
S W I F T

Scalable Parallel
Scripting for

Scientific Computing

38 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Researchers at the University of Chicago and Argonne National Laboratory have been extending the time-
tested programming technique of scripting into new realms of performance. Through the Swift parallel
scripting language, they aim to enhance scientific productivity by enabling scripts to execute many copies
of ordinary application programs at very high degrees of parallelism. Parallel Swift scripts can run with
little or no change across a range of platforms from multicore desktops to the largest petascale systems
available. Scientists are using Swift in a broad range of disciplines to productively leverage highly-parallel
resources such as the Blue Gene/P in the Argonne Leadership Computing Facility.

Many scientists, particularly those who use rather
than write computational codes, find that the chal-
lenges involved in executing large-scale comput-
ing tasks consume tremendous amounts of time
and intellectual focus – precious commodities that
they would prefer to apply to their core science
rather than to the mechanics of computing.

Some of these programs – certainly applications
developed through SciDAC – are large parallel
codes that can take up a whole machine for a sin-
gle run. Others are serial codes, or modestly par-
allel codes that can efficiently utilize a few
thousand CPU cores. But regardless of their scale,
these codes often need to be run repeatedly to pur-
sue a given inquiry – on diverse datasets, in vari-
ous parameter sweeps, to process large datasets,
to explore multiple hypotheses or parameter
spaces, or to evaluate new codes and algorithms.
To automate such repetitive execution, scientists
typically turn to the technique of scripting.

John Ousterhout, the computer scientist who
developed the Tcl scripting language, in an article
in IEEE Computer in 1998 described scripting as
“higher-level programming for the 21st century.”
But since that time, little work has been done on
the scaling of scripting languages to utilize the
increasingly parallel nature of available comput-
ing resources. Is it possible to take that next step

– to develop simple and automatic parallel script-
ing methods so that more applications can be run
efficiently, even on petascale computers?

Researchers at Argonne National Laboratory
(ANL) and the University of Chicago – along with
a growing user community – believe so, and to
this end they have been exploring a dataflow-
driven parallel programming model that treats
applications as functions and datasets as struc-
tured objects. The new model has been imple-
mented in a parallel scripting language called
Swift, which has been run successfully on
advanced computers, including the 160,000-core
Blue Gene/P in the Argonne Leadership Comput-
ing Facility (ALCF), NSF supercomputers on
TeraGrid, the Linux clusters of the Open Science
Grid, and Amazon EC2 systems (figure 1).

Scientists are using Swift on a range of projects
that include: protein folding; molecular dynam-
ics; modeling the interactions of climate, energy,
and economics; exploring the language functions
of the human brain; predicting the structure of
proteins and hunting for the posttranslational
modifications that explain their behaviors; creat-
ing general statistical frameworks for powerful
techniques such as structural equation modeling;
and performing image processing for applica-
tions ranging from probing the neurobiology of

Scientists are using Swift
on a range of projects
including protein folding,
molecular dynamics,
climate, energy,
economics, statistics,
neurobiology, and others.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 38

tiny model-organism worms to planning for
human neurosurgery.

Challenges and Requirements
for Parallel Scripting
With traditional serial scripting languages, writ-
ing a small script that performs the nested loops
of a parameter sweep can be fairly simple. A more
difficult challenge is mastering the complex
scripts needed to distribute tasks and data to mul-
tiple remote systems, gather results, and record
the provenance of these derived results. And the
mechanisms to keep a petascale machine effi-
ciently utilized using such scripts have not previ-
ously existed. Consider the following problem
scenarios that illustrate the needs for parallel
scripting, expressed in English-like pseudocode.

Many genomics communities need to perform
“all-by-all” runs of BLAST, in which every sequence
in a database is compared against every other se-
quence. These runs have the following simple form.

For each batch of sequences in the genome database
results = blast(genome-database, query, parameters)

This simple workload can demand vast amounts
of computing and can generate a huge demand for

Grid, cloud, and petascale resources. Another sci-
entist, examining drug targets, may need to do the
following.

For each target protein in a set of 20 targets
For each candidate drug compound in a set of 500,000 candidates

(score, energy) = dock(target, drug, docking parameters)

Here “dock” is an application that simulates the
interaction (docking) of small molecular com-
pounds (ligands) with large target biomolecules,
such as proteins. Once the initial results are avail-
able, the top-scoring 1% of the candidates for each
target must be screened in a similar manner but
with a more computationally demanding simula-
tion involving higher-fidelity molecular dynamics.

And a climate scientist may want to execute a
parameter sweep such as the following, for each
of thousands of perturbations of the input param-
eters, to model the effects of uncertainty on pre-
dictions of emissions and energy demand.

For each of 15 geographic regions
For each of 20 commodities

For each of 4 energy sources
Initial conditions = perturb(input parameters)
Energy demand = model(initial conditions)

39S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Figure 1. Using Swift. The Swift command, a Java application, runs on any user-accessible computer, such as a

workstation or login server. It compiles and executes Swift scripts, coordinates remote data transfers, and executes

applications on local and distributed parallel resources.

IL
L
U

S
TR

A
TIO

N
: A

. T
O

V
E

Y

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 39

S W I F T

Each of these example scripts specifies a large
number of (sequential or parallel) simulation or
data analysis application program invocations
that are independent of each other and can be run
in parallel. Those program invocations can run
for significant amounts of time – typically from
minutes to hours – before they need to pass data
from one program to another. Thus, these scripts
all exhibit considerable opportunities for coarse-
grained parallel execution. This simplicity has led
to such applications to be termed “pleasingly,” or,
more often, “embarrassingly” parallel.

But while these problems have clear and explicit
parallelism, writing scripts in a traditional script-
ing language to explicitly perform all the aspects
of parallel scheduling, data passing, file manage-
ment, error recovery, and logging is anything but
simple. Scripting such coordination has proven
to be a labor-intensive, error-prone, and time-
consuming endeavor for many scientists. For oth-
ers, the complexity of this endeavor has been a
barrier to even trying parallel execution of their
computing tasks. And when the execution pat-
tern of a script involves multiple applications and
many stages of execution, as is frequently the
case, managing the parallelism and moving data
efficiently from one program to the next are no
longer a trivial problem.

Parallel Scripting with Swift
To solve problems like the ones just cited, the
Argonne–University of Chicago research team
has developed Swift, a new scripting language that
enables ordinary application programs that read
and write files to be executed, at a high degree of
parallelism. Swift can execute application pro-
grams many thousands at a time, on a wide range

of computing platforms, and can chain different
programs together in the myriad patterns needed
to perform the work of scientific computing.

