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Abstract— Understanding the behavior of Bag-of-Tasks (BOT) 
is crucial for analyzing workflow-generated Many-Task 
Computing (MTC) workloads to aid in designing optimized job 
scheduling systems. Future job scheduling systems will need to 
be able to schedule large bags of tasks onto large-scale 
supercomputers and adaptive clouds with heterogeneous 
processors, I/O performance, and cost, all while minimizing 
job turn-around time and respecting the upper bound for the 
user-defined budget. Due to the strong periodicity and self-
similarity during long time periods, BOTs have been shown to 
be an efficient approach for modeling High-Throughput 
Computing (HTC) workloads. However, applying the same 
analysis to MTC workloads poses significant challenges due to 
the significantly larger scale in terms of number of tasks, 
resource usage, and work granularity. In this paper, we extract 
two workloads from traces obtained from running MTC 
applications on a 40K-node IBM Blue Gene/P supercomputer 
and a 128-node Linux cluster. The traces span a 17-month 
period, cover 173M tasks, and have an average task runtime of 
95 seconds. We propose methods to verify the existence of BOT 
arrival pattern, and ways to measure their impacts on system 
performance. We also examine the correlations among several 
BOT attributes, such as BOT size, runtime, CPU times, and 
inter-arrival time of BOT. The results show that the inter-
arrival time of the two BOT workloads has Generalized Pareto 
(GP) distribution, and there are autocorrelations and cross-
correlations among the BOT attributes. 

Keywords: Many-Task Computing; MTC; Bag-of-Tasks; 
BOT; workload modeling 

I. INTRODUCTION 
Workload analysis is important to evaluate the 

performance of computer systems, especially large-scale 
parallel and distributed systems such as Grids and Clouds. 
Job scheduling systems have the demand to understand 
properties of the workloads, in order to select efficient 
scheduling strategies. Performance evaluation of scheduling 
studies requires representative workloads to produce 
dependable results [1]. Although real workloads (traces) are 
usually collected and they reflect reality, they have not yet 
become widely available. Workload models, which generate 
synthetic workloads, have a number of advantages over 
traces [2]. Though workload modeling usually makes 
simplified assumptions on workload characteristics, such as 
fixed-interval, bulk, or Poisson job arrivals, it has been 
found that pseudo-periodicity, long range dependence 

(LRD), and the “bag-of-tasks” behavior with strong 
temporal locality are the main properties that characterize 
data-intensive workloads [40] in large-scale distributed 
systems. Applications that can be structured as a set of 
independent computational tasks are called bag-of-tasks 
(BOT) [3][4]. Despite their simplicity, BOT applications are 
utilized in a variety of research areas, such as computational 
biology [5], computing imaging [6], data mining, and 
astronomy [42]. Due to the independence of the tasks, BOT 
applications have been considered most suitably to be 
executed over widely distributed computational grids. 
However, we believe that BOT applications should also be 
able to be executed on other large-scale systems, such as 
clouds with the help of workflow systems and the Many-
Task Computing (MTC) paradigm [7][45].   

Many-Task Computing is a new distributed paradigm 
which aims at bridging the gap between High Performance 
Computing (HPC) and High Throughput Computing (HTC). 
Many MTC applications are structured as graphs of discrete 
tasks, with explicit input and output dependencies forming 
the graph edges. In many cases, the data dependencies will 
be files that are written to and read from a file system shared 
between the compute resources; however, MTC does not 
exclude applications in which tasks communicate in other 
manners. MTC applications often demand a short time to 
solution, may be communication intensive or data intensive, 
and may comprise of a large number of short tasks. Tasks 
may be small or large, uniprocessor or multiprocessor, 
compute-intensive or data-intensive. The set of tasks may be 
static or dynamic, homogeneous or heterogeneous, loosely 
coupled or tightly coupled. The aggregate number of tasks, 
quantity of computing, and volumes of data may be 
extremely large. For many applications, a graph of distinct 
tasks is a natural way to conceptualize the computation, 
especially for BOT applications. 

