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Abstract 

 Exascale computers (expected to be composed of 

millions of nodes and billions of threads of execution) will 

enable the unraveling of significant scientific mysteries. 

Many-task computing is a distributed paradigm, which can 

potentially address three of the four major challenges of 

exascale computing, namely Memory/Storage, 

Concurrency/Locality, and Resiliency. Exascale computing 

will require efficient job scheduling/management systems 

that are several orders of magnitude beyond the state-of-the-

art, which tend to have centralized architecture and are 

relatively heavy-weight. This paper proposes a light-weight 

discrete event simulator, SimMatrix, which simulates job 

scheduling system comprising of millions of nodes and 

billions of cores/tasks. SimMatrix supports both centralized 

(e.g. first-in-first-out) and distributed (e.g. work stealing) 

scheduling. We validated SimMatrix against two real 

systems, Falkon and MATRIX, with up to 4K-cores, 

running on an IBM Blue Gene/P system, and compared 

SimMatrix with SimGrid and GridSim in terms of resource 

consumption at scale. Results show that SimMatrix 

consumes up to two-orders of magnitude lower memory per 

task, and at least one-order of magnitude (and up to four-

orders of magnitude) lower time per task overheads. For 

example, running a workload of 10 billion tasks on 1 

million nodes and 1 billion cores required 142GB memory 

and 163 CPU-hours. These relatively low costs at exascale 

levels of concurrency will lead to innovative studies in 

scheduling algorithms at unprecedented scales.  

 

1. INTRODUCTION 

 There are many domains (e.g. weather modeling, 

national security, energy) that will achieve revolutionary 

advancements due to exascale computing. Predictions are 

that by the end of the decade, supercomputers will reach 

exascale with millions of nodes and billions of threads of 

execution [1]. The era of exascale computing will bring 

fundamental challenges in how we build computing systems 

and hardware, how we manage and program them. The 

techniques designed decades ago will have to be 

dramatically changed to support the coming extreme-scale 

general purpose parallel computing. The four most 

significant challenges of exascale computing are: Energy 

and Power; Memory and Storage; Concurrency and Locality 

[33]; Resiliency [1]. One attempt to address these challenges 

is to take a radically different approach to the traditional 

HPC/MPI [2] programming paradigm, which is usually the 

source of these challenges. For example, many HPC 

applications use MPI for synchronous communication, 

making it hard to be resilient in face of a decreasing MTTF 

[3]. Checkpointing (the state-of-the-art mechanism to make 

HPC systems reliable) is increasingly less effective with 

larger systems for HPC [42]. One alternate programming 

model to HPC is Many-Task Computing (MTC) [4][38]. 

 MTC [4] was introduced to describe a class of 

applications that did not fit easily into the categories of 

traditional HPC or HTC [41]; many such applications can 

be found in astronomy [35], medicine [6], biology [6], and 

many others. Many MTC applications are structured as 

graphs of discrete tasks, with explicit input and output 

dependencies forming the graph edges. Tasks may be small 

or large, uniprocessor or multiprocessor, compute-intensive 

or data-intensive [39]. The set of tasks may be static or 

dynamic, homogeneous or heterogeneous, loosely coupled 

or tightly coupled. For many applications, a graph of 

distinct tasks is a natural way to conceptualize the 

computation and build the application [4]. MTC can address 

three of the four major challenges (except for Energy and 

Power) of exascale computing. It offers better resiliency 

than HPC due to the asynchronous nature, which makes task 

level checkpointing easy, and failures only affect the tasks 

running on the failed nodes. Concurrency can be addressed 

more transparently, based on the data-flow model, as 

opposed to coded explicit parallelism by expert 

programmers of HPC. In order to address the challenges, 

MTC needs scalable storage systems to achieve 

asynchronous inter-process communication, and job 

management systems to handle billions of jobs/tasks [3].   