A Taste of Parallel Scripting
The following example illustrates the power of
Swift. Drs. Karl Freed and Tobin Sosnick at the Uni-
versity of Chicago use “Open Protein Simulator”
software to perform protein structure prediction
simulations (figure 2). The structure predictor’s
main application program, “predict,” simulates the
folding of a protein’s sequence of amino acid mol-
ecules into its unique three-dimensional shape that
determines much of the protein’s functional behav-
ior. The predict program uses simulated annealing
to explore three-dimensional movements of the
protein’s amino acids, repeatedly changing angles
within the protein’s internal bonds in search of
shapes having the minimal-energy configurations
that protein molecules seek in nature.

In order to perform a complete structure predic-
tion for a single protein sequence, hundreds to
thousands of copies of the predict program are run
in each of multiple parallel rounds. Each run of the
predict program computes an independent, ran-
domly seeded prediction. When a round of predic-
tions is completed, an analysis program determines
the best prediction and uses that configuration of
protein shapes (the secondary structure of coils,
strands, and helices) as the starting configuration
of another round. This process of repeated parallel
rounds, called iterative fixing, can be expressed
clearly and concisely in Swift, which automates the
parallel execution and the management of files
within the algorithm, thus allowing the process to
be conducted on a wide range of computing sys-
tems and at very high degrees of parallelism.

40 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Figure 2. Structure prediction with the Open Protein Simulator. Left, the “Ramachandra map” used by the ItFix iterative fixing algorithm, which helps guide

the “moves” of a simulation. Such maps give phi–psi angle distributions of solved PDB structures for all three-residue trimers. They were used to predict the

structure of proteins 1AF7, 1B72, and 1R69, shown with the prediction in red and green compared to the experimentally determined structure in orange.

K. FREED , T . SOSN ICK , J . DEBARTOLO (U. CH ICAGO) , AND G. HOCKY (COLUMB IA)

To perform a complete
structure prediction for a
single protein sequence,
hundreds to thousands of
copies of the predict
program are run in each of
multiple parallel rounds.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 40

41S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

At the heart of the scripts, a round of parallel
structure prediction simulation can be expressed
in Swift as follows.

(ProtSim psim[]) doRound

(Protein p, int n, PSimConfig cf)

{

foreach sim in [1:n] {

psim[sim] = predict(p, cf);

}

}

This function invokes ncopies of predict, each
taking the same protein and configuration file as
inputs, and each computing with a different random
seed. The results are returned in an array, psim.

With this core parallel function, the iterative fix-
ing algorthm can be expressed compactly in a short
Swift script as a higher-level function, for example,
ItFix(). Then, researchers can use ItFix as a
computational laboratory to explore protein struc-
tures in a variety of applications. Thus, users with
little programming experience can easily perform
large-scale parallel simulation experiments with a
simple high-level script. For example, they can
explore the effects of varying two parameters of the
simulation, on multiple proteins, by using Swift
scripting code like the following.

foreach protein, i in proteins {

foreach s in seeds {

foreach c in coeff {

results[i] =

ItFix(protein, nSim, nRounds, s, c);

}

}

}

In this example, for each protein, initial seed,
and temperature coefficient in the arrays pro-

teins, seeds, and coeff, the Swift program
runs an entire simulation.

Swift is a data flow language, meaning that pro-
grams are scheduled for execution when the data
that they consume become available (often when
produced by a prior program in a processing chain).
Its functional programming model (sidebar “Swift
Execution Semantics”) encapsulates implementa-
tion details within application programs and
enables users to create libraries that provide a func-
tional abstraction of the program tools of an appli-
cation domain, such as predict and ItFix.

Swift includes a powerful data model that per-
mits individual files and directories to be mapped
into Swift language variables. Thus, users can
describe and access nested on-disk directories as
simple structures and arrays within Swift pro-
grams, specifying, for example, that a particular
program should be invoked on every file in a
directory. Swift then handles the details of pack-
aging the specified files for dispatch to a remote
execution site.

Swift automatically performs the following
actions for the user, moving the problem of orches-
trating parallel program execution to a higher level:

● Calls mapping scripts (either built-in or pro-
vided by the user) to determine the names of
input files and to assign names to output files

● Determines what resources to run on and how
many jobs to run in parallel at once on each site
(through configurable “throttle” settings)

● Moves input data from persistent locations on
shared file systems to temporary (and often faster,
local) working directories

● Moves result data back to the output files des-
ignated by the user’s mapping request

Task synchronization in Swift (that is,

determining when each given task can execute)

is based on data availability. For example, in a

Swift procedure, all the statements in each

block of the procedure are conceptually started

in parallel. The order in which the statements

execute is determined by any data

dependencies between the statements. For

example, if two statements depend only on the

variable a, then both statements are executed

in parallel as soon as another statement sets

the value of a. In addition, the swift foreach
statement executes all instances of the

statements in the body of the foreach in

parallel. These two constructs provide the

inherent parallelism of the Swift language.

Because every “atomic” Swift data element

(that is, each simple scalar variable, array

element, and structure field) has these same

“write once, read when set” synchronization

semantics, all computations in the execution of

a Swift script are implicitly pipelined. For

example, if one foreach loop is computing a

set of values and storing the results in an output

array, another foreach that reads the

elements of the array will progress in parallel,

with each member of the dependent foreach
loop running as soon as the corresponding

foreach loop has set the dependent array

element. This approach enables Swift programs

to execute with a much higher degree of overall

parallelism than would be possible with a less

fine-grained model of concurrency.

Swi f t Execut ion Semant ics

Swift includes a powerful
data model that permits
individual files and
directories to be mapped
into Swift language
variables.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 41

● Generates a log of activities in the run, includ-
ing details of what applications were called with
what arguments

● Determines when subsequent tasks that depend
on the output of a prior task can execute

● Automatically retries failing jobs a specified
number of times, and can even replicate tasks to
multiple sites to increase their chance of complet-
ing successfully, sooner

● Remembers the state of a script’s execution, so
that the script can be resumed from the point of
failure if the Swift command terminates or fails
for any reason

The Swift runtime system uses a two-level
scheduling method to manage the scheduling of
tasks for execution and the dispatch of executable
tasks to parallel computers. First, task executors
are deployed onto nodes; then tasks are streamed
to those executors. To handle diverse authentica-
tion and job submission systems, Swift can use
Globus or other distributed computing systems
to access remote sites.

Roots in Scripting Languages
Scripting is not new. As far back as the dawn of
commercial mainframes, scripts in the form of
operating system command languages were used
to automate repetitive tasks and group together
sequences of program executions. The UNIX shell
and its use of text files as a universal interchange
format improved on prior command scripting
approaches by making it easier to pipe, or redirect,
data from one application to another and to store
collections of data in hierarchical file systems.

Shell scripts were created in response to the needs
of computer users to avoid the tedious re-entering
of repeated sequences of commands. The design of
many scripting languages soon followed, led by lan-
guages such as Perl, which facilitates manipulation
of text files, and then tcl, Python, Ruby, Visual Basic,
Java scripting classes, and many more.

