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Abstract—The ever-growing gap between the computation and
I/O is one of the fundamental challenges for future computing
systems. This computation-I/O gap is even larger for modern
large scale high-performance systems due to their state-of-the-art
yet decades long architecture: the compute and storage resources
form two cliques that are interconnected with shared networking
infrastructure. This paper presents a distributed storage mid-
dleware, called HyCache+, right on the compute nodes, which
allows I/O to effectively leverage the high bi-section bandwidth
of the high-speed interconnect of massively parallel high-end
computing systems. HyCache+ provides the POSIX interface to
end users with the memory-class I/O throughput and latency,
and transparently swap the cached data with the existing slow-
speed but high-capacity networked attached storage. HyCache+
has the potential to achieve both high performance and low-
cost large capacity, the best of both worlds. To further improve
the caching performance from the perspective of the global
storage system, we propose a 2-phase mechanism to cache the hot
data for parallel applications, called 2-Layer Scheduling (2LS),
which minimizes the file size to be transferred between compute
nodes and heuristically replaces files in the cache. We deploy
HyCache+ on the IBM BlueGene/P supercomputer, and observe
two orders of magnitude faster I/O throughput than the default
GPFS parallel file system. Furthermore, the proposed heuristic
caching approach shows 29X speedup over the traditional LRU
algorithm.

Index Terms—distributed caching, parallel and distributed file
systems, heterogeneous storage

I. INTRODUCTION

The ever-growing gap between the computation and I/O is
one of the fundamental challenges for today’s large scale com-
puting systems. In 2005, fusion science [12] output simulation
data at 3.5TB/s, while in 2013 the fastest storage system [4]
can only deliver 1.4TB/s throughput. To make it worse, the
number of compute cores follows Moore’s Law, meaning that
the output data would keep doubling every 18 months. On the
other hand, the storage systems have been improved at a much
slower pace in the last decades, and are likely to keep this pace
for the next decade if no architectural change is made.

The gap between I/O and computation is even larger
for modern high-performance computing (HPC) systems. As
shown in our previous study [53], current state-of-the-art yet
decades long storage architecture of HPC systems would
unlikely provide the support for the expected level of con-
current data access for future systems. The main critique
comes from the topological allocation of compute and storage
resources that are interconnected as two cliques. Even though

the network between compute and storage has high bandwidth
and is sufficient for compute-intensive petascale applications,
it would not be adequate for data-intensive petascale comput-
ing or the emerging exascale computing (regardless if it is
compute- or data-intensive). Future storage systems need to
be re-architected to co-locate storage and compute resources
in order to better support the extreme level of concurrency
expected in future computing systems. These future storage
systems should leverage the higher bi-section bandwidth of
modern torus interconnects, and the abundance of computa-
tional resources of the entire system (generally 2 to 3 orders
of magnitude larger than the resources found in a dedicated
segregated distributed storage system).

This paper presents a distributed storage middleware, called
HyCache+, right on the compute nodes, which allows I/O
to effectively leverage the high bi-section bandwidth of the
high-speed interconnect of massively parallel high-end com-
puting systems (see Figure 1). HyCache+ acts as the primary
place for holding hot data for the applications (e.g. metadata,
intermediate results for large scale data analysis), and only
asynchronously swaps with cold data on the remote parallel
file system with a unique design on distributed metadata and
data-locality. Therefore, HyCache+ opens the door to provid-
ing both high performance and cost-effective large capacity.

Figure 1. HyCache+ hierarchy

The name of HyCache+ originates from our previous work
on a single-node hybrid caching system called HyCache [48].
HyCache+ significantly extends HyCache with the support of



networked storage and data reliability via replicas, and scales
up to 4096 cores with a distributed hash table (DHT) for
metadata management, as summarized in Table I.

Table I
SOME KEY HYCACHE+ IMPROVEMENTS OVER HYCACHE

Mechanism HyCache+ HyCache
Network Storage Yes No
Data Movement Local & Remote Local Only

Replica Arbitrary (e.g. 3) 1
Scalability 4096-cores 1-node
Metadata DHT Symbolic Link

To further improve the caching performance from the per-
spective of the global storage system, we propose a 2-phase
mechanism, called 2-Layer Scheduling (2LS), to enhance the
data locality of cached data enlightened by our previous work
in the Falkon framework [34] on data diffusion [33]. The first
layer schedules the jobs on (subsets of) available nodes in
a manner of minimizing the total file size to be transferred
across compute nodes. The second layer schedules the data lo-
cations across the local heterogeneous storage to heuristically
maximize the total cached file size with consideration of both
individual file size and its access frequency. Both layers make
synergistic effort to achieve high global cache effectiveness.