MTC relies on the workflow systems (e.g. Swift [8][9]) 
to generate graphs of distinct tasks forming layered DAGs. 
Tasks can be grouped into BOT within one layer, and be 
scheduled together in the unit of BOT. A large number of 
applications [42][44][45] have been covered with this new 
programming model, spanning everything from 
supercomputers [44] to grids [50] and clouds [47], and data-
intensive systems [46].  



Though there are differences between the MTC-based 
scientific computing workloads and the initial target 
workloads of clouds (e.g. in required system size, in 
performance demand, and in the job execution model [10]), 
we believe that the undergoing improvements to the cloud 
performance would help us run scientific applications in 
dynamic resources of cloud environment more efficient, 
under the constraints of time and budgets.     

In this paper, we abstract two batches of BOTs from the 
traces obtained from MTC applications running on a 40K-
node IBM Blue Gene/P supercomputer and a 128-node 
Linux cluster. Based on the two BOT workloads, we 
analyze the arrival pattern, and the correlations among 
several BOT attributes.  

The contributions of this paper are as follows: 
• Extract two groups of BOTs from the traces 

obtained from running MTC applications on 
production systems. 

• Demonstrate that among several random variable 
distributions, Generalized Pareto (GP) distribution 
fits the MTC workloads best. 

• Define various BOT attributes (e.g. BOT size, 
runtime, CPU times, and inter-arrival time of BOTs) 
and examine the correlations among them. 

The rest of this paper is organized as follows. In Section 
II, we present the related work about workloads modeling 
and BOT applications scheduling. Section III describes the 
BOT workloads, the way we model the BOT arrivals and 
the analysis of correlations among BOT attributes. Finally, 
we draw conclusions and discuss future work in Section IV. 

II. RELATED WORK 
There is extensive research about workload modeling for 

large-scale distributed systems. Dumitrescu et al. [41] 
covered the practical aspects of running workloads in large-
scale grids. H. Li et al. [11] conducted a comprehensive 
statistical analysis of a variety of workload traces, which 
includes the workload patterns and the corresponding 
models with software.  S.B. Lowen et al. [12] described the 
job traffic as a stochastic fractal-based point process, based 
on which H. Li modeled the job arrivals by modeling inter-
arrival time processes with Markov modulated Poisson 
process (MMPP) [13]. Mallat et al. [14] introduced a 
particular analysis-by-synthesis method called matching 
pursuit to model the Pseudo-Periodicity of the workloads. 
Matching Pursuit is a greedy, iterative algorithm which 
searches a set of candidate functions for the element that 
best matches the signal and subtracts this function to form a 
residual signal to be approximated in the next iteration. It 
can be used to separate and extract periodic patterns from 
signals. The long range dependent (LRD) process of a 
workload was modeled by H. Li et al. [15] using the Multi-
fractal Wavelet Model (MWM) [16]. A. Iosup et al. [4] 
found that the Weibull distribution is the best fit for 
modeling the inter-arrival times of BOT for workloads in 
the Grid environment. However, all the research focuses on 

the HPC and HTC applications under the Cluster and Grid 
environments, and in the meantime, we take some of their 
methods, such as statistics analysis of the job inter-arrival 
time, and apply them to model workflow-generated MTC 
workloads in supercomputers and clouds. 

A great effort has been done in scheduling BOT 
applications in large-scale distributed systems. Most work 
on BOT applications focuses on the initial scheduling 
[17][18][19][20], which means that tasks are scheduled 
without considering the dynamic behavior of resources and 
applications. Task replication techniques have been 
developed to reduce task turnaround time and handle the 
lack of information from resources and tasks [21]. Task 
replication could be considered as a particular type of 
rescheduling, which has the drawbacks of wasting resources 
and causing consistent problems. Marco et al. [22] proposed 
a coordinated rescheduling algorithm for BOT applications 
and an evaluation of the impact of run time when scheduling 
these applications across multiple providers. A. Oprescu et 
al. [23] developed a scheduler, BaTS, to schedule BOTs in 
dynamic cloud environment under the user-defined budget 
constraint.  However, the scalability of these algorithms is 
not clear. 