Scripting languages have greatly simplified pro-
gramming: by focusing on the composition of
existing programs, they enable users to assemble
sophisticated application logic quickly. Applica-
tion developers today utilize scripting on their
workstations and servers to explore parameters
and test hypotheses, before running simulations
on larger computer platforms. Researchers use
scripting to assemble more powerful applications
from existing sequential or parallel programs.

Based on this lineage, Swift provides a unique
blend of prior capabilities that is kept deliberately
simple and minimalist, while providing new capa-

bilities not found in any other scripting language:
(1) treating file data and in-memory data in a uni-
form way, with a data typing and mapping model;
(2) associating interface definitions with scripts
and their internal functions, based on the data
model – a degree of modularity not present in
other scripting languages; (3) supporting loca-
tion-independent execution across diverse run-
time environments (workstation, cluster, Grid,
cloud, and petascale) through a generalized driver
interface for execution and data management
functions; and (4) enabling integrated, transpar-
ent provenance tracking. The first two features
above – data typing and functional interfaces
based on these data types – are the mechanisms
that make the latter two features possible.

The nature of Swift’s encapsulation of applica-
tion programs, as well as the manner in which it
imparts a location-independent data model and
interface definition to Swift functions, is illus-
trated in figure 3.

Using Swift with Other Scripting Languages
Swift is, by intention, a minimal scripting language.
The definition of a new programming language is
a risky business, raising issues of community
adoption. We define Swift as a language rather than
as a library because its model of parallelism and of
data abstraction can be expressed far more cleanly
within a special-purpose language. Its functional
programming data flow model, its model of
datatypes and mapping, and its inherent paral-
lelism yield a nice, compact expression of the back-
bone of scientific computations.

Other scripting languages integrate easily with
Swift scripts. Since scripts in any language are exe-
cuted by the operating system as if they were ordi-
nary programs, such scripts are simply described
as “app()” functions and called from Swift. In fact,
a library of useful Swift utility functions is evolv-
ing to perform tasks such as string manipulation
and format conversions, so that the Swift language
can have the necessary expressive power while
remaining small, compact, and concise.

Users are also using Swift to run complete
applications in the form of Python, Octave, and
compiled MATLAB® codes. As an example of
such language interoperability, Swift is frequently
used with the popular R data analysis framework.
For example, Swift+R are used to achieve distrib-
uted parallel execution on Grid and petascale sys-
tems for the OpenMx R package for structural
equation modeling (SEM) developed by a team led
by Dr. Steven Boker (University of Virginia) and
Dr. Michael Neale (Virginia Commonwealth Uni-
versity). R users use Swift to perform large
OpenMx SEM runs in parallel to analyze neuro-
science data.

S W I F T

42 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Swift provides a unique
blend of prior capabilities
that is kept deliberately
simple and minimalist,
while providing new
capabilities not found in
any other scripting
language.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 42

43S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Extending the Parallel Scripting
Model to Petascale Systems
Over the past several years, the Swift research group
has been successful in making Swift run efficiently
on emerging petascale computing systems such as
the IBM Blue Gene/P “Intrepid” at ALCF and the Sun
Constellation “Ranger” at the University of
Texas–Austin, validating the belief that scripting at

this level is feasible, useful, and in fact necessary.
The motivation to elevate scripting to the level of
petascale computing is both to solve new types of
problems on leadership-class machines and to pro-
vide a solution for scientists who need to run their
already highly-parallel applications in a hybrid
manner, by creating scripts to perform many par-
allel runs of a large-scale parallel application.

Figure 3. (a) Encapsulation of application programs as Swift functions. Swift “app()” functions provide a uniform interface

for any application program, describing its inputs and outputs. This enables Swift to execute applications remotely and in

parallel. Each argument is given a well-defined data type, which can be simple or structured sets of files and simple values.

(b) An example of defining a program “psim” as a Swift “app” function. Now “predict()” can be run in parallel on distributed

computing clusters. The script writer does not worry about data transport or scheduling. This reduces mental effort, and lets

the scientist focus on the parameters and data objects to be passed to predict, and on the returned results. (c) The Swift

“foreach()” statement is used to specify large-scale parallel execution of applications or of other Swift procedures.

IL
L
U

S
TR

A
TIO

N
: A

. T
O

V
E

Y

Over the past several
years, the Swift research
group has been
successful in making Swift
run efficiently on emerging
petascale computing
systems, validating the
belief that scripting at this
level is feasible, useful,
and in fact necessary.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 43

To extend the parallel scripting architecture to
petascale systems, the Argonne and Chicago re-
searchers had to overcome three challenges: provi-
sioning compute nodes and efficiently dispatching
task executions to them, reducing the overhead of
linking parallel computations by file exchange, and
providing a compute node operating system that effi-
ciently supports these two activities (figure 4).

Provisioning
When running parallel jobs on today’s high-per-
formance computers, the same application pro-

gram code is typically executed on all compute
nodes allocated to a job. But parallel scripting
requires that many parallel instances of independ-
ent and possibly different application programs
be executed on any compute node.

Thus, to run efficiently on the Blue Gene/P, the
Argonne and University of Chicago researchers
had to devise a new scheduling approach, which
they dubbed Falkon, the Fast and Lightweight
Task Execution Framework. Falkon uses multi-
level scheduling to separate resource provision-
ing from the dispatching of user tasks to those
resources (figure 5). Its streamlined task dis-
patcher can achieve order-of-magnitude higher
task dispatch rates than can conventional sched-
ulers. On the Blue Gene/P, Falkon has achieved
rates of over 1,000 tasks per second.

Provisioning resources for parallel computing
is the process of allocating compute nodes that
will be used for the duration of a script’s execu-
tion. As is typical for scripting languages like Perl
and Python, each invocation of the Swift com-
mand runs one script. Each script can involve the
execution of many – in some cases hundreds of
thousands of – program invocations. On a typi-
cal cluster, each job is submitted to the cluster
scheduler’s batch queue. Running a single pro-
gram through the batch queue has high overhead,
in terms of both processing overhead and time
spent waiting in the queue alongside other jobs
that are typically waiting for many processors and
a much longer allocation of processor time.

The Falkon provisioner requests resources in
quantities of time and number of processors simi-
lar to those of typical parallel jobs: thousands of
CPUs for many hours, rather than single CPUs for
a few minutes. Once resources are allocated, Falkon
launches a task execution agent on each compute
node. This agent remains active for the duration of
the resource allocation, and can rapidly and effi-
ciently dispatch a program to run on each core as
soon as that core is free. Thus, a script execution
manager like Swift can efficiently utilize cores even
for extremely short tasks. Provisioning is often called
“multilevel scheduling” because the provisioner acts
as a fast, simple, and low-latency scheduler running
under the main job scheduler of the cluster.