We deploy HyCache+ on the IBM BlueGene/P super-
computer, and observed that the caching throughput is two
orders of magnitude faster than the default parallel file system
GPFS [35]. The proposed 2LS approach is evaluated and
compared to the conventional Least Recently Used (LRU)
replacement algorithm, showing up to 29X higher throughput.

In summary, this paper makes the following contributions:
1) Design and implement a scalable high-performance

caching middleware, namely HyCache+, to improve the
I/O performance of large scale distributed systems.

2) Propose and analyze a novel caching approach —2-
Layer Scheduling (2LS)— to optimize the network cost
and heuristically reduce the disk I/O cost.

3) Evaluate the HyCache+ storage system and the 2LS
caching mechanism at large scale, and report their
performance on a leadership class supercomputer.

II. THE DESIGN AND IMPLEMENTATION OF HYCACHE+

Figure 2 shows the design overview of HyCache+, on an
oversimplified 2-node cluster. A job scheduler deploys a job on
a specific machine, Node 1 in this example. To maximize the
aggregate throughput, HyCache+ employs a unique approach
on data movement: the write always occurs on a local node,
and the read is located as close as possible to the application by
some rules (elaborated in §III). If the file to be written happens
to originate from a remote node, then the modified file will
not be sent back to its original node. Rather, the metadata
of the modified file is updated to reflect that its new primary
location is the new node. This approach significantly reduces
the network cost because updating metadata in most cases is

cheaper than updating the (potentially much larger) file. The
client (or application) is able to access the global namespace
of the file system with a distributed metadata service. The
hot files are accessed from the local cache if possible, and
can potentially be replaced by the cold files in the remote
parallel file systems according to the caching algorithm, e.g.
LRU or Algorithm 2 that will be presented in §III. The hot
files could be migrated between compute nodes with extremely
high throughput and low latency, since most HPC systems
are deployed with high-speed interconnect between compute
nodes in order to meet the needs of large scale compute-
intensive applications.

Figure 2. HyCache+ design overview

A. User Interface

One of our design goals is to provide complete transparency
of the underlying storage heterogeneity to the users. By
transparency, we mean that users are agnostic about which
files are stored on which underlying storage types, or which
physical nodes. This transparency is achieved by a global view
of metadata of all the dispersed files.

In general, it is critical for a distributed/parallel file system
to support POSIX for HPC applications, since POSIX is one of
the most widely used standard. For legacy reasons, most HPC
applications assume that the underlying file system supports
POSIX. For the sake of backward compatibility, POSIX should
be supported if at all possible. HyCache+ leverages the FUSE
framework [1] to support POSIX. FUSE has been criticized
for its efficiency on traditional HDD-based file systems. In
native UNIX file systems (e.g. Ext4) there are only two
context switches between the caller in user space and the
system call in kernel spaces. However for a FUSE-based file
system, context needs to be switched four times: two switches
between the caller and the virtual file system; and another two
between libfuse and FUSE. We will show that this overhead,
at least in HPC systems when multi-threading is turned on, is
insignificant (§IV-A).

HyCache+ is deployed as a user level mount point in
accordance with other user level file systems. The mount
point itself is a virtual entry point that talks to the local



cache and remote parallel file system. For example (see
Figure 3), HyCache+ could be mounted on a local directory
called /mnt/hycacheplus/, while two other physical directories
/dev/ssd/ and /mnt/gpfs/ ) are for the local cache and the remote
parallel file system, respectively.

Figure 3. HyCache+ mountpoint

B. Network Protocols

We encapsulate a few different network protocols in an
abstraction layer, called LibNap. Users only need to specify
which network protocol to use in the deployment. Currently,
LibNap supports four protocols: TCP, UDP, MPI, and UDT.
UDT [15] is a user level protocol with high reliability built
upon UDP.

To deal with the high concurrency on metadata servers,
epoll is used instead of multithreading. The side effect of
epoll is that the received message packets are not kept in
the same order as on the sender. To address this, a header
[message_id, packet_id] is added to the message at the sender,
and the message is restored by sorting the packet_id for each
message at the recipient. This is efficiently done by a sorted
map with message_id as the key, mapping to a sorted set of
the message’s packets. The server also periodically triggers
a garbage collection for the orphan packets due to crashed
clients, unreliable network, and so on. Note that the above
techniques work together with the network protocols such
as TCP to for example deal with the lost packets between
compute nodes.