BOT applications could be considered as the subset of 
MTC. There is effort to improve the cloud performance in 
order to run MTC applications efficiently. A. Iosup et al. 
[10] conducted performance analysis of Cloud Computing 
Services for Many-Tasks Scientific Computing. Two job 
schedulers for MTC workloads have been developed: 
Falkon [24] and MATRIX [25]. Falkon is a light-weight 
task execution framework specifically for MTC applications. 
Falkon had a centralized architecture, and although it scaled 
and performed orders of magnitude better than the state of 
the art Job scheduling systems, its centralized architecture 
did not even scale to petascale systems. A naïve hierarchical 
Falkon implementation was shown to scale to a petascale 
system in [8], however the approach taken by Falkon 
suffered from poor load balancing under failures, high 
variance in tasks execution times, or unpredictability of task 
execution times. MATRIX is a distributed MTC execution 
framework, which utilizes an adaptive work stealing 
algorithm [26][37] to achieve distributed load balancing. 
MATRIX uses ZHT (a distributed zero hop key-value store) 
[27] for task metadata management, to submit tasks and 
monitor the task execution progress by the clients. The 
MATRIX project is still in its infancy, with scales up to 1K 
nodes (4K cores).   

III. WORKLOAD MODELING 
In this section, we present the BOT workloads obtained 

from traces of MTC applications running on a 40K-node 
Blue Gene/P supercomputer (denoted by BGP) and a 128-
node Linux cluster of Argonne National Laboratory and 
University of Chicago (denoted by ANLUC), define the 
BOT attributes, propose the methods to model the inter-
arrival time of BOT, and analyze the correlations among 
BOT attributes. 



A. Workload Trace 
We investigated the largest available trace of real MTC 

workloads, collected over a 17-month period comprising of 
173M tasks [38][39]. We filtered out the logs to isolate only 
the 160K-core IBM Blue Gene/P Intrepid supercomputer 
from Argonne National Laboratory, which netted about 
34.8M tasks with the minimum runtime of 0 seconds, 
maximum runtime of 1469.62 seconds, average runtime of 
95.20 seconds, and standard deviation of 188.08. We plotted 
the Cumulative Distribution Function of the 34.8M tasks, 
shown in Figure 1.  

 
Figure 1: Cumulative Distribution Function of the MTC workloads 

We see that most of the tasks have the lengths ranging 
from several seconds to hundreds of seconds, and the 
medium task length is about 30 seconds, which is just one 
third of the average (95.2 seconds). Based on the condition 
that, all jobs in the same BOT have exactly the same values 
with respect to the following attributes: user name, job name, 
and requested number of processors, these 34.8M tasks are 
partitioned into 1395 BOTs (where BOTs are clearly 
marked in the logs). We name this workload the BGP 
workload. Another workload log is from running MTC 
applications on the 128-node Linux Cluster, similarly, we 
generated 825 BOTs from 36M tasks. We name this 
workload the ANLUC workload.  

B. BOT Attributes 
We define several BOT attributes in this section. These 

attributes, namely BOT size, runtime, CPU time, average 
execution time, In-Bag inter-arrival, and throughput, 
characterize important properties of BOT workload. The 
definitions of the attributes are as follows:  

BOT size concerns how many tasks in the BOT. 
According to the results revealed in [28], if users increase 
their BOT sizes, tasks tend to run longer and definitely this 
will have negative effect on the performance of parallel 
systems. 

Runtime is the execution time of entire BOT, which is 
time period between the arrival of its first task, and the end 
of execution of its last task.  

CPU time means the total execution of all tasks in a 
BOT. It is calculated as summation of the execution time of 
each individual task in the BOT. Usually, the CPU time is 
longer than the runtime, because tasks could be executed in 
parallel.  

Average execution time is calculated by CPU time 
divided by BOT size. 

