CS 550:

Advanced Operating Systems

Distributed System
Architectures

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 550
Advanced Operating Systems
January 25, 2011

Last Class: Introduction

« A distributed system is defined as

— A collection of independent computers that appears to its
users as a single coherent system

CS550: Advanced Operating Systems

Resource sharing
Openness

Concurrency

Scalability

Fault tolerance (reliability)
Transparence

CS550: Advanced Operating Systems

» Architectural styles

« System architectures

 Discussion on Client-Server Model

CS550: Advanced Operating Systems 4

Architeciural Styles

o Software architectures

— Logical organization of distributed systems into
software components

 Component

- A modular unit with well-defined required and provided
Interfaces that is replaceable within its environment

* Four important styles
Layered architectures
Object-based architectures
Data-centered architectures
Event-based architectures

CS550: Advanced Operating Systems 5

Layer N

v 1

Layer N-1
Request | f Response
flow § flow
v |
Layer 2
Layer 1
(@)

Components are organized in a layered fashion where a component
at Layer L, is allowed to call components at the underlying layer L, ;

CS550: Advanced Operating Systems 6

Object Object

Method call

(b)

Each object corresponds to a component, and these components are

connected through a procedure call mechanism
CS550: Advanced Operating Systems 7

Component Component

Event delivery T T l
< Event bus >

T Publish

Component

(@)

Processes communicate through the propagation of events

CS550: Advanced Operating Systems 8

Component Component

A
Data delivery Publish

Shared (persistent) data space

(b)

Processes communicate through a common repository; When combining

with event-based architectures, it is also known as shared data spaces
CS550: Advanced Operating Systems 9

Sysiem Architeciure

 Instantiate and place software
components on real machines

* Important architectures
— Centralized

— Decentralized
— hybrid

CS550: Advanced Operating Systems

10

Centralized Architectures

Wait for result

Client

Provide service Time —>»

Client-server model; Two process groups:
 a server is a process implementing a specific service
* a client is a process requesting a service from a server
» aka request-reply behavior

CS550: Advanced Operating Systems

11

Ceniralized Architectures

* Application Layering
 There Is no clear distinction between a client and a
server

« Since many client-server applications are
targeted toward supporting user access to DB

— The user-interface level

. ; User-interface
— The processing level L Deerimtertace | } level
HTML page
—_ The data Ievel Keyword expression/ ‘\HTT\jlr_‘tain?ng“St
generator Processing

Query T_‘ Ranked list level
generator

of page titles
Ranking

algorithm

Database queries

Web page titles
with meta-information
Database Data level
12

with Web pages
CS550: Advanced Operating Syste

Ceniralized Architectures

* Physically distribute a client-server application
across several machines => Multi-tiered
architectures

« The simplest organization is to have only two
types of machines:

A client machine containing only the programs
Implementing (part of) the user-interface level

« A server machine containing the rest, i.e., the
programs implementing the processing and data
level

CS550: Advanced Operating Systems

13

Cenitralized Architectures

To distribute the programs in the application layers across different

machines

Examples of two-tiered architectures:

‘ User interface

User interface

Client machine

User interface

User interface

Application

Database

Application

User interface

User interface

Application

Application

(@)

Application Application
Database Database
Server machine
(b) (c)

CS550: Advanced Operating Systems

Database

Database [Database |
(d) (e)

14

Centralized Architectures

Examples of multi-tiered architectures:

a single server is being replaced by multiple servers running on
different machines

User interface Wait for result
(presentation) T\ T

Request
operation

Return

result
Wait for data

Application
server

Request data Return data

Database
server
Time >

CS550: Advanced Operating Systems 15

Decentralized Architeciures

« Peer-to-peer systems

— The processes that constitute a p2p
system are all equal

— Much of the interaction between

Actual node
processes is symmetric--- each proc (0
will act as a client and a server a7 (181415 (0,1) T8}
— Focuses on how to organize the el N\
processes in an overlay network 3 S
« Structured vs. unstructured (8.9.10.11.12) (2.3.4)
N Associated -
« Structured P2P architectures) data keys (5
— The overlay network is constructed \10 (5.6,7) 6/
using a deterministic procedure, e.g., \9\8 /@/

DHT

CS550: Advanced Operating Systems 16

Deceniralized Architectures

« Unstructured P2P architectures
— Each node maintains a list of neighbors

— When a node needs to locate a specific data item,
the only thing it can effectively do is to flood the
network with a search query

Actions by active thread (periodically repeated):

select a peer P from the current partial view;
if PUSH_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first c/2 entries to mybuffer;
send mybuffer to P;
} else {
send trigger to P;
}
if PULL_MODE {
receive P’s buffer;
}
construct a new partial view from the current one and P’s buffer;
CS550: Advanced dpergingaldkemage of every entry in the new partial view;7
(a)

Deceniralized Architectures

* In unstructured P2P systems, locating relevant data
items can become problematic as the network grows