 With exascale computing, we expect that job 

management systems (JMS) will have to be much more 

scalable and flexible to handle both HPC and MTC 

applications in order to achieve the highest job throughput, 

system utilization and load balancing. Scalability of JMS 

refers to the increasing of processing capacity (measured by 

throughput) as the workload (number of tasks) and 



computing resources scale. Research about real JMSs is 

impossible at exascale, because not only we lack the 

exascale computers, but the experimental results obtained 

from the real-world platforms are often irreproducible due 

to resource dynamics [7]. Therefore, we fall back to 

simulations to study various JMS architectures and 

algorithms. Simulations have been used extensively as an 

efficient method to achieve reliable results in several areas 

of computer science for decades, such as microprocessor 

design, network protocol design, and scheduling. Discrete 

event simulation (DES) [8] utilizes a mathematical model of 

a physical system to portray state changes at precise 

simulated time. In DES, the operations of a system are 

represented as a chronological sequence of events. A 

variation of DES is parallel DES (PDES) [9], which takes 

advantage of the many-core architecture to access larger 

amount of memory and processor capacities, and to be able 

to handle even more complex systems in less end-to-end 

time. However, PDES adds significant complexity to the 

simulations, adds consistency challenges, requires more 

expensive hardware, and often does not have linear 

scalability as resources are increased.     

 This paper proposes a light-weight and scalable discrete 

event simulator, SimMatrix, which simulates job scheduling 

system comprising of millions of nodes and billions of 

cores/tasks (tasks and jobs are used interchangeably 

throughout the paper). Careful consideration was given to 

the SimMatrix architecture, to ensure that it would scale to 

exascale levels on modest resources in a single node shared 

memory system. We compare SimMatrix with two existing 

simulators, SimGrid [10] and GridSim [11] in terms of 

resource (time and memory) consumption with scales. We 

design, architect and implement SimMatrix. It supports both 

centralized (e.g. first-in-first-out or FIFO) and distributed 

(e.g. work stealing) scheduling. The main contributions of 

this paper are:  
1.  Design and implementation of the SimMatrix simulator  

2.  Performance evaluation between SimMatrix, SimGrid 

and GridSim; evaluation done up to millions of nodes, 

billions of cores, and tens of billions of tasks 

3.  Supports of homogenous/heterogeneous systems, various 

programming models (HPC/MTC/HTC), and scheduling 

strategies (centralized/distributed/hierarchical) 

 The rest of the paper is organized as follows. Section 2 

gives the related work. Section 3 presents the SimMatrix 

architectures, the design and implementation details. Section 

4 shows the evaluation and experimental results of 

SimMatrix, and the comparison with SimGrid and GridSim. 

Section 5 covers the conclusions and future work. 

 

2. RELATED WORK 

 A lot of real JMSs have been developed. Condor [12] 

was developed as one of the earliest JMSs, to harness the 

unused CPU cycles on workstations for long-running batch 

jobs. Portable Batch System (PBS) [13] was originally 

developed at NASA Ames to address the needs of HPC, 

which is a highly configurable product that manages batch 

and inter-active jobs, and adds the ability to signal, rerun 

and alter jobs. LSF Batch [14] is the load-sharing and batch-

queuing component of a set of workload-management tools. 

All of these systems are designed for either HPC or HTC 

workloads, and generally have high scheduling overheads. 

Other JMSs, such as Cobalt [15], typically used on 

supercomputers (e.g. IBM Blue Gene systems [16]), lack the 

granularity of scheduling jobs at node/core level. Falkon 

[17], a light-weight task execution framework, was 

developed specifically for MTC applications. Falkon also 

has a centralized architecture, and although it scaled and 

performed orders of magnitude better than the state-of-the-

art JMS, it did not even scale to petascale systems. A naïve 

hierarchical implementation of Falkon was shown to scale 

to a petascale system in [5], however, the approach taken by 

Falkon suffered from poor load balancing under failures, 

high variance and unpredictability of task execution times.  

