
Exploring Distributed Hash Tables in HighEnd Computing

Tonglin Li
Computer Science

Illinois Institute of Technology
Chicago, IL, USA

tonyli@hawk.iit.edu

Raman Verma
Computer Science

Illinois Institute of Technology
Chicago, IL, USA

rverma3@iit.edu

Xi Duan
Computer Science

Illinois Institute of Technology
Chicago, IL, USA

xduan@iit.edu
Hui Jin

Computer Science
Illinois Institute of Technology

Chicago, IL, USA

hjin6@iit.edu

Ioan Raicu
Computer Science

Illinois Institute of Technology
Chicago, IL, USA

iraicu@cs.iit.edu

ABSTRACT
Over the last decade, storage systems have experienced a 10-
fold increase between their capacity and bandwidth. This
gap is predicted to grow faster with exponentially growing
concurrency levels, with future exascales delivering millions
of nodes and billions of threads of execution. A critical com-
ponent of future file systems for high-end computing is meta-
data management. This extended abstract presents ZHT, a
zero-hop distributed hash-table, which has been tuned for
the specific requirements of high-end computing. The pri-
mary goal of ZHT is excellent availability, fault tolerance,
high throughput, and low latencies.

1. INTRODUCTION
The current architecture of high-end computing (HEC)

systems is decades-old and has persisted as we scaled from
gigascales to petascales. In this architecture, storage is com-
pletely segregated from the compute resources and are con-
nected via a network interconnect. This approach will not
scale several orders of magnitude in terms of concurrency
and throughput, and will thus prevent the move from petas-
cales to exascale. One of the major bottlenecks in current
state-of-the-art storage systems is metadata management.
Metadata operations on parallel file systems can be ineffi-
cient at large scale. Early experiments on the BlueGene/P
system at 16K-core scales shows the various costs (wall-clock
time measured at remote processor) for file/directory create
on GPFS [1]. Ideal performance would be to have a flat line.
If care is not taken to avoid lock contention, performance de-
grades rapidly, with operations (e.g. create directory, create
file, etc) that took milliseconds on a single core, taking over
1000 seconds at 16K-core scales. [3, 4]
ZHT has been tuned for the specific requirements of high-

end computing (e.g. trustworthy/reliable hardware, fast
networks, non-existent ”churn”, low latencies, and scientific
computing data-access patterns), and we believe it is a good
abstraction to build distributed metadata management for
distributed file systems.

2. RELATED WORK
DHTs have an important role in building support for scal-

able meta-data across extreme scale systems. Some of the

DHTs from the literature are Kademlia[11], CAN[12], Chord
[13], Pastry[14], Tapestry[15], Memcached[16], Dynamo[2],
Cycloid[17], Ketama[18], RIAK[19], Maidsafe-dht[20], and
C-MPI[8]. It is important to point out that several key fea-
tures of traditional DHTs are not necessary in HEC. Most
HEC environments are batch oriented, which implies that a
system that is configured at run time, generally has infor-
mation about the compute and storage resources that will
be available. This means that the amount of resources (e.g.
number of nodes) would not change dynamically, and the
only reason to decrease the allocation is either to handle
failed nodes, or to terminate the allocation. Furthermore,
nodes in HEC are generally reliable and have predicable up-
time (nodes start on allocation, and nodes shut down on
deallocation). This implies that node ”churn” in HEC is
virtually non-existent. HEC systems are generally locked
down from the outside world, behind login nodes and fire-
walls, and although authentication and authorization is still
needed, full communication encryption is wasteful for a large
class of scientific computing applications that run on many
HEC systems.

There has been some uptake recently in using traditional
DHTs in HEC, namely the C-MPI [8] project, in which the
Kademlia DHT has been implemented and shown to run
well on 1000 nodes on a SiCortex machine. Another recent
project using DHTs on a HEC is DataSpaces [7], which de-
ploys a DHT on a Cray XT5 to coordinate in-memory data
management for simulation workflows. Both C-MPI and
DataSpaces fail to pay careful attention to latency by en-
suring constant time operations. Furthermore, they do not
decouple the metadata from the data management, causing
potentially poor data locality. Amazon Dynamo [2] is ar-
guably similar to the proposed ZHT, also claiming to be a
zero-hop distributed hash-table. However, it’s a non-open-
source project, which makes its adoption not possible.

3. ZHT: A ZERO HOP DISTRIBUTED HASH
TABLE

We propose a new data-structure, named ZHT (Zero hop
distributed Hash Table), which has been simplified and tuned
for the specific requirements of High-End Computing (HEC).
The ZHT features are described in this section.