« One solution:
— Superpeers to maintaini an index or acting as a broker

— Superpeers are often organized as in a P2P network, leading
to a hierarchical organization

Regular peer

Superpeer

Superpeer
network
CS550: Advanced Operating Systems

Hybrid Architectures

 Client-server solutions are combined with
decentralized architectures

 Edge-server systems

] [] [Client Content provider s

Sm—
COR S5

— N

Edge server ’ '.
~ ~ Enterprise network

CS550: Advanced Operating Systems 19

« Collaborative distributed systems
— BitTorrent example

Client node
K out of N nodes
Lookup(F) Node 1
; g } Node 2
A BitTorrent a forrent file ; List o{ nodes
Web page Ref. to for F Ref. to storing F
file tracker

Web server server File server Tracker

Node N

CS550: Advanced Operating Systems 20

Self-Management

« Adaptability in distributed systems can be
achieved by having the system monitor its own
behavior and taking appropriate measures
when needed

— Autonomic systems or self-* systems
* Three basic approaches to adaptive software:
« Separation of concerns

« Computational reflection
« Component-based design

 Feedback control model

CS550: Advanced Operating Systems 21

Client-Server Communication
Model

e Structure: group of servers offering service to clients
— Servers: offer services to the users called “clients”
— Clients: applications requiring services from servers
— Example: Web Server/clients, File server ...

* Why use client-server model
— simplicity
— low(er) overheads (why?)

file process terminal
server server server

client

kernel kernel kernel kernel

CS550: Advanced Operating Systems

Client-Server Comm. Model

« Based on a request/response paradigm

— Clients send a request asking for service (e.g., a
file block)

— Server processes and replies with result (or error)

* Techniques:

— Socket, remote procedure calls (RPC), Remote
Method Invocation (RMI)

file process terminal
server server server

client

kernel kernel kernel kernel

CS550: Advanced Operating Systems

Issues in Client-Server
Communication

Addressing

Blocking versus non-blocking
Buffered versus unbuffered
Reliable versus unreliable

Server architecture: concurrent versus
sequential

Scalabllity

CS550: Advanced Operating Systems

24

Addressing Issues

*Question: how Is the server

located?

Hard-wired address

Broadcast-based

| ocate address via name
server

CS550: Advanced Operating Systems

user |,

v

server

user |,

v

server

)

NS

A 4

user |,

v

server

Blocking versus Non-blocking

« Blocking communication (synchronous)
— Sender blocked until msg sent

« Non-blocking communication (asynchronous)

— Returns control to sender once msg copied into buffer
* Pro?
 Con?

— Sender may not modify msg until msg sent

 How does the sender know it can use the buffer?
— copy into kernel space (overhead)
— Interrupt sender to inform msg sent (=> buffer available)

CS550: Advanced Operating Systems

26

Buitering Issues

 Unbuffered

communication

— works well if “server calls
recelve before client calls

send’!l

 Buffered communication
— Client send to a mailbox
— Server receives from a

mailbox

CS550: Advanced Operating Systems

user

server
]

—

user

server

5

27

Reliability

request

* Unreliable channel . A
— Need acknowledgements £ %
(ACKSs) -

— Applications handle ACKs
— ACKs for both request and . _request,
reply 3 <LACPTI<L

 Reliable channel

— Reply acts as ACK for
request

— Explicit ACK for response

ancéd Op ystems

Server

Server

Reliability

 Reliable communication on unreliable
channels

— Transport protocol handles lost
messages

 Reliabllity introduces overhead
— Why?

CS550: Advance d Operating Systems

29

Reliability

Large size messages must be split and sent

Packets get lost, arrive out-of-order

— A packet number is assigned (seq no) - used to
reassemble msgs

How does the sender know if msg received?

Acknowledgment-Options

— Ack each packet
* Pro?
« Con?
— Ack each message
* Pro?
« Con?

Options depend on network characteristics

CS550: Advance d Operating Systems

30

Server Architecture

e Sequential
— Serve one request at a time

— Can serve multiple requests by employing events and
asynchronous communication

* Concurrent
— Server spawns a process or thread to service each request

— Can also use a pre-spawned pool of threads/processes
(apache)

e Thus servers could be
— Pure-sequential, event-based, thread-based, process-based

CS550: Advanced Operating Systems

31

Scalability

* Question:How can you scale the server
capacity?
— Buy bigger machine!
— Hide communication latency
— Distribution
— Replication (caching)

CS550: Advanced Operating Systems

To Push or Pull ?

 Client-pull architecture

— Clients pull data from servers (by sending requests)
— Example: HTTP
— Pro: ?
— Con: ?

« Server-push architecture

— Servers push data to client
— Example: video streaming, stock tickers
— Pro: ?
— Con:?

* When/how-often to push or pull?

CS550: Advanced Operating Systems

33

Architectural styles

System architectures
Discussion on Client-Server Model
Readings

— Chapter

CS550: Advanced Operating Systems

34

X

Quesiions

|

CS550: Advanced Operating Systems

35