The Falkon provisioner has been used in diverse
environments, including local clusters, multisite
Grids (examples include Open Science Grid and
TeraGrid), specialized parallel clusters (such as the
SiCortex 5832), and large supercomputers (like the
Blue Gene/P, Ranger). Tests by the designer of
Falkon, Dr. Ioan Raicu (then a University of
Chicago graduate student, now a researcher at
Northwestern University) have verified that Falkon
can execute tasks efficiently at the full scale of the
ALCF Blue Gene/P – 160,000 processor cores. The

S W I F T

44 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

IL
L
U

S
TR

A
TIO

N
: A

. T
O

V
E

Y

Figure 4. Architectural layers for petascale scripting on the Blue Gene/P.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 44

45S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

largest science application benchmarks of Falkon
have run over 900,000 molecular dynamics appli-
cation tasks on 116,000 cores in two hours, total-
ing 21.4 CPU-years. This experiment was a key
proof of concept for utilizing petascale machines
with a scripted model of execution.

The Falkon research code has recently been reim-
plemented as a production Swift resource provi-
sioner named Coasters. The name refers to the
heritage of this form of provisioning, which origi-
nated with the “Glide-in” concept of the Condor
high-throughput computing system. The Coasters
provisioner enhances Falkon functionality with
extensions for automatic deployment on petascale
and distributed environments and for dynamic
block allocation. Automatic deployment fully auto-
mates the mechanics of starting the provisioner’s
service processes and worker agents. Dynamic
block allocation enables the scheduler to organize
requests for required compute resources into units
of varying size that can then be presented to the
local resource management scheduler. This
approach permits the provisioner to efficiently sup-
port the execution of scripts with fluctuating CPU
demands. Coasters have made it possible to obtain
increased scalability on shared petascale machines.
The Coasters provisioner has been used on Ranger
to run Swift scripts with nearly a million neuro-
science analysis tasks in a single invocation – and
this number is growing rapidly as the Coasters
implementation is tuned and improved.

Collective Data Management
In the basic scripting model, programs invoked by
scripts communicate by reading and writing files
from a shared file system. For small scripts, it can be

sufficient to allow such data interchange via what-
ever shared global file system is provided on the tar-
get computer: for example, on the Argonne Blue
Gene/P, the General Parallel File System. For larger
scripts, however, this approach rapidly becomes
prohibitively slow. Instead, alternative implementa-
tion methods must be pursued. For example, one
can leverage the large overall internal memory and
high-performance internal interconnects of the Blue
Gene/P by mapping files into RAM disk and using
broadcasts to distribute files with many readers.

The development of file management methods
to make scripting efficient at the petascale and
beyond is a current computer science research
thrust of the Swift project. Collective data manage-
ment (CDM) is a prototype I/O model for file-based
many-task computing. The model, inspired by col-
lective I/O primitives from the Message Passing
Interface (MPI), differs from MPI in that it operates
at the file level rather than at the I/O level.

CDM uses a broadcast approach to enable effi-
cient distribution of input data files to computing
nodes and uses scatter/gather and caching methods
to gather the output results from these nodes (side-
bar “Collective Data Management for Petascale
Scripting Performance” p46). It thus eliminates the
need for tedious and error-prone manual tuning
and makes the programming of large-scale clusters
using a loosely-coupled model easier. The design
has been prototyped for performance evaluation
using simple scripts to coordinate off-the-shelf data
management components. Early results indicate
that such a file-based collective I/O model can han-
dle on the order of 100,000 Blue Gene/P processors.
The next major focus will be to integrate the model
into the Swift parallel programming environment

Figure 5. Architecture of the Falkon provisioner on the Blue Gene/P. Falkon provides fast task execution services for Swift on the Blue Gene/P

supercomputer. Its distributed servers run on up to the full set of 640 I/O nodes on Intrepid, providing highly-parallel and scalable task execution.

IL
L
U

S
TR

A
TIO

N
: A

. T
O

V
E

Y

The development of file
management methods to
make scripting efficient at
the petascale and beyond
is a current computer
science research thrust of
the Swift project.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 45

so that petascale users can benefit from this higher-
level programming model without explicitly spec-
ifying the collective data management operations.

A Compute Node Kernel for Petascale Scripting
Implementing Swift scripts on the Blue Gene/P con-
fronted the challenge of how to provide the POSIX
interface that most off-the-shelf scientific applica-
tions require. (POSIX is the IEEE standard for “open”
operating systems such as UNIX and Linux.) In par-
ticular, the Swift programming model of executing
independent programs on each CPU core requires
two critical operating system kernel services: fork,
which creates a new independently executing
process, and exec, which enables a process to execute
a new application program. The standard Linux
shell programs (for example, bash and tcsh) depend
on variations of these two services for many of their
capabilities, as does Swift for executing independ-
ent application programs on distributed and remote
computing nodes as part of script execution.

While some systems, such as the Ranger super-
computer, provide a full POSIX operating system
on compute nodes, the native Blue Gene/P compute
node kernel does not. The solution to this problem
was provided by the ZeptoOS compute node Linux
kernel. ZeptoOS, the “small Linux for big comput-
ers,” is a research project at Argonne seeking ways
to improve the usability of Linux kernel in high-per-
formance computing (see “ZeptoOS” under Fur-
ther Reading, p53).

The ZeptoOS compute node kernel provides
system services for efficiently executing POSIX-
compliant application programs, as well as I/O
services and access to petascale architecture capa-
bilities such as broadcast networks, IP access to
high-performance cluster interconnects, access
to high-performance services for MPI communi-
cation, and enhanced memory management for
large-memory tasks.

Parallel Scripting and Other
Parallel Programming Models
While parallel programming models – both old
and new – abound, a few models are particularly
relevant to compare to the parallel scripting model:
tightly-coupled parallel programming, including
both message-passing and shared-memory multi-
processing; service-oriented computing; and the
map-reduce programming model.

Loosely-Coupled versus
Tightly-Coupled Programming Models
Swift often is called a “loosely-coupled” program-
ming model, whereas other parallel program-
ming approaches, such as message passing and
shared-memory multiprocessing are “tightly-
coupled.” This concept of coupling specifically
refers to two aspects of program execution: the
granularity of the independent unit of parallel
execution and the manner in which these inde-
pendent units of execution exchange data.

S W I F T

46 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Collective data management research for Swift – which will be of use in

any similar style of “many task” computation – is focused on the design

and implementation of a set of operations for exchanging files within

scripts in a manner that can leverage the unique characteristics of

diverse petascale systems. On the Blue Gene/P, for example, which has

both a torus for point-to-point interconnects and a tree network for

broadcasting data to all the nodes connected to a given input/output

(I/O) processor, the Swift researchers are exploring the following

approaches for collective data management.

Files and data that are read in common by all parallel instances of an

application are ideally read once and are broadcast in parallel over the

tree network. Such common datasets are read from their global file

system location once and sent to all compute nodes, which will

consume the data in parallel.