C. Metadata Management

The global single namespace comprises partial metadata
views on local nodes. Nevertheless, client could interact with
the DHT for any key-value pair no matter if it is on the
local storage or on some remote nodes. In some sense,
DHT is the translator between local partial metadata and the
global namespace. The global namespace does not need to be
aggregated or flushed when local changes occur. Any changes
in the local metadata storage are immediately visible to the
global namespace without extra processing. It is an analogy
that modifying a sub graph will automatically update the
topology of the entire graph.

We implement the distributed metadata management by
modifying our previous work on ZHT [19]. By selecting an
appropriate hash function, the key-value pairs will be evenly
distributed on the available nodes, which achieves load balance
automatically.

We manage the tree-like directory hierarchy of HyCache+
with a (directional) adjacency list. The adjacency list data
structure could then be implemented in a general key-value
pair in the distributed hash table. To make matters more
concrete, Figure 4 shows a segment of a DHT example. It
should be noted this DHT is only a logical view of the
aggregation of multiple partial metadata on local nodes (in
this case, Node 1 and Node 2). Five entries (3 directories, 2
regular files) are stored in the DHT, with their file names as
keys. The value is comprised of a list of properties delimited
by semicolons. The first and second portions of the values are
for permission flags and the file size, respectively. The third
portion for a directory is a list of its children delimited by
commas, while for regular files is the physical location of the
file.

Figure 4. HyCache+ metadata implementation with DHT

This example is only to illustrate how the DHT behaves in
an oversimplified setup, and we should mention the following
clarifications. (1) In real systems there is additional metadata
information stored in the values, such as modification time,
owner ID, etc, that are commonly seen in i-nodes. We do not
list all of them here for the sake of limited space. (2) What is
shown in the value is a simple string delimited by semicolons.
This is only for clear presentation to explain what types of
information is stored. In implementation, the value is in fact a
serialization of the data structure for metadata. The structured
metadata is serialized by Google Protocol Buffer [2] before
being sent over the network to the metadata server, which is
just a particular compute node and acts like a logical server to
receive the metadata. Similarly, when the metadata is retrieved,
we deserialize the blob back into the structure. All the regular
i-node information is tracked, plus the list of children for a
directory or the node location for a regular file.

DHT has strict consistency semantics, as only the primary
copy is used for read and write operation, and replicas are
only used to avoid data loss in case of node failures. We
also use atomic append operations (supported by ZHT [19]) to
implement lock-free concurrent directory modification, where
only changes to a directory entries are transmitted (instead of
the entire contents of the directory); this allows the creation or
removal of files or directories in constant time with minimal
network communication even in cases where the directories
contain many entries.

D. Data Movement
Our strategy to achieve high and scalable write throughput

is straightforward: a client only writes data to its local storage.



In other words, it is independent write across data nodes, in
the sense that no interference exists on the layer of physical
data servers. This local-only write is not really independent, in
the sense that all these writes are under control of the coherent
metadata on the same namespace.

The aggregate write throughput is obviously optimal: all
writes are associated with local I/O throughput and avoids the
following two potential overheads commonly seen in other
systems: (1) the procedure to determine to which node the
data will be written, normally accomplished by pinging the
metadata nodes and/or some monitoring services, and (2)
transferring the data to a remote node.

The potential issue with local writes is equally obvious: no
guarantee for load balance is provided at all. The assumption
that all workloads are uniformly deployed on all nodes is too
strong, as we have observed hot spots in large scale systems.
As a consequence, a periodical re-balance is invoked.

In some cases, the client is writing to a file that is originally
stored in another node. Per our policy, the newly written file
will not be sent back to the original node. Rather, the metadata
of this file will be updated in the metadata. This saves the
cost of transferring the file data over the network by a much
faster operation on updating the metadata. The question arises
though: what if two clients try to write to the same data?
The answer is that a distributed lock service (coordination) is
available built on top of the atomic compare-swap operation
on the underlying distributed hash table.

Unlike data write, it is impossible to arbitrarily control
where the requested data reside. The location of the requested
data is highly dependent on the I/O pattern, and the probability
of the requested data residing on the local storage is extremely
low when assuming the I/O has a uniform distribution (i.e.
P = 1

n , where n denotes the number of nodes). In such cases,
we could transfer the requested data from the remote node to
the requesting node with some protocols that will discussed
in §II-B.