 Simulators for distributed systems have been developed 

over past decades, such as SimGrid [10], GridSim [11], 

SimJava [18]. SimGrid is a joint project staring from 1999, 

which now uses PDES and claims to have 2M nodes’ 

scalability. However, it has consistency challenge and is 

unpredictable. It is neither suitable to run exascale MTC 

applications, due to the complex parallelism. GridSim is 

developed based on SimJava, which use multi-threading 

with one thread per simulated element (cluster), making 

them impossible to reach extreme scales of millions nodes 

or billions of cores on a single shared-memory system.  

 

3. SIMMATRIX SIMULATOR   

 This section describes the SimMatrix architectures 

(Figure 1), and the design and implementation details. The 

software is released as open source software [19]. For 

simplicity, we assign consecutive integer numbers as the 

node ids, ranging from 0 to the number of nodes N-1.  

 
Figure 1: SimMatrix architectures for both centralized (left) and 

distributed (right) scheduling  
 SimMatrix supports the granularity of scheduling at the 

node/core level at extreme scales. The system could be 

centralized (Figure 1 left part), where a single dispatcher 

maintains a task queue and manages the task submission, 



task assignment, and task execution state updates. It could 

also be distributed (Figure 1 right part), where each 

computing node maintains a task execution framework, and 

they cooperate with each other to achieve load balancing. 

The centralized approach suffers scalability, due to its 

limited processing capacity at a single node (typically called 

the head node). We believe that distributed scheduling with 

innovative load balancing techniques (e.g. work stealing) is 

the approach to exascale. Another one is the hierarchical 

architecture, where several dispatchers are organized in a 

tree-based topology. SimMatrix could be easily extended to 

support hierarchical scheduling. 

 

3.1. Centralized Scheduler 

 In centralized scheduler, a dispatcher maintains a task 

queue and manages the task submission, task assignment, 

and task execution state updates. All tasks are submitted to 

the dispatcher, which then assigns tasks to the first available 

node using FIFO policy [20]. None of the compute nodes 

have task waiting queues. If all cores are occupied, the 

dispatcher will wait until some tasks are finished. Then it 

sends tasks again to the nodes that have idle cores. This 

procedure continues until all the tasks have been finished. 

 

3.1.1. Task Description 

 Each task can be described with various attributes, such 

as task length (the time taken to complete the task), task 

cores (the number of cores required to execute the task), 

task size (data size required by the task), and task 

timestamps (submission time, start time, end time). We 

expect that some other higher level system is managing all 

the task dependencies, such as some parallel programming 

system (e.g. Swift [5][21][37], Charm++ [22]). Future work 

will also investigate the support of task dependency to 

evaluate the feasibility of distributed workflow engine 

approaches, as it applies to grids [34][36], clouds [40], and 

supercomputers [5]. 

 

3.1.2. Global Event Queue 

 Before settling on SimMatrix being a DES, we explored 

how many threads could be supported under Java, and found 

on our 48-core system with 256GB of memory, 32K threads 

is the upper bound. Since it was not feasible for us to run 

1M threads in Java (or C/C++ which we also explored), we 

decided on creating an object per simulated node. Any 

behavior is converted to an event, and all events are put in a 

global event queue, and sorted based on the occurrence time. 

We advance the simulation time to the occurrence time of 

the first event removed from the queue. The events are: 

 a) TaskEnd: Signals a task completion event (frees a 

processing core). The scheduler advances to the next task to 

schedule. The compute node (with the available core) will 

wait for the dispatcher to assign more tasks. 

 b) Submission: Client submits tasks to the dispatcher, 

triggered when the waiting queue length in the dispatcher is 

below the threshold. 

 c) Log: Signals the record writing to a summary log 

file, including the information such as the simulation time, 

number of all cores, number of executing cores, waiting 

queue length, instant throughput, etc. 