Files that are unique to each processor are “pulled” by the

processor and its I/O node to the local RAM file system. This reduces

I/O load by spreading the work among all participating I/O nodes (64

compute nodes per I/O node) and leverages the massive parallel I/O

capability of the Blue Gene/P’s shared file system. It also allows I/O

to be read in efficient block sizes (for example, 256 kilobytes or more)

rather than depending on the application to read efficiently, which

many legacy applications cannot do and which swamps the I/O

subsystem if not optimized.

Files too large to fit on RAM file systems are pulled to an aggregated

“intermediate” file system, which is composed of striped RAM file

systems and is accessed over the torus, again eliminating I/O from the

application back to the global file system.

Output data are aggregated on the local RAM file systems, either on

the compute nodes or on an “intermediate” striped RAM file system,

and collected into sufficiently large batches to be written back to the

global file system efficiently.

I/O between the global GPFS file system and the compute nodes can

be done at high rates – over 60 gigabytes per second on the ALCF Blue

Gene/P – since the system has 128 file servers serving GPFS.

Accessing this system efficiently to achieve this rate, however, requires

the optimizations above.

The CDM mechanism is still in the research phase, and not yet in the

released version of Swift. But it is already possible to code Swift scripts to

explicitly do their data management in the manner described above and to

thereby significantly reduce the bottlenecks of shared I/O resources.

Col lect ive Data Management for Petasca le Scr ipt ing Per formance

While parallel programming
models – both old and
new – abound, a few
models are particularly
relevant to compare to the
parallel scripting model.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 46

47S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

In tightly-coupled parallel programs, independ-
ent streams of instructions (typically, independ-
ent statements in a program) execute in parallel
and, on occasion, (at various rates) pause to
exchange data with another stream of execution.
This exchange takes place by sending messages in
the case of the message-passing model or by syn-
chronized access to shared data objects in the case
of the shared-memory model. In contrast, in
loosely-coupled parallelism, both the units of exe-
cution and of data passing are larger and more
coarse-grained. The unit of parallel execution in
the loosely-coupled model is a complete program,
and the units of data exchange are complete and
typically larger files, compared to shorter mes-
sages or objects. Furthermore, files are exchanged
by reading and writing them from a file system,
compared to operating solely in memory. Other
persistent storage services, such as databases, can
also be used for passing data between loosely-
coupled parallel programs. As message-passing
programs typically exchange data between
independent address spaces using operating sys-
tem kernel interfaces, often to access a network
interconnect, and as file systems are becoming
increasingly RAM-based, these differences can
tend to blur. However, in general, loosely-coupled
programming involves coarser-grained units of
both parallelism and data exchange.

Another point of comparison between pro-
gramming models can be seen in their differing
task structures. While message-passing parallel
programs typically map their parallel tasks stat-
ically to a finite number of processor cores,
loosely-coupled programs are more likely to have
a varying number of tasks at any given point in
execution and are often based on a graph-struc-
tured model of execution, where the nodes of the
graph represent tasks and the edges of the graph
represent data objects passed between nodes.
Each parallel task receives its inputs, processes to
completion, and produces outputs, which can
then be passed to a new task. Loosely-coupled
programs are frequently composed in a struc-
tured manner, with a hierarchical “input–
process–output” model, meaning that tasks can
themselves be composed of graphs of subtasks,
each with a similar processing model.

MPI is an example of a tightly-coupled program-
ming model. Most of today’s applications that run
on high-end computers use MPI to achieve the
needed inter-process communication. MPI has
been an enormously popular and successful pro-
gramming model. It has been the workhorse and
the mainstay of parallel programming for the past
two decades. The relationship between Swift and
MPI is explored in the sidebar “Comparing and
Connecting Swift and MPI.”

Service-Oriented Model
Services – more precisely, web services – are net-
work-accessible data processing functions that fol-
low a coarse-grained functional programming
model similar to that used in parallel scripting. Rather
than consuming and producing files, however, web
services consume and produce XML documents,
which can be small and simple or large and complex.
Individual web service functions are bundled into
services that, once deployed, have a network address
and, during a typically long lifetime, handle many
service function invocations. Several scripting lan-
guages, usually called “workflow” or “orchestration”
languages, execute programs that consist of multi-
ple web service invocations. The services themselves
are responsible for mapping invocation requests to
the processors on which the service has been “pro-
visioned.” Web services are heavily used in commer-
cial applications, for e-commerce, social networking,
supply chain management, and myriad business
applications. They are finding increasing use in sci-
entific computing, primarily in applications where
the arguments and results of a scientific function can
be conveniently expressed as an XML document.
There is much interest in blending the data models
of parallel scripting and web services to provide pow-
erful interoperability between these complementary
programming models.

While MPI and Swift are complementary programming models (in that Swift can be used

to run parallel MPI programs in the same manner as it runs serial programs), it is

instructive to compare the two models in more detail.

MPI is an in-memory programming model. While MPI programs certainly read and

write files, they compute on data structures in main memory. Swift, on the other hand,

is a file-processing scripting language: rather than applying functions to in-memory

data structures, it applies entire application programs to datasets composed of one or

more files. These application programs can themselves be MPI codes, or codes written

in any other parallel or serial language.

MPI programs typically (but not always) involve a static number of tasks. In Swift the

number of tasks running concurrently varies dynamically, based on the parallelism of the

script at any given point in its execution and then often “throttled back” by parameters and

algorithms, and finally subject to the number of CPU cores that are dynamically available at

any given time on the collected set of resources available to the running Swift program.

In Swift, unlike MPI, failure of a single node (or program) affects only the program(s)

running on that node at the time of the failure. Swift maintains the state of each running

script in a log file, which allows it to restart a parallel script from the point of failure. Only

uncompleted tasks are re-executed upon a restart. And since each unit of execution is a

complete program, these programs can be re-executed when they fail.

Swift is complementary to, and not a replacement for, shared memory or message-

passing multiprocessing. Swift has been and will increasingly be used to coordinate

the execution of MPI applications, creating a loosely-coupled ensemble of tightly-

coupled programs.

Comparing and Connecting Swift and MPI

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 47

Functional Models versus Map-Reduce
Another parallel and distributed programming
model that has been gaining significant interest is
map-reduce. This model has its origins in func-
tional programming, dating back to early LISP,
which implemented in a programming language
the concepts of mapping a function to a set of argu-
ments and of reducing a set of independent results
back into a single answer. The force behind map-
reduce has been Google, which utilizes it heavily
to perform myriad aspects of the vast internal data
processing behind its search and information serv-
ices. In Google’s map-reduce programming model,
information is represented as pairs of textual keys
and their associated arbitrary data values. Compu-
tation is performed by breaking a large dataset into
key-value pairs, applying a processing function to
each pair through the “map()” operation, and then
gathering and reducing all the results with a dis-
tributed sort-and-merge mechanism that utilizes
the fact that all data objects have keys.