For the default LRU replacement policy, we implement a
priority queue to keep track of the hot files in the cache. Each
element of the queue maintains key information such as file
name, file size, and so on. The queue is updated in accordance
with the cache content, which might need to import cold files
or evict hot files. Details on the proposed 2LS mechanism will
be discussed in §III.

E. Fault Tolerance

Failures of today’s large scale systems are normality rather
than exception. The conventional wisdom is to make a number
of replicas to the primary copy [13, 17]. When the primary
copy is failed, one of the replicas will be restored to replace
the failed primary copy. This method has its advantages
such as ease-of-use and low computational overhead, when
compared to the emerging erasure-coding mechanisms [26]
and its variants e.g. [25]. The main critique on replicas is,
however, its low storage efficiency. For example, in Google
file system [13] each primary copy has two replicas, which
results in the storage utilization as 1

1+2 ≈ 33%.

We have investigated three semantics on data redundancy:
synchronous replicas, asynchronous replicas, and erasure cod-
ing. In theory, asynchronous replicas would deliver the highest
throughput, while being compromised on the possibility of
failing to recover before the asynchronous update is com-
pleted. Synchronous update is a costly method, and satisfies
the strong consistency requirement, if needed. Erasure coding
trades off between performance and consistency, in that it
needs to transfer less data than synchronous update, and takes
more time than asynchronous update to guarantee the fault
tolerance. In practice, the choice between synchronous and
asynchronous replicas is highly dependent on the application
requirements, while erasure coding is more related to the
computing hardware and the chosen encoding algorithms. Our
previous study [46] shows that a commodity GPU makes era-
sure coding outperform traditional replicas by 1.82X speedup.

III. 2-LAYER SCHEDULING OF DISTRIBUTED CACHE

A. Job Scheduling
The variables to be used in the discussion are summarized

in Table II. If the application needs to access a file Fi on a
remote machine, the overhead on transferring Fi is Size(Fi).

Table II
VARIABLES OF GLOBAL SCHEDULING

Variable Type Meaning
M Set Machines of the cluster
A Set Applications to be run
F Set All files
F k Set Files referenced by Ak ∈ A
Pi,j Int Fi ∈ F placed on Mj ∈M
Qi,j Int Ai ∈ A scheduled on Mj ∈M

We formalize the problem as to find the matrix Q (i.e.
scheduling which job on which machine) that minimizes the
overall network cost of running all |A| jobs on |M | machines.
That is to solve the objective function

argmin
Q

∑
Ak∈A

∑
Ml∈M

∑
Fi∈Fk

∑
Mj∈M

Size(Fi) · Pi,j ·Qk,l,

subject to ∑
Mj∈M

Pi,j = 1,∀Fi ∈ F,

∑
Mj∈M

Qi,j = 1,∀Ai ∈ A,

Pi,j , Qi,j ∈ {0, 1},∀i, j.

The first constraint guarantees that a file could be placed on
exact one node. Similarly, the second constraints guarantees
that a job could be scheduled on exact one node. Note that
both constraints could be generalized by replacing 1 with other
constants if needed, for example in distributed file systems [38]
a file could have multiple replicas for high reliability. The last
constraint says that both matrices should only store binary
values to guarantee the first and the second constraints.



The algorithm to find the machine for a job to achieve the
minimal network cost is given in Algorithm 1. The input is
the job index x, and it returns the machine index y. It loops
on each machine (Line 4), calculates the cost of moving all
the referenced files to this machine (Lines 5 - 9), and updates
the minimal cost if needed (Lines 10 - 13).

Algorithm 1 Global Schedule
Input: The xth job to be scheduled
Output: The yth machine where the xth job should be

scheduled
1: function GLOBALSCHEDULE(x)
2: MinCost←∞
3: y ← NULL
4: for Mi ∈M do
5: Cost← 0
6: for Fj ∈ F x do
7: Find Mk such that Pj,k = 1
8: Cost← Cost+ Size(Fj)
9: end for

10: if Cost < MinCost then
11: MinCost← Cost
12: y ← i
13: end if
14: end for
15: return y
16: end function

The correctness of Algorithm 1 is due to the fact that the
data locality is known as a priori input. That is, P is a given
argument to the execution of all jobs. Otherwise Line 7 would
not work appropriately. The per-job networking overhead is
obviously minimal. Since jobs are assumed independent, the
overall overhead of all jobs is also minimal.

The complexity of Algorithm 1 is O(|M | · |Fx|), by observ-
ing the two loops on Line 4 and Line 6, respectively. Note
that we could achieve an O(1) cost for Line 7 by retrieving
the metadata of file j, as discussed in §II-C.