 The performance of the event queue is central to that of 

the simulator. It has to be scalable to many events (billions), 

and be subjected to frequent updates, which re-order the 

queue. We use the TreeSet [23] data structure in Java. It is a 

set of elements ordered using their natural ordering, or by a 

comparator provided at set creation time. In SimMatrix, it is 

ordered by a comparator based on the event occurrence time, 

along with the event Id (if events have the same occurrence 

time). The TreeSet is implemented based on Red-Black tree 

[24], which guarantees Θ(log n) time for removing and 

inserting, and Θ(1) time for getting the first event.    

 

3.1.3. Node Load Information 

 The load of a node is the number of busy cores ranging 

from 0 to the number of cores. The dispatcher can access the 

load information continuously as long as there are waiting 

tasks. If we were to naively go through all the nodes to get 

the load information, the simulator would be inefficient 

when the number of nodes is large (e.g. 1 million).  

 We implement the load information using a Hash Map 

[25]. The “Keys” are the node loads (from 0 to number of 

cores), while the “Value” is a hash set, which contains the 

node ids whose loads are all equal to the “Key”. This means 

that nodes in the simulator are grouped together in 

containers that have similar load. Each time when the 

dispatcher wants to assign some tasks to a node, it goes 

through all the node load containers sequentially, finds the 

first set of nodes, which have idle cores (load is less than the 

number of cores), and then assigns tasks to all the nodes in a 

FIFO pattern. As the number of cores per node is relatively 

small (e.g. 1000 cores), we consider this lookup operation 

taking Θ(c) time, where c is the number of cores of a node, 

and c<=1000. Once the right load level is identified, 

inserting, getting or removing an element in the nested hash 

set only takes Θ(1) time. This nested data-structure helped 

reduce the time complexity by orders of magnitude, from a 

Θ(n) (n is the number of nodes) to Θ(c*1) for one 

dispatching, and allowed the simulator to run orders of 

magnitude faster at exascale. 

 

3.1.4. Dynamic Task Submission 

 Although SimMatrix supports the submission of a static 

set of tasks (predefined in some workload file, or by some 

workload generator), SimMatrix also supports dynamic task 

submission which allows task submission throttling to limit 

the memory foot print of the simulator to only the active 

tasks. Essentially, the simulator can limit the number of 



submitted tasks based on the number of waiting tasks and 

some predefined threshold.  

 

3.2. Distributed Scheduler 

 One of the major motivations to architect and 

implement SimMatrix was to study different distributed 

scheduling algorithms and techniques at extremely large 

scales, assuming that centralized schedulers would not scale 

to exascale levels. This section describes the distributed 

scheduler, which uses a distributed load balancing approach 

called Work Stealing [26] (in which, processors needing 

work steal computational tasks from other processors). 

Work stealing is a distributed load balancing technique that 

has been used successfully in parallel languages such as 

Cilk [27], to load balance threads on shared memory parallel 

machines. With work stealing, each node has task waiting 

queue and could steal/dispatch tasks from/to its neighbors. 

The work stealing algorithm and how to choose the 

optimized work stealing parameters are out of the scope of 

this paper and the subject of future work. This paper focuses 

on the design and implementation of the simulator 

SimMatrix. The distributed scheduler share common 

features with the centralized one, such as task description 

and dynamic task submission.  

 Tasks are submitted to any arbitrary node. For 

simplicity, we let the clients submit tasks to the first node 

(id = 0). This is the worst scenario from a load balancing 

perspective. The best case would be if the original clients 

submitted tasks randomly over all compute nodes in a load 

balancing fashion (e.g. uniform random, modular). Every 

node has a global knowledge of all other nodes in the 

system (membership list), a dedicated task waiting queue, 

and several neighbors to communicate with. Figure 1 (right 

part) shows a fully connected homogeneous topology. All 

nodes have the same amount of neighbors and cores; in this 

example, the neighbors of a node are just its several left and 

right nodes with consecutive ids, we call this schema as the 

static neighbor selection. Also, our simulator allows 

dynamic random neighbor selection, which means every 

time when doing work stealing, a node selects several 

neighbors randomly from the membership list. 