The map stage of map-reduce is similar to the
processing model of parallel scripting in that

functions are applied to arguments in parallel. In
most usage, map-reduce functions are more like
in-memory application functions, since map-
reduce views functions and data more as in-mem-
ory objects. The reduce stage takes unique
advantage of this simple data model to perform
reduction as a highly-parallel operation. In paral-
lel scripting, applications that require such a par-
allel reduction implement it explicitly within the
programming model, whereas in map-reduce the
reduction is a built-in part of the framework.

Applications Leveraging Parallel
Scripting at the Petascale
The number of applications to which parallel
scripting has been applied is growing rapidly
(sidebar “Parallel Scripting Applications”). Swift
users have run applications in biochemistry,
bioinformatics, economics, neuroscience, and
radiology, with an increasing number of users
executing on two petascale machines: the Intre-
pid Blue Gene/P at Argonne and the Ranger Con-
stellation at the University of Texas–Austin.

S W I F T

48 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Parallel scripting as described here is being applied in

many different disciplines. The applications include the

sciences and computational economics, and the

characteristics range from hundreds to one million one-

core simulations. Some of the applications listed here

are already operational, others are in development, and

a few were experimental efforts.

Operational
Biology
● Analysis of mass spectrometry data for post-

translational protein modifications (has run on

petascale machines)
● Protein structure prediction using iterative fixing;

exploring other large-biomolecule interactions (has run

on petascale machines)
● Identification of drug targets via computational

docking/screening (has run on petascale machines)

Economics
● Generation of response surfaces for various economic

models
● Analysis of uncertainly in large-scale economic models

of climate and energy-related factors (has run on

petascale machines)

Neuroscience
● Analysis of functional MRI datasets for studies in

language and stroke recovery (has run on petascale

machines)

In Development
Biology
● Protein structure prediction using Raptor threading

algorithm with linear programming
● Metagenome modeling with integer programming
● Metagenome analysis with large-scale BLAST and

phylogenetic applications (has run on petascale

machines)
● Mining of large text corpora to study media bias

Cardiology
● Chesnokov analysis of ECG datasets for the

cardiovascular research grid

Earth Systems
● Analysis of NASA MODIS satellite data using R

Neuroscience
● Analysis of large-scale image data from C. elegans

experiments

Radiology
● Training of computer-aided diagnosis algorithms
● Image processing and brain mapping for neurosurgical

planning research

Experimental
Astronomy
● Creation of montages from large sets of digital images
● Stacking of cutouts from digital sky surveys

Earth Systems
● Ensemble climate model runs and analysis of output data

Para l le l Scr ipt ing App l icat ions
The number of applications
to which parallel scripting
has been applied is growing
rapidly. Swift users have run
applications in biochemistry,
bioinformatics, economics,
neuroscience, and
radiology, with an increasing
number of users executing
on petascale machines.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 48

49S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Case Study: Protein Structure Prediction
University of Chicago researchers under Drs. Karl
Freed and Tobin Sosnick use Swift to run the
Open Protein Simulator (OOPS) to predict 3D
protein structure for which little or no similar
structure information is known. OOPS comprises
a set of open-source applications for fast simula-
tion of protein folding, docking, and refinement.
It runs an iterative fixing algorithm called ItFix
(figure 2, p40) that consists of multiple rounds of
many parallel simulations. At each round ItFix car-
ries out between 100 and 1,000 Monte Carlo sim-
ulated annealing computations. The statistical
data from that round include the average origins
of the secondary structures at each position in a
genome sequence. Additionally, at each analysis
step, ItFix creates plots from the output data,
including average 3D contact maps. One of the
limiting factors in widely applying ItFix, however,
is that that the algorithm requires approximately
1,000 CPU-hours on a modern microprocessor for
a medium-sized protein.

Swift was first applied to this problem by Glen
Hocky, then a University of Chicago undergradu-
ate chemistry student, now pursuing his Ph.D. at
Columbia. Using Swift on thousands of processors.
Hocky was able to rapidly improve on the accuracy
of prior prediction results done on a smaller
departmental cluster. By using the Swift parallel
scripting system within OOPS, the Chicago pro-
tein researchers have been able to realize several
benefits: concise, readable specification of high-
level structure that exposes opportunities for par-
allel execution; robust, fault-tolerant management
of large numbers of tasks; and convenient dispatch
of computation to multiple parallel computers,
both local and remote, without modification to
their science scripts.

The OOPS framework fits into Swift in a natu-
ral and straightforward manner. Swift data typing
and mapping were leveraged to abstract input and
output, detect type errors, and map the simple log-
ical structure to the specific data layout desired in
the archival storage repository. Atomic Swift
dataset types were declared to represent the files
used by the OOPS application programs (such as
FASTA, for the sequence being folded, and PDB, for
files in the standard set by the Protein Data Bank for
representing 3D protein structure). New Swift com-
pound dataset types were declared to organize mul-
tiple related values for program inputs and output.
Swift procedures were used to define interfaces to
application codes and, in some cases, to define
interfaces to small utility functions. Parallel appli-
cation logic to specify how a single ItFix round is
performed was defined as Swift functions. The
main program then was coded, in which ItFix is
called to predict the structure of a single protein, or

to express much more complex science tasks such
as parameter sweeps, structure comparisons, or
explorations involving an entire genome.

The new Swift-based approach was used to test
prediction capabilities for the structure of specific
alpha-, alpha/beta-, and beta-proteins. Because the
structure of these proteins was well known, they pro-
vided excellent test cases. For the alpha-protein inves-
tigation, the University of Chicago–Argonne team
ran approximately 5,000 simulations using TeraGrid
resources. The structures predicted were compara-
ble to or better than the best published results and
– most significant – used two orders of magnitude
less computation time. For the alpha/beta- and beta-
protein investigations, since a large amount of in-
simulation sampling was required, the researchers
ran their tests on the Blue Gene/P. Even though the
per task runtimes were longer on the slower Blue
Gene/P CPUs than on modern stock processors, the
results confirmed that petascale systems such as Blue
Gene will be useful in folding investigations using the
ItFix algorithm with Swift.

Case Study: Protein–Ligand Docking
A good example of the value of parallel scripting on
petascale machines is virtual drug screening. One
of the first applications was to screen core metabolic
targets against drug-candidate compounds from the
ligand database of KEGG, the Kyoto Encyclopedia
of Genes and Genomes. Argonne biochemists have
applied parallel scripting to simulate the docking of
small ligand molecules to the active sites of macro-
molecules. The application is of interest to the phar-
maceutical industry in that compounds that interact
strongly with a macromolecule associated with a
particular disease may inhibit its function. This
application is being run on up to 64,000 cores of
Argonne’s Blue Gene/P (figure 6, p50).

Development of antibiotic and anticancer drugs
is a process fraught with dead ends. Each dead end
costs potentially millions of dollars, as well as wasted
years and lives. Computational screening of protein
drug targets helps researchers prioritize targets and
determine leads for drug candidates. While compu-
tational screening, which is relatively inexpensive,
cannot replace wet lab assays, it can significantly
reduce the number of dead ends by providing more
qualified protein targets and leads.