B. Heuristic Caching

Problem Statement. The problem of finding optimal caching
on multiple-disk is proved to be NP-hard [6]. A simpler
problem on a single-disk setup has a polynomial solution [5],
which is, unfortunately, too complex to be applied in real
applications. An approximation algorithm was proposed in
[10] with the restriction that each file size should be the same,
which limits its use in practice. In fact, at small scale (e.g.
each node has O(10) files to access), a brute-force solution
with dynamic programming is viable, with the same idea of
the classical problem of traveling salesman problem (TSP) [7]
with exponential time complexity. However, in real applica-
tions the number of accessed files could be as large as 10,000,
which makes the dynamic programming approach feasible.
Therefore we propose a heuristic algorithm of O(n lg n) (n
is the number of distinct files on the local node) for each job,
which is efficient enough for arbitrarily large number of files

in practice, especially when compared to the I/O time of the
disk.

Assumptions. We assume a queue of jobs, and their re-
quested files are known on each node in a given period of time,
which could be calculated from the scheduling results of §III-A
and the metadata information in §II-C. This assumption is
based on our observation of many workflow systems [54, 55],
which implicitly make a similar assumption: users are familiar
with the applications they are to run and they are able to
specify the task dependency (often times automatically based
on the high-level parallel workflow description). Note that the
referenced files are only for the jobs deployed on this node,
because there is no need to cache the files that will be accessed
by the jobs deployed on remote nodes.

Notations and Definitions The access pattern of a job is
represented by a sequence R = (r1, r2, . . . , rm), where each
ri indicates one access to a particular file. Note that the
files referenced by different ri’s are possibly the same, and
could be on the cache, or the disk. We use File(ri) to
indicate the file object which ri references to. The size of
the referenced file by ri is denoted by Size(File(ri)). The
cost is defined as the to-be-evicted file size multiplied by
its access frequency after the current processing position in
the reference sequence. The gain is defined as the to-be-
cached file size multiplied by its access frequency after the
current fetch position in the reference sequence. Since cache
throughput is typically orders of magnitude higher than disks
(i.e. O(10GB/s) vs. O(100MB/s)), in our analysis we ignore
the time of transferring data between the processor and the
cache. Similarly, when the file is swapped between cache and
disks, only the disk throughput is counted. The cache size on
the local node is denoted by C, and the current set of files in
the cache is denoted by S. Our goal is to minimize the total
I/O cost of the disk by determining whether the accessed files
should be placed in the cache.

There are 3 rules to be followed in the proposed caching
algorithms.

Rule 1. Every fetch should bring into the cache the very
next file in the reference sequence if it is not yet in the cache.

Rule 2. Never fetch a file to the cache if the total cost of
the to-be-evicted files is greater than the gain of fetching this
file.

The first 2 rules specify which file to be fetched and when
to do the fetch, and say nothing about evicting files. Rule
3 speaks about what files to be evicted and when to do the
eviction.

Rule 3. Every fetch should discard the files in the increasing
order of their cost until there is enough space for the newly
fetched file. If the cache has enough space for the new file,
no eviction is needed.

We elucidate the above 3 rules with a concrete ex-
ample. Assume we have a random reference sequence
R = (r1, r2, r3, r4, r5, r6, r7, r8, r9). Let File(r1) = F1,
File(r2) = F2, File(r3) = F3, File(r4) = F4, File(r5) =
F3, File(r6) = F1, File(r7) = F2, File(r8) = F4,
File(r9) = F3, and Size(F1) = 20, Size(F2) = 40,



Size(F3) = 9, Size(F4) = 40. Let the cache capacity be
100. According to Rule 1, the first three files to be fetched to
cache are (F1, F2, F3). Then we need to decide if we want to
fetch F4. Let Cost(Fi) be the cost of evicting Fi. Then we
have Cost(F1) = 20 × 1 = 20, Cost(F2) = 40 × 1 = 40,
and Cost(F3) = 9 × 2 = 18. According to Rule 3, we sort
the costs in the increasing order (F3, F1, F2). Then we evict
the files in the sorted list, until there is enough room for the
newly fetched file F4 of size 40. In this case, we only need to
evict F3, so that the free cache space is 100− 20− 40 = 40,
just big enough for F4. Before replacing F3 by F4, Rule 2 is
referred to ensure that the cost is smaller than the gain, which
is true in this case by observing that the gain of prefetching
F4 is 40, larger than Cost(F3) = 18.