Hash Functions: ZHT uses the SDBM hash function,



due to its simple implementation, consistency across dif-
ferent data types (especially strings), and efficient perfor-
mance.
Membership Table: The proposed hash functions map

an arbitrary long string directly to an index value, which
can then be used to efficiently retrieve the communication
address (e.g. network name, IP address, MPI-rank) from a
membership table.
Failure Handling: ZHT gracefully handles failures, by

lazily tagging nodes that do not respond to requests repeat-
edly as failed (using exponential backoff). Once nodes are
marked as down, they are assumed never to return until
ZHT is restarted.
Replication: ZHT uses replication to ensure data stored

persists during failures. New data created is pro-actively
replicated to nodes in close proximity in the membership ID
space. Ideally, once we support the network-aware topology
of node ids (part of the future work section), the replication
will consume the least amount of shared network resources
by communicating only with neighbors in close proximity,
and therefore improving scalability at extreme scales. We
implemented replication on sever side. When requests (in-
sert and remove) are sent to servers, a thread will send the
same request to corresponding replicas asynchronously. This
will certainly introduce some overhead due to the sharing
resource (CPU and network bandwidth). But our imple-
mentation don’t introduce too much extra overhead when
increase the number of replicas.
Persistence: ZHT is a distributed in-memory data-structure.

We use a light-weight persistent hashtable with Kyotocabi-
net [6], which stores the ZHT state to persistent storage in
real time.
Implementation: The application programming inter-

face (API) of ZHT is kept simple and follows similar in-
terfaces for hash tables. The three operations that ZHT
currently supports are 1. bool insert(key, value); 2.
value lookup(key); 3. bool remove(key). Another opera-
tion bool broadcast(key, value) will be supported soon.
Replication occurs asynchronously between the hashed des-
tination and its neighbors. The lookup operation would re-
turn the value from ZHT, if it existed. The remove opera-
tion would remove the value with the associated key. The
broadcast operation would transmit the key/value pair over
the edges of the spanning tree or gossip protocol with the
goal to distribute the key/value pair to all the caches. ZHT
uses UDP and TCP based protocols for both stateful and
stateless communication.
Complex data structures are serialized into a string with

the help of Google Protocol Buffers [5] and parse it back
into the original structure at the receiving end. Further, the
key-value pairs are stored into Kyotocabinet [6].

4. PERFORMANCE EVALUATION
In our implementation we completed an prototype of ZHT,

which supports three of the four proposed operations, namely
insert/lookup/remove. Prior to engaging in implementing
ZHT, we explored the feasibility of using existing DHT im-
plementations (Tapestry, Chord, Maidsafe-dht, and C-MPI),
but came to the conclusion that they are all too heavy weight
for HEC, were not feature complete, or had significant de-
pendencies to resolve. The preliminary ZHT implementa-
tion was implemented in C++, and uses a proprietary binary
TCP-based and UDP-based communication protocol. We

0

20000

40000

60000

80000

100000

120000

1 2 4 8 16 32 64 128 256 512 940

T
h

ro
u

g
h

p
u

t 
(o

p
e

ra
ti

o
n

s/
s)

Number of Nodes

TCP

UDP

Figure 1: ZHT throughput on SiCortex

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000

O
p

e
ra

ti
o

n
s 

p
e

r 
se

c

Number of nodes

TCP insert

TCP lookup

TCP remove

UDP insert

UDP lookup

UDP remove

Figure 2: ZHT latency on SiCortex

performed experiments (on the SiCortex SC5832 at ANL,
972 nodes with 5832 cores) to measure the overheads of
insert/remove/lookup. Overheads were significantly lower
than the DHTs that were investigated, with about 10ms
per operation at modest scales of 5832-cores (as opposed
to 30 ms for Chord and 1000 ms for Maidsafe-DHT at 16-
core scales). Figure 1 shows the throughput for ZHT for
a range of scales from 1 node (6 cores) to 940 nodes (5640
cores). Each client (1 client per node) performs 100K ran-
dom 132-byte key inserts, 100K lookups, and 100K removes.
The throughputs in operations per second increases near-
linearly with scale, reaching 85K ops/sec at 940 nodes; the
ideal throughput would have been 156K ops/sec. Also, as
shown in the figure, the UDP protocol has better perfor-
mance than TCP, which is near 100k ops/sec, and would
might scale better in even large scale, nevertheless, based
on the volatile propriety of UDP and bottleneck of network,
UDP protocol in our implementation will lose performance
when the network is saturated, after all, it does not hold
a reliable way. Compared with the ideal linearly speed-up,
ZHT hits more-than-half of the performance of it, it cannot
be considered as a perfect work, however, it makes a giant
progress in MTC.

Figure 2 shows the latency incurred by various operations
on both TCP and UDP. TCP implementation keeps the la-
tency within 11 ms while UDP does it with 9ms.

Additionally, we note that when the network saturates,
TCP shows a better scalability and reliability. The per-
formance differences among three basic operations (insert,
lookup and remove) are very small and tend to be negligible.
The time per operation starts at about 6ms at the smallest
scales of 2 nodes (1 node scales is extremely fast because it
has no network communication), and increases to 11ms to
12ms at the largest scale of 972 nodes. Since ZHT uses a di-



rect 0-hop algorithm and that the majority of the overhead
comes from network communication, it is not expected for
the time per operation to increase significantly with larger
scales.