 When a node has no waiting tasks, it will ask the load 

information (the number of waiting tasks minus the number 

of idle cores) of all the neighbors in turn, and try to steal 

tasks from the heaviest loaded one. When a node receives a 

load information request, it will send its load information to 

the calling neighbor. If a node receives work stealing 

request, it then checks its task waiting queue, if which is not 

empty, the node will send some tasks to the neighbor, or it 

will send information to signal a steal failure. When a node 

fails to steal tasks, it will wait some time, referred to as the 

poll interval, and then try again. The termination condition 

is that all the tasks submitted by client are finished. We do 

this by setting a global counter, which can be read by all 

simulated nodes to signal the termination of the simulation. 

 

3.2.1. Global Event Queue 

 Our distributed scheduler also has a global event queue, 

which has the same implementation as that of the 

centralized one. This global event queue allows the 

simulator to be implemented in a relatively straightforward 

manner, easing the implementation, tuning, and debugging. 

The trade-off is perhaps the limited concurrency. However, 

as we will show in section 4, even with this design 

architecture, we have been able to significantly outperform 

several other simulators. The events are: 

 a) TaskEnd: Signals a task completion event. The 

compute node starts to execute another task (if its task 

waiting queue isn’t empty) by inserting another ‘TaskEnd’ 

event, or steal tasks from its neighbors. Or, if it is the first 

node and its waiting queue length is below the threshold, a 

‘TaskReception’ event will be triggered on the client’s side. 

 b) Log: The same as the centralized scheduler.  

 c) Steal: Signals the work stealing algorithm to 

invoke the steal operation. First, the node asks for the load 

information of its neighbors in turn, and then selects the 

most loaded one to steal tasks by inserting a ‘TaskReception’ 

event. If all neighbors have no tasks, the node will wait for 

some time to ‘Steal’ again. 

 d) TaskDispatch: Dispatch tasks to a neighbor. If at 

the current time, the node happens to have no tasks, it will 

inform the neighbor to steal tasks again, by inserting a ‘Steal’ 

event from the neighbor. Else, the node dispatches a part 

(e.g. half) of its waiting tasks to the neighbor by inserting a 

‘TaskReception’ event from that neighbor. 

 e) TaskReception: Signals the receiving node to 

increase the length of task waiting queue. The task received 

could be from the client, or from a neighbor. 

 f) Visualization: It is used as an event to visualize 

the load information of all nodes. 
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Figure 2: Event State Transition Digram 

 The state transition diagram of all the events are shown 

in Figure 2, where each state is an event that is executed, the 

next state is the event to be inserted in the event queue 

signaled after finishing the current event. For example, if the 

current event is “TaskEnd”, meaning that a node finishes a 

task and has one more available core. If the node has 

waiting tasks, it will insert another “TaskEnd” event for the 



available core; otherwise, it will steal tasks from neighbors. 

Or if current node is the first node, and needs more tasks, it 

will ask the clients to submit more tasks.  

 

3.2.2. Work Stealing Poll Interval 

 We implement a dynamic poll interval policy in order 

to achieve reasonable simulation performance while still 

keeping the work stealing algorithm responsive. Without 

this policy, we observed that under idle conditions, many 

nodes would poll neighbors to do work stealing, which 

would ultimately fail leading to more work stealing requests. 

If the polling interval was set large enough to limit the 

number of work steal events, work stealing would not 

respond quickly to change conditions. Therefore, we change 

the poll interval of an idle node dynamically by doubling it 

when all of the neighbors have no tasks, and setting it back 

to the default small value whenever it steals some tasks 

successfully. This algorithm is similar to the exponential 

backoff approach in the TCP networking protocol [28]. We 

set the default poll interval to be small value (e.g. 1 sec). 