The caching procedure is presented in Algorithm 2, which
is called when the ith reference is accessed and File(ri+1) is
not in the cache. If File(ri+1) is already in the cache, then
it is trivial to keep processing the next reference, which is
not explicitly mentioned in the algorithm. File(ri+1) will not
be cached if it is accessed only once (Line 2). Subroutine
GetF ilesToDiscard() tries to find a set of files to be dis-
carded in order to make more room to (possibly) accommodate
the newly fetched file in the cache (Line 3). Based on the
decision made by Algorithm 2, File(ri+1) could possibly
replace the files in D in the cache (Line 4 - 7). File(ri+1)
is finally read into the processor from the cache or from the
disk, depending on whether File(ri+1) is already fetched to
the cache (Line 6).

Algorithm 2 Fetch a file to cache or processor
Input: i is the reference index being processed

1: procedure FETCH(i)
2: if {rj |File(rj) = File(ri+1) ∧ j > i+ 1} 6= ∅ then
3: flag,D ← GetF ilesToDiscard(i, i+ 1)
4: if flag = successful then
5: Evict D out of the cache
6: Fetch File(ri+1) to the cache
7: end if
8: end if
9: Access File(ri+1) (either from the cache or the disk)

10: end procedure

The time complexity is as follows. Line 2 only takes O(1)
since it can be precomputed using dynamic programming in
advance. GetF ilesToDiscard() takes O(n lg n) that will be
explained when discussing Algorithm 3. Thus the overall time
complexity of Algorithm 2 is O(n lg n).

The GetF ilesToDiscard() subroutine (Algorithm 3) first
checks if the summation of current cache usage and the to-
be-fetched file size is within the limit of cache. If so, then
there is nothing to be discarded (Line 2 - 4). We sort the files
by their increasing order of cost at Line 9, because we hope
to evict out the file of the smallest cost. Then for each file
in the cache, Lines 11 - 18 check if the gain of prefetching
the file outweighs the associated cost. If the new cache usage

is still within the limit, then we have successfully found the
right swap (Lines 19 - 21).

Algorithm 3 Get set of files to be discarded
Input: i is the reference index being processed; j is the

reference index to be (possibly) fetched to cache
Output: successful – File(rj) will be fetched to the cache

and D will be evicted; failed – File(rj) will not be
fetched to the cache

1: function GETFILESTODISCARD(i, j)
2: if Size(S) + Size(File(rj)) ≤ C then
3: return successful, ∅
4: end if
5: num← Number of occurrences of File(rj) from j+1
6: gain← num · Size(File(rj))
7: cost← 0
8: D ← ∅
9: Sort the files in S in the increasing order of the cost

10: for F ∈ S do
11: tot← Number of references of F from i+ 1
12: cost← cost+ tot · Size(F )
13: if cost < gain then
14: D ← D ∪ {F}
15: else
16: D ← ∅
17: return failed,D
18: end if
19: if Size(S \D) + Size(File(rj)) ≤ C then
20: break
21: end if
22: end for
23: return successful, D
24: end function

We will show that the time complexity of Algorithm 3
is O(n lg n). Line 5 takes O(1) to get the total number of
occurrences of the referenced file. Line 9 takes O(n lg n) to
sort, and Lines 10 - 22 take O(n) because there would be
no more than n files in the cache (Line 10) and Line 11
takes O(1) to collect the file occurrences. Both Line 5 and
Line 11 only need O(1) because we can precompute those
values by dynamic programming in advance. Thus the total
time complexity is O(n lg n).

IV. EVALUATION

Most experiments are carried out on Intrepid [3], an IBM
BlueGene/P supercomputer of 160K cores at Argonne National
Laboratory. We use up to 1024 nodes (4096 cores) in the
evaluation. Each node has a 4-core PowerPC 450 processor
(850MHz) and 2GB of RAM. A 7.6PB GPFS [35] is deployed
on 128 storage nodes. All experiments are repeated at least five
times, or until results become stable (i.e. within 5% margin
of error); the reported numbers are the average of all runs.
Caching effect is carefully precluded by reading a file larger
than the on-board memory before the measurement.



A. FUSE Overhead

We show that FUSE [1] overhead in the context of a HPC
system, particularly with C/C++ bindings on memory-class
storage, could be greatly compensated by the high concur-
rency supported by the storage. Our experiment shows that a
FUSE+SSD file system could achieve 580 MB/sec aggregate
bandwidth (at 12 concurrent processes, the same number of
hardware threads of the test bed AMD Phenom II X6 1100T
Processor) for concurrent data accesses, which is about 85%
of the bandwidth of the raw SSD device (i.e. SSD Ext4).

