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Abstract—Reliability is one of the most fundamental challenges
for high performance computing (HPC) and cloud computing.
Data replication is the de facto mechanism to achieve high
reliability, even though it has been criticized for its high cost
and low efficiency. Recent research showed promising results by
switching the traditional data replication to a software-based
RAID. In order to systematically study the effectiveness of this
new method, we built two storage systems from the ground
up: a POSIX-compliant distributed file system (FusionFS) and a
distributed key-value store (IStore), both supporting information
dispersal algorithms (IDA) for data redundancy. FusionFS is
crafted to have excellent throughput and scalability for HPC,
whereas IStore is architected mainly as a light-weight key-value
storage in cloud computing. We evaluated both systems with
a large number of parameter combinations. Results show that,
for both HPC and cloud computing communities, IDA-based
methods with current commodity hardware could outperform
data replication in some cases, and would completely surpass
data replication with the growing computational capacity through
multi/many-core processors (e.g. Intel Xeon Phi, NVIDIA GPU).

I. INTRODUCTION

The reliability of a computer system refers to the property
that a system can run continuously without failure [1]. Here
“without failure” by no means indicates that failures do not
happen. Rather, with data-intensive applications deployed on
extreme-scale distributed systems [2] (e.g. applications gener-
ated by Swift [3, 4]), failures are the norm instead of the excep-
tion. The reliability a computer system could achieve becomes
a problem of how well failures can be handled. Ideally, these
failures should be completely transparent to the users, with a
relatively low or even negligible cost. Keeping high reliability
is one of the most important metrics for high performance
computing (HPC) [5] and cloud computing [6, 7], and is
often listed as mean-time-to-failure (MTTF) in the service-
level agreement (SLA).

One of the most commonly used techniques to make data
highly reliable is replication. For example, Google File System
(GFS) [8] makes 3 replicas as the default. The Hadoop
distributed file system [9] also uses replication to achieve
high reliability. This technique is often sufficient: it is easy
to implement and has excellent performance (assuming data
are replicated asynchronously), at the cost of space efficiency.
For example, with the original data and 3 replicas, the storage
utilization rate is only 1

1+3 = 25%. In this case the cost
of storage is quadrupled when building a distributed system,
which might not be economically acceptable in many appli-

cations. Another drawback of replication is that it consumes
network bandwidth to migrate data across different nodes to
maintain the consistency and reliability of replicas. Moreover,
replicating the intact and non-encrypted data can potentially
expose more security holes.

Other than replication, another important technique of data
redundancy is erasure coding which is well known for its
storage efficacy. Erasure coding partitions a file into multiple
fragments which are encoded and stored on different nodes.
Literature [10, 11] shows that erasure coding delivers a better
space efficiency but, unfortunately, cannot meet the bandwidth
requirement for a large-scale distributed file system because
the encoding/decoding computation hits the bottleneck of CPU
capacity, thus could not saturate the network bandwidth. With
the state-of-the-art GPU/many-core technology, this comput-
ing bottleneck could potentially be alleviated. For example,
a GPU-based software RAID solution [12] was recently pro-
posed, particularly optimized for Lustre [13].

In this paper we systematically study the effectiveness of
information dispersal algorithms (IDA) that operate using both
CPUs and GPUs in general. Unlike recently published work
that focused on adding customized layers to existing fully-
fledged systems, we built two storage systems from the ground
up for HPC (FusionFS) and cloud computing (IStore) with
built-in IDA support. Experimental results show that IDA
outperforms data replication in some cases even with current
commodity CPU/GPU, and suggest that IDA would eventually
replace data replication due to IDA’s higher storage efficiency
and higher I/O throughput. Thus the major contribution of this
paper is to showcase how to (better) integrate IDA into the next
generation of distributed storage systems for both the HPC and
cloud computing (e.g. MapReduce [14]) communities. This
work is also applicable to the new computing paradigm of
Many-Task Computing (MTC) [15–17].

II. RELATED WORK

Recently both academia and industry show an interest
in erasure coding in storage systems. A GPU-accelerated
software RAID was proposed in [12]. This system was
particularly crafted for the Lustre parallel file system, and
evaluated on three storage servers. It is so tightly coupled to
Lustre that it might be difficult to be ported to other parallel
or distributed file systems. Shredder [18] is a framework to
leverage GPUs to efficiently chunk files in an incremental
fashion. It has been integrated into HDFS [9] and evaluated978-1-4799-0898-1/13/$31.00 c© 2013 IEEE



on 15 nodes. Similarly, it does not discuss its portability
to other systems. Panasas [19] has an object-based software
RAID as the backbone of the upper-level file system. However
it remains unknown at the file level how IDA would affect
the performance. The next generation of Google File System,
called Google Colossus [20], plans to implement erasure
coding as part of the fault tolerance mechanism.

Some recent works have been focused on improving the
the performance of replications with new replication algo-
rithms/mechanisms, even though the storage efficiency of
replications would unlikely change due to its nature. A dy-
namic replication was proposed for service-oriented systems
in [21]. iFlow [22] is a replication-based system that can
achieve both fast and reliable processing of high volume data
streams on the Internet scale. DARE [23] is an adaptive data
replication algorithm to improve data locality. CRDM [24] is
a model to capture the relationship between the availability
and the replica number.