 

4. EVALUATION 

 This section presents the validation of SimMatrix 

against Falkon [17] (a centralized light-weight job 

management system), and MATRIX [19] (a distributed 

scheduler built on top of a distributed hash table ZHT [43]), 

the experimental results showing the resource requirement 

of SimMatrix with scales, plus the comparisons between 

SimMatrix, SimGrid and GridSim. All experiments are 

performed on fusion.cs.iit.edu, which boasts 48 AMD 

Opteron cores at 800MHz, 256GB RAM, and a 64-bit Linux 

kernel 2.6.31.5. SimMatrix is developed in JAVA and has 

no other dependencies. The metrics we use to evaluate the 

performance of SimMatrix are throughput (number of tasks 

finished per second) and efficiency (the ratio between the 

ideal simulation time of completing a given workload and 

the real simulation time. The ideal simulation time is 

calculated by taking the average task execution time 

multiplied by the number of tasks per core). We have two 

workloads used in this paper:  

 a) AVE_5K: The average task length is 5000 seconds 

(0 - 10000), with uniform distribution   

 b) ALL_1: All tasks have 1-second length 

 

4.1. Validation 

 We validated SimMatrix against the state-of-the-art 

MTC systems (e.g. Falkon [17] and MATRIX [19]). The 

validation results are shown in Figure 3 (with Falkon), and 

Figure 4 (with MATRIX).  

 We set the number of cores per node to be 4, and the 

network bandwidth and latency the same as the case of Blue 

Gene/P machine. The number of tasks is 10 task/core and 

100 task/core for Falkon and MATRIX respectively. We 

measured SimMatrix (dotted lines) has an average 2.8% 

higher efficiency than Falkon (solid lines) for several sleep 

tasks (sleep 1, 2 and 4) in Figure 3. Figure 4 shows the 

validation results comparing SimMatrix and MATRIX for 

raw throughput on a “sleep 0” workload. The simulation 

matched the real performance data with average 5.85% 

normalized difference (abs(SimMatrix - MATRIX) / 

SimMatrix), a relatively small amount of error. 

 
Figure 3: Validation of SimMatrix against Falkon up to 2K cores 

 
Figure 4: Validation of SimMatrix against MATRIX up to 4K cores  

 The reasons for these differences are twofold. Falkon 

and MATRIX are real complex systems deployed on a real 

supercomputer. Our simulator makes simplifying 

assumptions, such as the network; for example, we increase 

the communication overhead linearly with the system scale. 

It is also difficult to model communication congestion, 

resource sharing and the effects on performance, and the 

variability that comes with real systems. We believe the 

relatively small differences (2.8% and 5.85%) demonstrate 

that SimMatrix is accurate enough to produce convincible 

results (at least at modest scales).   

 

4.2. Resource Requirement of SimMatrix  

 In this section, we show the resource requirement (time 

and memory consumption) of SimMatrix with scales for 

both centralized and distributed simulators in Figure 5. The 

AVE_5K workload is used. We set the number of cores per 
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node to be 1000, and the network bandwidth and latency the 

same as the case of Blue Gene/P machine. The number of 

tasks is 10 tasks/core. From this point, all experiments have 

the same configuration.  

 Figure 5 shows that both the time and memory 

consumptions increase slowly than the system scale (less 

than double when the system scale doubles), which means 

that our simulations are resource efficient. At exascale with 

1M nodes, 1 billion cores and 10 billion tasks, the 

centralized simulator consumes just 14.1GB memory, 17.4 

hours, and the distributed simulator needs about 142.1GB 

memory, 162.8 hours (still moderate considering the 

extreme scale). These relatively low costs at exascale levels 

of concurrency will lead to innovative studies in scheduling 

algorithms at unprecedented scales.  

 
Figure 5: Time and memory of SimMatrix up to 1M nodes 

 

4.3. Centralized vs. Distributed Scheduling 

 We compare the centralized and distributed schedulers, 

in terms of system efficiency and throughput. We do two 

groups of experiments. The first uses the AVE_5K 

workload, and the second uses ALL_1, for both schedulers. 

The results are shown in Figure 6 and Figure 7. 