B. I/O Throughput

We illustrate how HyCache+ significantly improves the I/O
throughput of parallel file systems. The local cache size is set
to 256MB (0.25GB) on each node. To measure local cache’s
stable throughput, each client repeatedly writes a 256MB file
for 63 times (total 15.75GB). Then another 256MB file is
written on each client to trigger the swapping between local
cache and GPFS. Figure 5 reports (at 256-core scale) the real-
time aggregate throughput, showing a significant performance
drop at around 90-second timestamp, when the 15.75GB data
are finished on the local cache.

Figure 5. Throughput on BlueGene/P (256-cores)

C. Scalability

We demonstrate the scalability of HyCache+ by repeating
the experiment of the same per-client workload in §IV-B on
512 nodes (2048 cores). The real-time throughput is reported
in Figure 6. We see that HyCache+ shows an excellent
scalability for both the cached data and the remote data: both
the caching throughput and the disk throughput are about 8X
faster than those numbers at 256-core scale in Figure 5.

D. Fault Tolerance

We are interested in the overhead introduced by different
fault-tolerance semantics: strong consistency (i.e. synchronous
replication) and weak consistency (i.e. asynchronous repli-
cation). To measure that, HyCache+ was deployed on 128
compute nodes, each of which writes independent files with
1MB block size, all within the cache. The baseline is the
case when no replication is enabled, which is considered as

Figure 6. Throughput on BlueGene/P (2048-cores)

the upper bound of any replication strategies. Asynchronous
replication achieves a high efficiency (90%) comparing to
the no-replication strategy. To achieve strong consistency,
synchronous replication incurs a high overhead, delivering
68% out of the no-replication throughput.

E. Scheduling Algorithms

We plug the heuristic caching and LRU algorithms into
HyCache+, and simulate their performance at 512-node scale
on Intrepid. We create different sizes of data, randomly
between 6MB and 250MB, and repeatedly read these data
in a round-robin manner. The local cache size is set to
256MB. The execution time of both algorithms is reported
in Figure 7. Heuristic caching clearly outperforms LRU at all
scales, mainly because LRU does not consider the factors such
as file size and cost-gain ratio, which are carefully taken into
account in heuristic caching. In particular, heuristic caching
outperforms LRU by 29X speedup at I/O size = 64,000GB
(3,009 seconds vs. 86,232 seconds).

Figure 7. Comparison between Heuristic Caching and LRU

F. Broader Impact

Even though this work focuses on HyCache+ for parallel
file systems, it also enlightens the design of future distributed
file systems where each compute node is deployed with a
local storage. We report some promising preliminary results
of HyCache+ on a 64-node Linux cluster at Illinois Institute



of Technology. Each node has two Quad-Core AMD Opteron
2.3GHz processors and one 1TB Seagate Barracuda hard drive.
All nodes are interconnected with 1Gbps Ethernet. The cache
path is set to the local RAM disk (i.e. /dev/shm), and the
local hard disk is considered as the media to hold the chunks
of distributed file systems. Figure 8 shows the aggregated
throughput with and without HyCache+. HyCache+ helps
delivers about 2.2X improved I/O throughput.

Figure 8. Aggregate throughput on a 64-nodes cluster

V. RELATED WORK

While both our previous work [34] and [33] focused
on the job scheduling in order to improve applications’
performance, this paper achieves the same goal from the
storage’s perspective. That is, the previous work was a top-
down mechanism to manipulate jobs without much knowledge
of the underlying storage, but this work shows a bottom-up
approach to allow users to take advantage on the storage’s
awareness of data locality by providing the convenient POSIX
interface. Moreover, in [33] we discussed different strategies
broadly to showcase how to achieve different criteria such
as data locality, load balance, or a mix of both, while this
paper concentrates on detailing the scheduling and caching
algorithms to (heuristically) minimize the overhead of the
distributed storage.

A thorough review of classical caching algorithms on
large scale data-intensive applications is recently reported
in [11]. HyCache+ is different from the classical cooperative
caching [27] in that HyCache+ assumes persistent underlying
storage and manipulates data at the file level. As an example
of distributed caching for distributed file systems, Blue Whale
Cooperative Caching (BWCC) [36] is a read-only caching
system for cluster file systems. In contrast, HyCache+ is a
POSIX-compliant I/O storage middleware that transparently
interacts with the underlying parallel file systems. Even though
the focus of this paper lies on the 2-layer hierarchy of a
local cache (e.g. SSD) and a remote parallel file system (e.g.
GPFS [35]), the approach presented in HyCache+ is applicable
to multi-tier caching architecture as well. Multi-level caching
gains much research interest, especially in the emerging age of
cloud computing where the hierarchy of (distributed) storage
is being redefined with more layers. For example Hint-K [41]
caching is proposed to keep track of the last K steps across all

the cache levels, which generalizes the conventional LRU-K
algorithm concerned only on the single level information.