III. BUILDING BLOCKS

A. ZHT: a light-weight distributed hash table

ZHT [25] (Zero-hop distributed Hash Table) was originally
designed as a general-purpose distributed hash table for HPC.
We extended it in two directions: 1) it serves as the underlying
storage for metadata of FusionFS [26] filesystem, and 2) it
becomes the underlying data structure of the built-in support
for distributed data provenance [27]. It would also replace
the current metadata management in the HyCache [28] het-
erogeneous store system. ZHT has been tuned to scale up to
32K cores on IBM Blue Gene/P [29] supercomputer and 96
Amazon EC2 [30] instances.

B. FDT: an efficient and reliable file transfer service

We have developed our own data transfer service called
FDT (Fast Data Transfer) with APIs provided by UDP-
based Data Transfer (UDT) [31], which is a reliable UDP-
based application level data transport protocol for distributed
data-intensive applications. UDT adds its own reliability and
congestion control on top of UDP which thus offers potentially
higher speed than TCP under certain conditions.

C. Erasure coding libraries

A good review of erasure coding libraries was presented
in [32]. In this paper, we have integrated two libraries Jera-
sure [33] and Gibraltar [34] as the default CPU and GPU
libraries, respectively.

IV. ADDING IDA SUPPORT TO FUSIONFS

A. FusionFS overview

FusionFS [26] is a POSIX-compliant distributed file system
mounted on user space with FUSE [35]. Unlike most paral-
lel/distributed file systems (e.g. [13, 36, 37]) for HPC, there
is no distinction between compute and storage nodes. Each
compute node actively participates in serving as one of the
storage nodes.

B. IDA data redundancy in FusionFS

Different designs have been under our consideration on
when to backup the primary copy. The first solution is to
incrementally update replicas, simultaneously as the primary
copy is modified. That is, whenever a file is opened, replicas
are created and kept synchronous to whatever changes made
to the primary copy. This method provides the strongest
consistency at the block level. However making synchronous
block-level replication introduces huge overhead to the I/O
throughput.

To avoid the block-level synchronization, we could employ
a “lazy” backup mechanism. That is, only when the file
is modified and fully flushed to the disk, then the file is
split up and sent to different nodes. This looks to be the
most straightforward mechanism and easiest to implement, but
brings an obvious concern: waiting for the primary copy to be
written to the hard disk could take a long time, especially for
data-intensive applications. Consequently, the end users would
likely feel lags when saving files.

We finally decided to mix the above two methods: IDA is
applied to the primary copy as soon as the file is closed. This
method avoids the block-level synchronization, and operates
before the potential I/O bottleneck of the underlying persistent
storage. In the FusionFS implementation, IDA logic is imple-
mented in the fusion release() interface, which is exactly
the point right after a file is closed but before it is flushed to
the disk. As long as the file is closed (and still in memory),
this file is considered “complete”, and is ready to be split into
n chunks by the libraries mentioned in Section III-C. These
n chunks are then transferred to n different physical nodes by
FDT as discussed in Section III-B.

V. DESIGN AND IMPLEMENTATION OF ISTORE

A high-level architecture of IStore is shown in Figure 1. We
assume the system has n nodes, or instances in the context of
cloud computing. IStore installs two services on each node: 1)
a distributed metadata management and, 2) a high-efficiency
and reliable data transfer service. Each instance of these two
services on a particular node would communicate to other
peers over the network if necessary (i.e. if the needed metadata
and/or data cannot be found locally). Assuming the end user
logins on node #i, then the IDA module is to encode or decode
those files involved in the applications.

When an application writes a file, IStore splits the file into k
chunks. Depending on which coding library the user chooses
to use, these k chunks are encoded into n = k +m chunks.
Meanwhile, because the encoded data is buffered, FDT can
disperse these n encoded chunks onto n different nodes. This
pipeline with the two levels encoding and sending allows for
combining the two costs instead of summing them. At this
point the data migration is complete, and we will need to
update the metadata information. To do so, ZHT on these n
nodes is pinged to update the entries of these n data chunks.
This procedure of metadata update can be completed with low
overhead, as its backed by an in-memory hash-map, which is
asynchronously persisted to disk.



Fig. 1. An architectural overview of IStore deployed on n nodes

IStore provides a completely customizable set of parame-
ters for the applications to tune how IStore will behave. In
particular, users can specify which coding library to use, the
number of chunks to split the file into (i.e. k), the number of
parity chunks (i.e. m = n− k) and the buffer size (default is
1MB).

As an example, Figure 2 illustrates the scenario when
writing/reading a file with IStore for k = 4 and m = 2.
On the left hand side when the original file (i.e. orig.file)
is written, the file is chopped into k = 4 chunks and encoded
into n = k+m = 6 chunks. These 6 chunks are then dispersed
into 6 different nodes after which their metadata are sent to the
metadata hash table, which is also physically distributed across
these 6 nodes. A file read request (on the right hand side) is
essentially the reversed procedure of a file write: retrieving the
metadata, transferring the data, and decoding the chunks.