In-Bag Inter-arrival is calculated as the time period 
between the arrival of its first task, and the arrival of its last 
task. Dividing the In-Bag Inter-arrival by runtime, we get 
the arrival intensity of the BOT during the execution. We 
expect that the more intensive the arrival is, the more 
degradation of the system performance would be due to the 
overhead for scheduling. 

Throughput is calculated as BOT size divided by the 
runtime.  

Currently, we focus on these attributes that have been 
identified and studied frequently. We will study other BOT 
attributes, such as geometric mean of execution time, 
median execution time, in the future.   

C. BOT Arrivals 
In a parallel system, the arrival process (refers to either 

job or BOT arrivals) of applications can be described as a 
(stochastic) point access [15]. The point access is defined 
using a mathematical model that represents individual 
events as random time points !! . There are different 
representations of a point process, among which an inter-
arrival time process !! is a common one. !! is a real-valued 
random sequence with !! = !! − !!!!, which describes the 
time difference between two consecutive time points.  

We start the analysis of BOT arrivals with their inter-
arrival times to characterize the workload bursts. The 
modeling of the Cumulative Distribution Functions (CDF) 
of inter-arrival times of the BGP and ANLUC workloads 
are shown in Figure 2. We use five random variable 
distributions, namely Generalized Pareto (GP) [29], 
Weibull(wbl) [30], Lognormal (logn) [31], Gamma (gamma) 
[32], and Exponential (expn) [33], to fit the trace. These five 
distributions have been extensively used in workload 
analysis [34].  

We observe that the inter-arrival pattern of both 
workloads could be correctly modeled using these 
distributions, in which Generalized Pareto (GP) distribution 
is the best fit. It remains quite close to both the workloads, 
which means that the sampling of inter-arrival times on the 
basis of GP distribution should be meaningful. Another 
notable fact is that for ANLUC workload (Figure 2 (b)), the 
sampled CDFs of different models differ significantly. But 
still, the GP distribution matches the workload the best. It 
might not be convincible to generalize a distribution for all 
workloads, but similar methods could be applied to build 
model for each workload. 

We use the Maximum Likelihood Estimation (MLE) 
method [35] to estimate the parameters of these distributions 
in the fitting process with a confidence level of 95%. For 
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each distribution with the estimated parameters presented in 
Table 1, we use a Goodness-of-Fit test, called Kolmogorov-
Smirnov (KS test) [34], to assess the quality of the fitting 
process. In KS, ! denotes the maximum distance between 
the estimated fitting CDF and the real one. A smaller ! 
(closer to 0) indicates a better fit between the real data and 
the estimated distribution. Table 2 shows the ! values of 
different estimated distributions. We could observe more 
clearly that GP distribution is the best fit (0.081 for BGP 
workload, and 0.074 for ANLUC workload). 

 
(a) BGP workload 

 
(b) ANLUC workload 

Figure 2: CDF of BOT inter-arrival time 

Table 1: Estimated parameters of different distributions  

 BGP ANLUC 
GP(a,b,θ) 1.15, 2692, 0 2.08, 331.6, 0 
Wbl(a,b) 0.52, 7868 0.32, 2189 

LogN(µ,σ) 8.01, 1.99 5.98, 3.89 
Gam(a,b) 0.37, 51258 0.16, 314500 

Exp(µ) 18741 496390 

Table 2: D values of different distributions and workloads 

 GP Wbl LogN Gam Exp 
BGP 0.081 0.142 0.093 0.207 0.366 

ANLUC 0.074 0.133 0.147 0.311 0.402 
 

D. Autocorrelation of BOT Arrivals 
This section attempts to address the following two 

questions: 
1. Do bursts exist and for how long?  
2. Do the bursts have any periodicity pattern, and what 

is the relationship among the BOT attributes’ burst 
periods? 

We represent the BOT arrivals as a rate process, which 
characterizes the Long-Range-Dependency (LRD) [15] and 
the periodicity properties of the BOT workload. The 
periodicity and the LRD of an arrival process can be 
observed via the autocorrelation function of the BOT 
arrivals. 