In one typical computational screen, nine proteins
that perform key enzymatic functions in the core
metabolism of bacteria and humans were selected
for screening using the DOCK6 molecular docking
simulator from the University of California–San
Francisco against a database of 15,351 natural com-
pounds and existing drugs in KEGG’s ligand data-
base. The goal of this project was to validate the
ability to approximate the binding mechanism of
the protein’s natural ligand, to determine key inter-

The results confirmed that
petascale systems such
as Blue Gene will be
useful in folding
investigations using the
ItFix algorithm with Swift.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 49

action pairings of chemical functional groups from
different compounds with the protein’s amino acid
residues, and to study the correlation between a nat-
ural ligand that is similar to other compounds and
its binding affinity with the protein’s binding pocket.
As part of the process, the scientists sought to pri-
oritize the proteins for further study.

The computation of the binding affinity between
each compound in the database and each protein
was performed with 138,159 runs of DOCK6 on the
ALCF’s Blue Gene/P. On a single 2 GHz machine this
run would have taken approximately 48 days. Using
two racks (8,192 cores) on Blue Gene/P these runs
took three hours. This computation is, however, just
the beginning of a much larger computational
pipeline that will screen millions of compounds and
tens of thousands of proteins. The downstream
stages use even more computationally intensive and
sophisticated programs that provide for more accu-
rate binding affinities by allowing for the protein
residues to be flexible and the water molecules to be
explicitly modeled.

This computation was easy to perform and
yielded fast and useful results. The natural com-
pound for six of the targets scored reasonably well
in terms of interaction energy and ranking (two in
the top 2%, two in the top 10%, and two in the top

16%), especially considering these are natural com-
pounds that rely on higher concentration levels for
enzyme interaction compared to optimized
inhibitors that rely on higher binding affinities.
Reviewing the 3D structures of the compound-pro-
tein complexes generated by DOCK6 provided
insight into the hydrogen bonding and chemical
functional group placement within the pocket
required for tight binding. For seven of the proteins
targets, existing drug compounds were the top hit.
These included an anti-platelet agent, an anti-hyper-
tensive agent, a treatment for chronic dry eye, a vita-
min precursor, and an opthalmic agent. Since these
compounds have already undergone some degree
of testing for human use, performing follow-up wet
lab assays for inhibition could accelerate the discov-
ery of a novel application for an existing drug.

Case Study: Proteomics Research
Drs. Yingming Zhao and Yue Chen, researchers
at the University of Chicago Ben May Department
for Cancer Research, are applying parallel script-
ing to the analysis of post-translational protein
modifications (PTM). Such modifications play
essential roles in living cells, dynamically regulat-
ing physiological processes by fine-tuning pro-
tein functions. Despite the importance of PTMs

S W I F T

50 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Figure 6. Molecular docking simulations for drug discovery through parallel scripting. (a) 2D representation of best scoring compound, KEGG drug

compound D03361, against protein NAD kinase. (b) Spherical representation of D03361, Cangrelor tetrasodium, docked in pocket of NAD kinase

(only showing backbone of protein as wireframe). (c) Close-up of NAD kinase (backbone removed) with a side-chain carbon atom of residue

ASP209 in yellow binding to an oxygen of D03361 (gold wire frame), and residue ASN115 interacting with core rings of D03361.

A
. B

IN
K

O
W

S
K

I
A

N
D

M
. K

U
B

A
L

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 50

51S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

in cellular processes, however, accurate identifi-
cation of PTMs has been a challenging task.

Over the past decade, mass spectrometry has
become an indispensable tool for accurate and sen-
sitive identification of PTMs. Mass spectrometry
is capable of experimentally measuring both the
precursor mass and fragmentation patterns of all
the peptides in a protein. Using such information,
scientists can predict the theoretical mass and frag-
mentation pattern of the peptides in each protein.

Nevertheless, while commercial software tools
have been widely applied in large-scale protein iden-
tification, they are incapable of the identification of
unexpected or unknown protein modifications. To
rectify this situation, Drs. Zhao and Chen developed
PTMap, a tool for genome-wide characterization of
protein post-translational modifications.

PTMap works as follows. The data from a mass
spectrometer run on samples from a single organ-
ism is grouped into 50 or more “fractions,” each on
the order of 100–200 megabytes. Once a dataset is
captured, analysis consists of executing a run of the
PTMap workflow script – a set of parallel invoca-
tions of the PTMap application that search for PTMs
by analyzing each mass-spec fraction against a num-
ber of FASTA protein sequences, from one to hun-
dreds of the tens of thousands of proteins in most
organisms of interest. Then the entire process is
repeated, comparing against the FASTA sequences
in reversed and permuted order to eliminate
matches that are due to chance. The number of pro-
teins compared in each invocation of PTMap can be
used to control the overall degree of parallelism of
the overall workflow run. Each such run may need
to be repeated many times, for new datasets, new
organisms, or newly improved versions of code or
to explore the effects of varying parameters. The
software also uses unmatched peaks to remove false
positive identification. Compared with other soft-
ware tools for PTM identification, PTMap shows
higher accuracy and sensitivity and has been applied
to successfully characterize novel lysine propiony-
lation and butyrylation sites in yeast core histones.

Since each analysis requires the same input of
mass spectrometry data and differs only in the can-
didate protein sequence, theoretically all the analy-
sis can be performed in parallel to achieve high
speed, and the final result can be integrated from all
analysis results. Based on this principle, Drs. Zhao
and Chen have developed PTMap2 to extend the
capability of PTM analysis on a single protein to
genome-wide analysis on a protein database. Tests
show that PTMap2 can identify all types of PTMs in
the E. coli protein database from a single mass spec-
trometry data file. Using petascale computing
resources, the researchers currently are extending
the application of PTMap2 to identify unknown
PTMs in diverse cellular organisms.

Case Study: Economics, Environment, and Energy
Drs. Joshua Elliott and Meredith Franklin are col-
laborating on two University of Chicago–
Argonne projects: “Social, Economic, and Envi-
ronmental Modeling” and “Community Inte-
grated Model of Economic and Resource
Trajectories for Humankind.” Using Swift on
large Grid clusters, the researchers have con-
ducted parameter sweeps of economic models of
energy use. Recently they and their colleagues
analyzed more than 10,000 models from a per-
turbed input dataset in parallel on TeraGrid and
Open Science Grid resources (figure 7).

Dr. Tiberiu Stef-Praun of the University of
Chicago/Argonne Computation Institute uses
Swift to run parallel economic modeling tasks in
MATLAB, Octave, and Python. Working with Dr.
Robert Townsend of MIT, he integrates macro-
economic and microeconomic models of devel-
oping economies, focusing on entrepreneurship,
access to the financial system, and individual
choices. The models, run on a variety of comput-
ing resources including TeraGrid and the ALCF
Blue Gene/P, have been used to explore topics
such as evaluating choices of group organization
for risk sharing purposes, linking growth to
financial deepening and inequality, and borrow-
ing choices.

