScript for concise 

specification and convenient composition of large 

complex workflows, and a scalable runtime system that 

manage and dispatch hundreds of thousands parallel 

computations, onto a variety of parallel and distributed 

computation facilities.  

As we have described here, the Swift system provides 

a wide range of capabilities to support the formulation, 

execution and management of large compute- and data- 

intensive computations: 

Scalability in Grid environments: Swift has 

demonstrated large-scale execution of extremely large 

computations on both parallel computers and distributed 

systems.  

Scripting: Scientists often seem to prefer scripting 

languages to more cumbersome alternatives. SwiftScript 

meets this need with a simple, familiar, and expressive 

notation. 

Dataset typing and iteration: Swift allows the 

declaration of logical data structures and typed procedures 

to iterate over such datasets. A nested approach of such 

iterations can easily scale up to thousands or even 

millions of data objects.  

Dataset mapping: This feature is critical for 

automating task execution with location independence. 

Systems need to know how to access dataset components 

and how to pack datasets and transport them to an 

execution site. Swift’s dataset layout description model 

allows users to work at a clean abstract level.  

Application service interoperability: Swift can 

integrate both service-oriented and command-oriented 

applications based on the XDTM model. While Service 

Oriented Architecture is gaining adoption, most scientists 

use non service-oriented applications. Swift provides a 

bridge between these two models of application 

deployment. 

Provenance and annotation: Swift integrates 

provenance and annotation with computation through a 

language that makes data flow explicit and trackable, and 

a catalog (soon to be integrated) that records data 

derivation activities. 

The combination of such distinctive features enables 

the automation of scientific data and workflow 
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managements, and improves usability and productivity in 

scientific applications and data analyses. 

We continue to work to improve Swift’s usability, 

functionality, and scalability. In particular, we are 

working on more intuitive application interface in 

SwiftScript, and we are integrating the data provenance 

structures created in VDS to represent programs, metadata, 

and runtime provenance [19]  to support a wide range of 

provenance queries [20], we are also in the process of 

benchmarking system components with large scale 

application runs. 
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