The autocorrelation functions are shown in Figure 3 for 
both workloads, with each lag representing 1 day. Since we 
select a time scale of 1 day, weekly or monthly cycles of a 
rate process can be detected if its autocorrelation function 
repeats every 7 or 30 lags. Because the workloads cover a 
relatively long time period, and produce not enough BOTs, 
therefore we cannot detect the periodicity at lower 
granularity. Furthermore, in ANLUC workload, it can be 
observed from the raw data that there were about three long 
vacations during the time period, during which there was no 
computation request taking. Therefore, these days are 
removed from the workload, which leads to seamlessly 
continued workload of 201 days from the original 473 nodes.  

 
 (a) BGP workload

 
(b) ANLUC workload 

Figure 3: Autocorrelation of BOT arrivals; 1 lag equals 1 day 

We can observe that the BGP workload (Figure 3 (a)) 
has a strong monthly repetition, which reveals a periodic 



pattern in this workload. What’s more, the signal decays 
after 300 days. We can see the amplitude is decreasing as 
the time lasts. This indicates the workload keeps its 
periodicity within a limited time period, and after that such 
pattern might decay.  

From Figure 3 (b) we can see that the ANLUC workload 
has the repetition property, and the repetition itself is 
periodic, which implies this workload might be staged. 
From lag 60 to lag 100, and from lag 140 to lag 172, we can 
observe a similar repetition with original signal. It seems 
plausible to assume the ANLUC workload can be divided 
into different stages. Considering the 200 days we removed 
from the workload, this workload has three different stages, 
namely idle (no computation requests), busy (moderate 
requests), and busier (burst). In Figure 3 (b), at each stage, 
the system might be busy or busier. To verify the staged 
pattern in the ANLUC workload, we preprocess the data 
further by remove 60 days in the workload. These days 
present obvious dependence on original signal, from lag 1 to 
10, lag 60 to lag 100, and from lag 140 to 172. Then we 
make the rest workload seamless by concatenating the next 
period to the previous one. This is done by modifying the 
arrival time stamps of the affected tasks. This modification, 
of course, changes, even removes some information of the 
workload; therefore it is not to be used in modeling. We just 
use it to verify the existence of the staged pattern in part of 
the workload.  

We adjust the lag from 1 day to 8 hours. In Figure 4, we 
can see periodicity in every three to five days, and the 
periodicity is much stronger. For the time periods, during 
which autocorrelation function is not similar as the 
beginning signal, they can also have LRD. Therefore, we 
believe this workload has staged pattern. For every 60 to 80 
days, it might have a burst (busier) lasting for 30 to 40 days, 
then after that will be 30 to 40 days’ not burst but still 
running period (busy), and then it will be totally idle for 
another 60-80 days. With this staged pattern, it is necessary 
to model the workload within different stages. 

E. Correlation among Arributes 
In this section, we focus on examining the cross-

correlations among the attributes of BOTs, namely BOT 
size, runtime, CPU time, average execution time, In-Bag 
inter-arrival, and throughput, for both BGP and ANLUC 
workloads.  

1) BOT Runtime with respect to BOT Size   
We present the cross-correlation of BOT runtime with 

respect to BOT size for both workloads. As shown in Figure 
5, with the increase of the BOT size, the BOT runtime is 
also growing. What’s more, BGP workload has a lower 
growing speed compared to ANLUC workload, which is 
because the ANLUC workload has smaller BOT size. 

 
Figure 4: Autocorrelation of BOT arrivals for modified ANLUC 

workload (1 lag equals 8 hours) 

 
(a) BGP workload 

 
(b) ANLUC workload 

Figure 5: BOT runtime trend with respect to the BOT size 

2) Throughput Trend 
Throughput has a relationship with respect to the BOT 

size, and the number of busy workers, shown from Figure 6 
to Figure 8.  



Figure 6 (BGP workload) and Figure 7 (ANLUC 
workload) show that as the BOT size increases, the 
throughput is also increasing. This trend means that bigger 
BOT size benefits the system performance (produces higher 
throughput), even though bigger BOT size increases the 
runtime a little bit (Figure 5). Another fact we can observe 
from Figure 6 and Figure 7 is that at smaller BOT size, there 
are some outliers, which mean high performance variation 
due to the smaller BOT size (not enough sampling points). 
These outliers do not exist at bigger size level. 