Case Study: Neuroscience
Researchers in the University of Chicago Human
Neuroscience Laboratory led by Dr. Steven Small
use Swift to analyze data from functional mag-
netic resonance imaging (MRI) experiments. Dr.
Small’s laboratory makes extensive use of the R
data analysis language and has leveraged the
power of relational databases for the storage of
time series signals of brain activity during cogni-
tive experiments extracted from functional MRI
images. The researchers benefit from the ability
to run their data processing and analysis tools on
a range of computing resources, from a local Con-
dor pool that aggregates their lab’s workstations
into a fast but limited local cluster, to the
resources of TeraGrid. Recently, they have started
to use the ALCF Blue Gene/P for their structural
equation modeling data analysis procedures.

Students in the laboratory of Dr. David Biron of
the University of Chicago Department of Physics
are applying Swift to analyze high-volume image
data from biophysics experiments in which the
behavior of large arrays of the model organism
Caenorhabditis elegans are recorded with high-speed
digital cameras. The researchers anticipate ulti-
mately producing close to a terabyte a day of
image data that will be analyzed using the MAT-
LAB image-processing toolbox. Swift is able to
call compiled MATLAB analysis scripts that can

Using Swift on large Grid
clusters, researchers have
conducted parameter
sweeps of economic
models of energy use.
Recently they and their
colleagues analyzed more
than 10,000 models from
a perturbed input dataset
in parallel on TeraGrid
and Open Science Grid
resources.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 51

execute on a variety of parallel clusters and Grid
resources available to Dr. Biron’s lab and to han-
dle all the data transfer between the data capture
system and the analysis computers in a seamless
and transparent fashion.

What’s Next?
The development and usage of Swift are proceed-
ing in many new directions. Interesting challenges
remain, in terms of not only engineering and pro-
ductization but also open research questions in
parallel programming methodology, systems
architecture, and performance.

One effort focuses on platform support. Most
Swift supercomputer studies have been performed
on the IBM Blue Gene/P and Ranger. The Swift
team members plan to explore the use of Swift on
other petascale systems such as the Cray XT5.

Another effort involves ease of use. Argonne
researchers Wenjun Wu, Tom Uram, and Dr.

Mark Hereld have created a flexible portal frame-
work that uses Web 2.0 interfaces to create a cus-
tomized online interface for executing parallel
scripts and organizing, visualizing, and sharing
results. With this new framework, scripts can be
added to the repertoire of computational tools
without manually creating a new web page for
each script. The portal mechanism will soon
automate the translation of a Swift script’s func-
tional interface – created by members of a science
team that are proficient in scripting – to a web
task-submission form that can be readily used by
non-programming science users. An example of
a portal interface created for the Open Protein
Simulator is shown in figure 8.

One broad area of Swift usability concerns
expressivity. Swift researchers are exploring how
best to express problems that lend themselves to
map-reduce solutions and how to unify the no-
tions of data typing and data passing so that web

S W I F T

52 S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

Figure 7. CIM–EARTH simulations. Left, a comparison of uncertainties in the substitutability of labor and capital for a variety of industries. Top

right, global GDP for 5,000 model runs with perturbed substitution elasticities. Right center, global emissions from fossil fuel consumption for

5,000 model runs with perturbed substitution elasticities. Bottom right, global mean temperature forecasts.

J. E
L

L
IO

T
T, M

. F
R

A
N

K
L

IN
, A

N
D

A
. E

S
P

IN
O

S
A

IL
L
U

S
TR

A
TIO

N
: A

. T
O

V
E

Y

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 52

53S C I D A C R E V I E W S P R I N G 2 0 1 0 W W W . S C I D A C R E V I E W . O R G

services and databases can be readily integrated
into Swift scripts in a seamless manner with file-
based application programs. Swift researchers are
also exploring how best to integrate the Swift data
typing and access model with structured storage
methods such as HDF5 and NetCDF and how to
integrate Swift file passing with the message-pass-
ing model. These structured storage mechanisms
are playing an increasingly vital role in scientific
data management. Research that can reduce the
differences between such structured storage and
hierarchical file systems can enable applications
to achieve scalability at the petascale and beyond,
without sacrificing the flexible exploration, man-
agement and exchange of data made possible by
modern file systems.

Another area of interest is to make the Swift data
management, program execution, and data-pass-
ing semantics available as native libraries for pop-
ular scripting systems – languages such as Perl,
Python, and Ruby, as well as the various Java-based
scripting languages such as Groovy. While these
serial languages do not have the innate parallelism
and simplicity of the Swift language, they do have
vast user communities who could benefit from the
parallel execution and data management support
provided by the Swift runtime system, while con-
tinuing to express their scripts in a language with
which they are already familiar.

As the high-performance community turns its
attention to the daunting problems of exascale
computing, Swift is expected to prove a valuable
technology and paradigm in the programming

model toolkit. Increasingly, Swift will be called
on to serve as the “outer loop” for running large
numbers of applications in parallel, each of
which is using a large number of CPUs in a
tightly-coupled manner. Swift’s ability to re-exe-
cute the work from any number of failing CPUs
is well suited for the exascale world where the
processor failure counts within a large comput-
ing complex may rise over today’s level. Swift’s
data dependency graph can be used to determine
what needs to be re-executed when complex fail-
ures make previously computed data objects
unavailable. And, as every desktop workstation
and mobile device becomes an N-way multicore
system, Swift will provide a uniquely scalable
solution to a broad range of problems for an
expanding community of users. ●

Contributors Dr. Pete Beckman, Dr. Ian Foster, and

Michael Wilde, Argonne National Laboratory and University

of Chicago; Dr. Ioan Raicu, Northwestern University

Further Reading:

Swift

http://www.ci.uchicago.edu/swift/

ZeptoOS

http://www.mcs.anl.gov/research/projects/zeptoos/

J. Ousterhout. 1998. Scripting: Higher-Level Programming

for the 21st Century. IEEE Computer 31(3): 23–30.

M. Wilde, Z. Zhang, B. Clifford, M. Hategan, S. Kenny, K.

Iskra, P. Beckman, I. Foster, I. Raicu, and A. Espinosa.

2009. Parallel Scripting for Applications at the Petascale

and Beyond. IEEE Computer 42(11): 50–60.

Figure 8. Science portal for parallel script execution. Script execution request form (left) and results page (right).

Portal hosted at UChicago Computation Institute. Workflow executed on TeraGrid system “Abe” at UIUC.

W
. W

U
A

N
D

T. U
R

A
M

As the high-performance
community turns its
attention to the daunting
problems of exascale
computing, Swift is
expected to prove a
valuable technology and
paradigm in the
programming model toolkit.

SciDAC Spring'10-Inside.qxd 3/3/10 12:08 PM Page 53