Fig. 2. An example of file encoding/decoding in IStore

VI. EVALUATION

A. FusionFS

FusionFS is deployed on an 8-node cluster, each of which
has an 8-core 3.1GHz AMD FX-8120 CPU, and an 384-
core 900MHz NVIDIA GeForce GT640 GPU. Each node has
16GB RAM, and is interconnected via 1Gbps Eithernet. The

operating system is OpenSUSE with Linux kernel 3.4.11 with
CUDA version 5.0 installed.

In this experiment we keep the total number of nodes fixed
(i.e. n = k + m = 8). The tolerated number of failures
(i.e. m) ranges from 2 to 6. It is equivalent to having 3 to
7 replications (including the primary copy) in the naive data
replication algorithm (REP). Figure 3 shows the utilization
rates of IDA and REP algorithms. A larger m makes IDA
closer to REP, and in the extreme case when m = n− 1, IDA
would be degraded to REP where Estorage =

1
n .

Fig. 3. Storage utilization rate of FusionFS with REP and IDA

Figure 4 shows the throughput of IDA- and REP-based data
redundancy in FusionFS. Only when m = 2, REP slightly
outperforms IDA, and the difference is almost negligible.
Starting from m = 3, IDA clearly shows its advantage over
REP, and the speedup increases for the larger m. Particularly,
when m = 6, i.e. to keep the system’s integrity allowing 6
failed nodes, IDA throughput is 1.82 higher than the traditional
REP method.

Fig. 4. Throughput of IDA and REP on FusionFS (block size 1MB)

We just showed that in FusionFS installed with a commodity
GPU, IDA outperforms REP in terms of both performance and
storage utilization (except for the edge case m = 2, where IDA
and REP are comparable). We believe a high-end GPU would
cause a larger gap, and make IDA the top candidate for data
redundancy.

B. IStore

IStore has been deployed on a 32-node Linux cluster each
node of which has 8GB RAM and dual AMD Opteron quad-



core processors (8-cores at 2GHz). The features of different
algorithms to be evaluated are summarized in Table I.

TABLE I
COMPARISON ON REPLICATIONS, EFFICIENCY AND (k : m) RATIOS

Algorithm # Replications Estorage (k : m)

REP-3 3 33.33% 1:2
IDA-3:5 6 37.5% 3:5
IDA-5:3 4 62.5% 5:3
IDA-5:11 12 31.25% 5:11
IDA-11:5 6 68.75% 11:5
IDA-13:3 4 81.25% 13:3
IDA-26:6 7 81.25% 26:6
IDA-29:3 4 90.63% 29:3

We compare the read and write throughput of 8 different
algorithms for four different file sizes: 1GB, 100MB, 10MB
and 1MB, in Figure 5. The buffer size is set to 1MB. We
observe that, besides the number of nodes, k : m ratio also
plays a critical role when tuning the performance. Solely
increasing the number of nodes does not necessarily imply
a higher throughput. The reason is that it might “over” split
the data into a more than enough number of chunks. In other
words, the cost of splitting and encoding/decoding offsets the
benefit from the concurrency. This is partially because we
allocate one chunk on one node for a given job. Once this
is not a restriction, a larger number of nodes would imply a
higher aggregate throughput, in general.

Even though it has been well accepted that traditional repli-
cation is faster than IDA approach, we found that by carefully
tuning the parameters, IDA is able to outperform replications.
For example, when reading a 1GB file, the following IDA
algorithms deliver higher throughput than replication: IDA-
5:3 on 8 nodes, IDA-11:5 on 16 nodes, and IDA-29:3 on 32
nodes. Similarly, when writing a 1GB file, the following IDA
algorithms are faster than replication: IDA-5:3 on 8 nodes,
IDA-11:5 and IDA-13:3 on 16 nodes. We believe that part
of the explanation lies in the fact that replication uses more
network bandwidth, e.g. making 3 replicas involves more than
doubled amount of data to be transferred than an approach
based on IDA. Not surprisingly, some other IDA algorithms
cannot catch up with the REP-3 throughput. But note that
we only use commodity CPUs for the encoding/decoding. We
expect that in IStore with high-end CPUs or GPUs, IDA would
deliver a (much) higher throughput than REP. Moreover, with a
higher replication number, the REP algorithm would be slowed
down more significantly than IDA, which we have seen in the
FusionFS case in Figure 4.

VII. CONCLUSION

In this paper we designed and implemented two systems
with built-in IDA support in HPC (FusionFS) and cloud com-
puting (IStore). We found that even with current commodity
CPU/GPU computing capacity, IDA could outperform the
naive data replication in some cases. Based on our findings, we

(a) File size = 1GB

(b) File size = 100MB

(c) File size = 10MB

(d) File size = 1MB

Fig. 5. IStore aggregate throughput of naive replication (REP-3) and IDA



predict that IDA would replace data replication soon with the
emerging many-core chips e.g. Intel Xeon Phi [38] in future
distributed systems [39].
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