 
Figure 6: Phase 1, throughput trend with respect to the BOT size and 

the number of busy workers (BGP workload) 

 
Figure 7: throughput trend with respect to the BOT size (ANLUC 

workload) 

 
Figure 8: Phase 2, throughput trend with respect to the BOT size and 

the number of busy workers (BGP workload) 

It can be observed in Figure 8 that the throughput is also 
dependent on the number of busy workers. With the 
growing of number of workers, the throughput also 
increases. This makes sense, because more workers are 
executing tasks. The model fitting in Figure 8 displays the 
dependent relationship of the throughput on the BOT size 
and number of workers.  

The accuracy of the model fitting is listed in Table 3, with 
three criteria, SSE value, R-square value, and RMSE value. 
All of them show good result. 

Table 3: Goodness of fit results 

 SSE R-square RMSE 
Figure 8 905.2 0.9085 0.8146 

 
3) BOT Execution Time with respect to BOT Size 

We show the cross-correlation of BOT execution time (both 
the BOT CPU time and the average execution time) with 
respect to BOT size for both workloads. Figure 9 shows the 
BOT CPU time, with Figure 10 showing the average 
execution time. 

 
(a) BGP workload 

 
(b) ANLUC workload 

Figure 9: BOT CPU time trend with respect to the BOT size 



As shown in Figure 9, the BOT CPU time is increasing 
as the BOT size grows, which is quite reasonable (more 
tasks, more CPU hours). But it remains to be further 
modeled because the variance at each BOT size is quite big. 
It might be necessary to sampling on the median of the 
distribution. Comparing BGP workload (Figure 9 (a)) and 
ANLUC workload (Figure 9 (b)), we can see different 
clusters in ANLUC workload. A clustering algorithm might 
be helpful to extract specific information.  
The results in Figure 10 show that the average execution per 

task (CPU time / BOT size) always remains same at the 
same level with different BOT sizes. This means that the 
increasing speed of the BOT CPU time is as fast as the 

increasing speed of the BOT size. This is confirmed by the 
linear relationship between the CPU time and the BOT size 
in Figure 9. This also indicates that the task execution time 

of each task within the BOT does not vary significantly, 
which leads to stable relationship between the CPU time and 

the BOT size.

 
(a) BGP workload 

 
(b) ANLUC workload 

Figure 10: BOT average execution time trend with respect to the BOT 
size  

 
 

4) BOT Execution Time with respect to BOT In-Bag 
Inter-Arrival 

In order to model the arrival pattern of the tasks inside a 
BOT, it is necessary to discuss the In-Bag inter-arrival 
pattern of each task in the BOT. However, this work has not 
yet gone through very successfully, because different BOTs 
have quite different patterns. It is difficult, even impossible 
to pick up a representative or generalized model. Therefore, 
we assume that the tasks in a BOT are arriving with a 
Uniform distribution, which means the inter-arrival 
frequency will always be the same. The arrival frequency 
can be calculated as dividing the BOT size by the In-Bag 
inter-arrival time. We show the cross-correlation of BOT 
execution time (both the BOT CPU time and the average 
execution time) with respect to BOT In-Bag inter-arrival 
time for both workloads in this section. 

As shown in Figure 11, the BOT CPU time is increasing 
as the BOT In-Bag inter-arrival time increases. In addition, 
there exists a lower bound (thick blue lines) of BOT CPU 
time with different BOT In-Bag inter-arrival time. We claim 
this is due to the scheduling capability of the framework (e.g. 
Falkon [22]). When the BOT stays on the margin, it means 
the framework schedules these tasks with the highest 
efficiency (tasks are executed immediately after they arrive). 
But for the rest points, it implies that they are not scheduled 
immediately, some tasks might be waiting in the waiting 
queue. 