5. CONCLUSION
The ideas in this position paper are transformative due to

their departure from traditional HEC architectures and ap-
proaches, while proposing radical storage architecture changes
based on distributed file systems to make exascale comput-
ing a reality. This paper addresses fundamental technical
challenges that will become increasingly harder to address
with existing solutions due to a declining MTTF of future
HEC systems. This work will open doors for novel research
in programming paradigm shifts (e.g. Many-Task Comput-
ing [3]) needed as we approach exascale.
ZHT optimized for high-end computing systems was archi-

tected and implemented as a foundation in the development
of fault-tolerant, high-performance, and scalable storage sys-
tems. We performed an extensive performance evaluation of
ZHT. We have measured the performance of ZHT over TCP
and UDP at scales up to 5400-cores on a SiCortex SC5832
supercomputer. ZHT is an open source project, available at
[9].
Our work will benefit the ’Many-Task Computing’ paradigm

that bridges the gap between high-throughput computing
and high-performance computing, generally producing both
compute-intensive and data-intensive workloads, and has
been shown to contain a large set of scientific computing
applications from many domains.
Our main message is that by combining lessons learned

from parallel file systems and distributed file systems, along
with new advances in hardware (e.g. solid state memory),
we can define a new storage architecture that is optimized
for future high-end computing at exascale and has the po-
tential to deliver a viable storage architecture for future ex-
treme scale high-end computing. The position of this pa-
per is revolutionary as it breaks the accepted practice of
segregating storage resource from computational resources,
and leveraging the abundance of processing power, bisec-
tion bandwidth, and local I/O commonly found in future
high-end computing systems.

Acknowledgements
This work was supported in part by the National Science
Foundation grant NSF-0937060 CIF-72 and NSF-1054974.
We want to thank our collaborators for the valuable help,
feedback, and insight leading up to this work, namely Mike
Wilde, Matei Ripeanu, Justin Wozniak, Arthur Barney Mac-
cabe, Marc Snir, Rob Ross, Kamil Iskra.

REFERENCES
[1] F. Schmuck, R. Haskin, ”GPFS: A Shared-Disk File Sys-
tem for Large Computing Clusters,” FAST 2002
[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
W. Vogels. ”Dynamo: Amazon’s Highly Available Key-
Value Store.” SIGOPS Operating Systems Review, 2007
[3] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K.
Iskra, B. Clifford. ”Toward Loosely Coupled Programming
on Petascale Systems,” IEEE SC 2008

[4] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, M.
Wilde. ”Design and Evaluation of a Collective I/OModel for
Loosely-coupled Petascale Programming”, IEEE MTAGS
2008
[5] Google buffer protocol: http://code.google.com/apis/
protocolbuffers/

[6] Kyotocabinet: http://1978th.net/kyotocabinet/
[7] C. Docan, M. Parashar, S. Klasky. ”DataSpaces: An
Interaction and Coordination Framework for Coupled Sim-
ulation Workflows”, ACM HPDC 2010
[8] Justin M. Wozniak, Bryan Jacobs, Rob Latham, Sam
Lang, Seung Woo Son, and Robert Ross. ”C-MPI: A DHT
implementation for grid and HPC environments”, Preprint
ANL/MCS-P1746-0410, 2010
[9] ZHT: Zero-Hop Distributed Hash Table, http://datasys.
cs.iit.edu/projects/ZHT/index.html, 2011
[10] http://en.wikipedia.org/wiki/SiCortex2009
[11] P. Maymounkov, D. Mazieres. ”Kademlia: A Peer-to-
peer Information System Based on the XOR Metric”, In
Proceedings of IPTPS, 2002
[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Schenker, ”A scalable content-addressable network,” in Pro-
ceedings of SIGCOMM, pp. 161-172, 2001
[13] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Bal-
akrishnan, ”Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications”, ACM SIGCOMM, pp. 149-160,
2001
[14] A. Rowstron and P. Druschel, ”Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-
peer systems,” in Proceedings of Middleware, pp. 329-350,
2001
[15] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D.
Joseph, and J.D. Kubiatowicz. ”Tapestry: A Resilient Global-
Scale Overlay for Service Deployment”, IEEE Journal on
Selected Areas in Communication, VOL. 22, NO. 1, 2004
[16] B. Fitzpatrick. ”Distributed caching with memcached.”
Linux Journal, 2004(124):5, 2004
[17] H. Shen, C. Xu, and G. Chen. Cycloid: A Scalable
Constant-Degree P2P Overlay Network. Performance Eval-
uation, 63(3):195-216, 2006
[18] Ketama, http://www.audioscrobbler.net/development/
ketama/, 2011
[19] Riak, https://wiki.basho.com/display/RIAK/Riak, 2011
[20] Maidsafe-DHT, http://code.google.com/p/maidsafe-dht/,
2011