 We see that for AVE_5K, before 8K nodes, both the 

centralized and distributed schedulers have the efficiency 

higher than 95%. However, after that, the centralized 

scheduler drops its efficiency by half until almost 0 up to 

1M nodes, and saturates the throughput of about 1000 

task/sec (due to 1ms process time of the dispatcher derived 

from Falkon) as the system scale doubles. On the other hand, 

the distributed scheduler has efficiency of 90%+ with nearly 

perfect scale-up to 1M nodes, where the throughput doubles 

as the system scale doubles, up to 174K tasks/sec. 

 For ALL_1, the centralized scheduling saturates at 

about 8 nodes with upper bound throughput of about 1000 

tasks/sec, while the distributed one slows down the 

increasing speed after 128K nodes with throughput of about 

60M tasks/sec; it finally reaches 1M nodes with a 

throughput of 75M tasks/sec. The reason that the distributed 

scheduler begins to saturate at 128K nodes is because at the 

final stage when there is not much tasks, work stealing 

requires too many messages (because almost all nodes are 

out of tasks leading to more work staling events) as the 

system scales up, to the point where the number of messages 

is saturating either the network and/or processing capacity. 

After 128K nodes, the number of messages per task 

increases exponentially. One way to address this message 

chocking at large scales is to set an upper bound of the poll 

interval. When a node reaches the upper bound, it would not 

do work stealing anymore. In addition, we believe that 

having sufficiently long tasks to amortize the cost of this 

many messages would be critical to achieve good efficiency 

at exascale. With an upper bound of 75M tasks/sec, the 

distributed scheduler could handle workloads that have an 

average length of at least 14 seconds with 90%+ efficiency. 

It is worth noting that the largest trace of MTC workloads 

[29][30] has shown MTC tasks to be on average 64 sec 

average length.   

 
Figure 6: Efficiency of centralized and distributed scheduling (AV_5K)  

 
Figure 7: Throughput of centralized and distributed scheduling 

 

4.4. SimMatrix vs. SimGrid and GridSim 

 We compare SimMatrix with SimGrid and GridSim, in 

terms of resource requirement per task with scales. As 
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neither SimGrid nor GridSim supports explicit distributed 

scheduling, we compare them using centralized scheduling. 

 SimGrid provides functionalities for the simulation of 

distributed applications in heterogeneous distributed 

environments. It is a PDES, being claimed the scalability of 

2 million nodes [31].  We examined SimGrid, went for the 

MSG interface, and used the basic Master/Slaves 

application. We used the AVE_5K workload, and converted 

the task length to the value of million instructions (MI), as 

the computing power is represented as MIPS. Each slave 

has 1000 cores, with each core 4000MIPS (about 1GFlops 

as 1 CPU cycle usually has 4 instructions), so the computing 

power of 1 million nodes is 1GFlops×1M×1K=1EFlop, 

achieving the exascale computing.  

 GridSim allows simulation of entities in parallel and 

distributed computing systems, such as users, resources, and 

resource brokers (schedulers). A resource can be a single 

processor or multi-processor with shared or distributed 

memory and managed by time or space shared schedulers. It 

is a multi-threaded simulator, where each entity is a thread. 

We developed an application on top of GridSim, which 

consists of one user (has tasks) and one broker (centralized 

scheduler) and several resources (computing nodes). Each 

resource is configured having just one node (Machine), 

which then has 1000 cores (PEs).  

 As the saturated throughput of SimGrid is about 2000, 

in order to make fair comparison, we configured SimMatrix 

having exactly the same throughput upper bound by setting 

the processing time per task to be 0.0005 sec (which is 

0.001 sec before and achieved the 1000 upper bound). The 

comparison results are shown in Figure 8 and Figure 9.  

 
Figure 8: Comparison of time per task 

 Notice that for GridSim, we just scaled up to 256 nodes, 

as it took significant time to run larger scales. The time per 

task of GridSim is significantly worse than other two. It is 

increasing as the system scales up, while SimMatrix and 

SimGrid experienced decreasing or constant time per task. 