 
(a) BGP workload 

 
(b) ANLUC workload 

Figure 11: BOT CPU time with respect to the BOT In-Bag inter-
arrival 



Figure 12 and Figure 13 show the correlation of BOT 
execution time (both the BOT CPU time and average 
execution time) with respect to the In-Bag inter-arrival and 
the BOT size, for BGP and ANLUC workloads. 

 
(a) BGP workload 

 
(b) ANLUC workload 

Figure 12: BOT CPU time with respect to the BOT In-Bag inter-
arrival and the BOT size 

 
(a) BGP workload 

 
(b) ANLUC workload  

Figure 13: BOT average execution time with respect to the BOT In-
Bag inter-arrival and the BOT size 

As shown in Figure 12, the BOT CPU time is increasing 
with both the BOT In-Bag inter-arrival and the BOT size. 
These trends are already seen in previous section. From 
Figure 13, we see that In-Bag inter-arrival and BOT size 
have significant impact on the average execution time. 

However, we couldn’t tell the exact relationship, the treads 
are not obvious. We need more tasks and BOTs to build 
clear models for this.    

In Figure 13, we use a 5*5 degree polynomial model. A 
LAR robust method [36] is used to avoid the over fitting 
caused by the outliers. As there is no obvious correlation of 
BOT execution time with respect to BOT size and In-Bag 
inter-arrival, therefore we assume that these variables are 
independent with each other. The Goodness of fits of both 
workloads is listed in Table 4. We could see that, this model 
is accurate in estimating both workloads, except for 
modeling the correlation of BOT average execution time 
 with respect to BOT size and In-Bag inter-arrival for 
ANLUC workload (R-square is about 0.6, and RMSE is 
almost 2).  

Table 4: Goodness of fit 

 SSE R-square RMSE 
Figure 12 (a)  529.6 0.8795 0.6408 
Figure 12 (b)  1635 0.822 1.126 
Figure 13 (a)  271.1 0.8592 0.9858 
Figure 13 (b) 1050 0.6121 1.94 

 
The conclusions about the correlations among the BOT 

attributes we draw from this section are:  the BOT runtime 
is growing as the BOT size increases; the throughput would 
be increasing when increasing the BOT size and the number 
of busy workers; the BOT CPU time is increasing as the 
BOT size grows, while the average execution per task 
always remains at the same level with different BOT sizes; 
the BOT CPU time is increasing with both the BOT In-Bag 
inter-arrival and the BOT size. While we couldn’t tell the 
exact relationship between the average execution time and 
the In-Bag inter-arrival and the BOT size, the In-Bag inter-
arrival and the BOT size have a significant impact on the 
average execution time. 

IV. CONCLUSION & FUTURE WORK 
Workload analysis is important to evaluate the 

performance of computer systems, especially large-scale 
parallel and distributed systems [43]. Job scheduling 
systems have the demand to understand properties of the 
workloads, in order to select efficient scheduling strategies. 
In this work, we extracted two groups of BOTs from the 
traces obtained from running MTC applications on a Blue 
Gene/P supercomputer and the ANLUC Cluster; applied 
five random variable distributions to model the cumulative 
distribution function of the BOT workloads, and found that 
GP distribution is the most suitable one; define some BOT 
attributes, such as BOT size, runtime, CPU times, and inter-
arrival time of BOT and examine the correlations among 
them. Experiment results show that we could model the 
MTC workloads with BOT behaviors, and there are 
certainly some patterns of the BOT arrivals of the MTC 
workloads, and there are auto and cross correlations among 
the BOT attributes.  



The results of this paper will hopefully lead to better 
understanding future large-scale systems. We hope that 
more realistic synthetic workloads could be created that can 
be used to study a variety of scheduling algorithms [49]. 
Furthermore, we hope these results will lead to a better 
understanding of fault-tolerance in extreme-scale systems. 
[48]In the future, we will continue to collect more MTC 
workloads to be able to analyze more BOTs, and try to 
establish some representative models for different MTC 
workloads. Dependent tasks generated by the workflow 
system will also be investigated, and we plan to analyze the 
BOT behavior of these workloads in a Cloud environment. 
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