There are extensive studies on leveraging data locality for
effective caching. Block Locality Caching (BLC) [24] captures
the backup and always uses the latest locality information
to achieve better performance for data deduplication systems.
The File Access corRelation Mining and Evaluation Reference
model (FARMER) [42] optimizes the large scale file system by
correlating access patterns and semantic attributes. In contrast,
HyCache+ achieves data locality with a unique mix of two
principles: (1) write is always local, and (2) read locality
depends on the novel 2LS (§III) mechanism which schedules
jobs in a deterministic manner followed by a local heuristic
replacement policy.

While HyCache+ presents a pure software solution for
distributed cache, some orthogonal work focuses on improving
caching from the hardware perspective. In [21], a hardware
design is proposed with low overhead to support effective
shared caches in multicore processors. For shared last-level
caches, COOP [45] is proposed to only use one bit per cache
line for re-reference prediction and optimize both locality and
utilization. The REDCAP project [14] aims to logically enlarge
the disk cache by using a small portion of main memory, so
that the read time could be reduced. For Solid-State Drive
(SSD), a new algorithm called lazy adaptive replacement
cache [16] is proposed to improve the cache hit and prolong
the SSD lifetime.

Power-efficient caching has drawn a lot of research interests.
It is worth mentioning that HyCache+ aims to better meet
the need of high I/O performance for HPC systems, and
power consumption is not the major consideration at this point.
Nevertheless, it should be noted that power consumption is
indeed one of the toughest challenges to be overcome in
future systems. One of the earliest work [56] tried to minimize
the energy consumption by predicting the access mode and
allowing cache accesses to switch between the prediction and
the access modes. Recently, a new caching algorithm [44]
was proposed to save up to 27% energy and reduce the
memory temperature up to 5.45◦C with negligible performance
degradation. EEVFS [23] provides energy efficiency at the
file system level with an energy-aware data layout and the
prediction on disk idleness.

While HyCache+ is architected for large scale HPC systems,
caching has been extensively studied in different subjects and
fields. In cloud storage, Update-batched Delayed Synchroniza-
tion (UDS) [20] reduces the synchronization cost by buffering
the frequent and short updates from the client and synchro-
nizing with the underlying infrastructure in a batch fashion.
For continuous data (e.g. online video), a new algorithm
called Least Waiting Probability (LWP) [43] is proposed to
optimize the newly defined metric called user waiting rate.
In geoinformatics, the method proposed in [18] considers
both global and local temporal-spatial changes to achieve high
cache hit rate and short response time.

The job scheduler proposed in this work (§III-A) takes
a greedy strategy to achieve the optimal solution for the



HyCache+ architecture. A more general, and more difficult,
scheduling problem could be solved in a similar heuristic
approach [28, 39]. For an even more general combinatorial
optimization problem in a network, both precise and bound-
proved low-degree polynomial approximation algorithms were
reported in [8, 9]. Some incremental approaches [22, 50, 51]
were proposed to efficiently retain the strong connectivity of a
network and solve the satisfiability problem with constraints.

VI. CONCLUSION

This paper presents the design and implementation of
HyCache+, a scalable high-performance caching middleware
to improve the I/O performance of parallel file systems. It
proposes and analyzes a novel 2-layer approach to minimize
the network cost and heuristically optimize the caching effect.
Large scale evaluation at up to 4096 cores shows that Hy-
Cache+ improves the I/O performance by up to two orders of
magnitude, and the proposed caching approach could further
elevate the performance by 29X.

As our future work, we plan to deploy HyCache+ on more
parallel and distributed file systems and integrate the 2LS
approach to our previous work on scheduling and launching
workloads in Many-Task Computing (MTC) [29, 31, 32]. We
believe HyCache+, together with other features such as data
compression [52] and data provenance [37, 49], would make
the next generation extreme-scale storage system (e.g. [47])
more practical for real applications [30]. We aim to have an
entirely complete software stack from programming languages
(e.g. Swift [54] and other scripts [40]), runtime systems
(e.g. Falkon [34]), and storage systems (e.g. ZHT [19]) to
address the avalanche of challenges brought on by Big Data
applications.
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