This shows the inefficiency and poor scalability of the 

design of one thread per entity of GridSim. SimGrid could 

scale up to 65K nodes, however, after which point it ran out 

of memory (256GB). The memory per task of SimGrid 

decreases two magnitudes from 1 node to 256 nodes and 

keeps constant after that. However, the SimMatrix scales up 

to 1M nodes without any problems (14.1GB memory, and 

17.4 hours), and it is likely to simulate even greater scales 

with moderate resource requirement. What’s more, 

SimMatrix requires almost the same amount of memory as 

SimGrid at the scale of less than 512 nodes, however, after 

that SimMatrix is more memory efficient (memory per task 

keeps decreasing with scales) than SimGrid. We also 

noticed after 1 node, SimMatrix is more time efficient than 

SimGrid; the time per task of SimMatrix is one magnitude 

smaller than that of SimGrid. The conclusion is that 

SimMatrix is light-weight and has less resource requirement 

at larger scales. 

 
Figure 9: Comparsion of memory per task 

  

4.5. Application Domains of SimMatrix 

 SimMatrix could be potentially used in several 

application domains: 

 Data Centers: large-scale data centers (e.g. Google, 

Amazon) are composed of thousands of (10 to 100× in near 

future) servers geographically distributed around the world. 

Load balancing among all the servers with data-intensive 

workloads is very important, yet non-trivial. SimMatrix is 

able to study different network topologies connecting all the 

servers and data-aware scheduling, which could be applied 

in scheduling of data centers.     

 Grid Environment: not only could SimMatrix be 

configured as homogeneous scheduling system, it can also 

be tuned into heterogeneous one. Different Grids could 

configure SimMatrix and do scheduling individually 

without interaction with each other.  

 Workflow System: although SimMatrix relies on high 

level workflow systems (Swift, Charm++) to manage the 

data-flow and task dependency now, we could develop 

SimMatrix to simulate workflow system with dependent 

tasks. We have already run SimMatrix with MTC workload 

achieved from Swift workflow system up to exascale, and 

achieved ~87% efficiency [32] (Figure 10). We use 
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coefficient variance of the number of tasks finished by each 

node as a measurement of the load balancing. The closer the 

value is to 0, the better the load balancing would be. 

 
Figure 10: Running SimMatrix with MTC workload  

 Many-core Simulation: instead of configuring 

SimMatrix as an exascale system, we also configured it as a 

single many-core chip node up to thousands of cores with 

2D/3D mesh topology. We applied work-stealing at the core 

level within one many-core node, and found that up to 

thousand cores level, 2D mesh topology needs at least 13 

hops of neighbors, while 3D mesh needs at least 5 (Figure 

11), in order to achieve high system efficiency. 

 
Figure 11: simulate many-core processor with a 3D-mesh interconnect 

  

5. CONCLUSION AND FUTURE WORK 

 Exascale computing will bring several challenges, 

which need to be solved by new programming models. We 

believe that MTC could offer many advantages over HPC. 

However, efficient JMSs are needed to manage the system 

resource allocation and job submission, in order to 

maximize the job throughput and system utilization. We 

developed a light-weight and scalable DES of JMS, 

SimMatrix, at exascale. We validated SimMatrix against 

Falkon and MATRIX, and performed scalability evaluations 

up to exascale. We also compared SimMatrix with SimGrid 

and GridSim. The scalability and resource consumption of 

SimMatrix are significantly better.  

 In the future, we plan to explore more complex network 

topologies for exascale systems, such as Fat Tree, 

3D/4D/nD Torus, and InfiniBand. We believe SimMatrix 

could also be developed to simulate workflow systems, and 

it would allow us to study job dependency and data aware 

scheduling with more realistic constraints. It is critical to 

develop scalable simulators to explore challenges at 

exascale now, so that by the time when exascale computer 

comes, we thoroughly understand what techniques, 

algorithms, and programming models would likely work 

best to ensure the success of exascale computing. 
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