

• A distributed system is defined as

– A collection of independent computers that appears to its

users as a single coherent system

CS550: Advanced Operating Systems 2

• Resource sharing

• Openness

• Concurrency

• Scalability

• Fault tolerance (reliability)

• Transparence

CS550: Advanced Operating Systems 3

• Architectural styles

• System architectures

• Discussion on Client-Server Model

CS550: Advanced Operating Systems 4

• Software architectures
– Logical organization of distributed systems into

software components

• Component

• Four important styles
• Layered architectures

• Object-based architectures

• Data-centered architectures

• Event-based architectures

- A modular unit with well-defined required and provided
interfaces that is replaceable within its environment

CS550: Advanced Operating Systems 5

Components are organized in a layered fashion where a component

at Layer Li is allowed to call components at the underlying layer Li-1

CS550: Advanced Operating Systems 6

Each object corresponds to a component, and these components are

connected through a procedure call mechanism
CS550: Advanced Operating Systems 7

Processes communicate through the propagation of events

CS550: Advanced Operating Systems 8

Processes communicate through a common repository; When combining

with event-based architectures, it is also known as shared data spaces
CS550: Advanced Operating Systems 9

• Instantiate and place software

components on real machines

• Important architectures

– Centralized

– Decentralized

– hybrid

CS550: Advanced Operating Systems 10

Client-server model; Two process groups:

• a server is a process implementing a specific service

• a client is a process requesting a service from a server

• aka request-reply behavior

CS550: Advanced Operating Systems 11

• Application Layering

• There is no clear distinction between a client and a

server

• Since many client-server applications are

targeted toward supporting user access to DB

– The user-interface level

– The processing level

– The data level

CS550: Advanced Operating Systems 12

• Physically distribute a client-server application

across several machines => Multi-tiered

architectures

• The simplest organization is to have only two

types of machines:

• A client machine containing only the programs

implementing (part of) the user-interface level

• A server machine containing the rest, i.e., the

programs implementing the processing and data

level

CS550: Advanced Operating Systems 13

To distribute the programs in the application layers across different

machines

Examples of two-tiered architectures:

CS550: Advanced Operating Systems 14

Examples of multi-tiered architectures:

a single server is being replaced by multiple servers running on

different machines

CS550: Advanced Operating Systems 15

• Peer-to-peer systems

– The processes that constitute a p2p

system are all equal

– Much of the interaction between

processes is symmetric--- each proc

will act as a client and a server

– Focuses on how to organize the

processes in an overlay network

• Structured vs. unstructured

• Structured P2P architectures

– The overlay network is constructed

using a deterministic procedure, e.g.,

DHT

CS550: Advanced Operating Systems 16

• Unstructured P2P architectures

– Each node maintains a list of neighbors

– When a node needs to locate a specific data item,

the only thing it can effectively do is to flood the

network with a search query

CS550: Advanced Operating Systems 17

• In unstructured P2P systems, locating relevant data

items can become problematic as the network grows

• One solution:

– Superpeers to maintaini an index or acting as a broker

– Superpeers are often organized as in a P2P network, leading

to a hierarchical organization

CS550: Advanced Operating Systems 18

• Client-server solutions are combined with

decentralized architectures

• Edge-server systems

CS550: Advanced Operating Systems 19

• Collaborative distributed systems

– BitTorrent example

CS550: Advanced Operating Systems 20

• Adaptability in distributed systems can be

achieved by having the system monitor its own

behavior and taking appropriate measures

when needed

– Autonomic systems or self-* systems

• Three basic approaches to adaptive software:

• Separation of concerns

• Computational reflection

• Component-based design

• Feedback control model

CS550: Advanced Operating Systems 21

• Structure: group of servers offering service to clients

– Servers: offer services to the users called “clients”

– Clients: applications requiring services from servers

– Example: Web Server/clients, File server …

• Why use client-server model

– simplicity

– low(er) overheads (why?)

kernel

client

kernel kernel kernel

file
server

process
server

terminal
server

CS550: Advanced Operating Systems 22

• Based on a request/response paradigm

– Clients send a request asking for service (e.g., a

file block)

– Server processes and replies with result (or error)

• Techniques:

– Socket, remote procedure calls (RPC), Remote

Method Invocation (RMI)

kernel

client

kernel kernel kernel

file
server

process
server

terminal
server

CS550: Advanced Operating Systems 23

• Addressing

• Blocking versus non-blocking

• Buffered versus unbuffered

• Reliable versus unreliable

• Server architecture: concurrent versus

sequential

• Scalability

CS550: Advanced Operating Systems 24

•Question: how is the server

located?

•Hard-wired address

•Broadcast-based

•Locate address via name

server

user server

user server

user server NS

CS550: Advanced Operating Systems

• Blocking communication (synchronous)

– Sender blocked until msg sent

• Non-blocking communication (asynchronous)

– Returns control to sender once msg copied into buffer

• Pro?

• Con?

– Sender may not modify msg until msg sent

• How does the sender know it can use the buffer?

– copy into kernel space (overhead)

– interrupt sender to inform msg sent (=> buffer available)

CS550: Advanced Operating Systems 26

• Unbuffered

communication

– works well if “server calls

receive before client calls

send”!!!

• Buffered communication

– Client send to a mailbox

– Server receives from a

mailbox

user server

user server

CS550: Advanced Operating Systems 27

• Unreliable channel

– Need acknowledgements
(ACKs)

– Applications handle ACKs

– ACKs for both request and
reply

• Reliable channel

– Reply acts as ACK for
request

– Explicit ACK for response

request

ACK

reply

ACK

U
se

r

S
e
rv

e
r

request

reply

ACK

U
se

r

S
e
rv

e
r

CS550: Advanced Operating Systems 28

• Reliable communication on unreliable
channels

– Transport protocol handles lost
messages

• Reliability introduces overhead

– Why?

CS550: Advanced Operating Systems 29

• Large size messages must be split and sent

• Packets get lost, arrive out-of-order
– A packet number is assigned (seq no) - used to

reassemble msgs

• How does the sender know if msg received?

• Acknowledgment-Options
– Ack each packet

• Pro?

• Con?

– Ack each message
• Pro?

• Con?

• Options depend on network characteristics

CS550: Advanced Operating Systems 30

• Sequential

– Serve one request at a time

– Can serve multiple requests by employing events and

asynchronous communication

• Concurrent

– Server spawns a process or thread to service each request

– Can also use a pre-spawned pool of threads/processes

(apache)

• Thus servers could be

– Pure-sequential, event-based, thread-based, process-based

CS550: Advanced Operating Systems 31

• Question:How can you scale the server

capacity?

– Buy bigger machine!

– Hide communication latency

– Distribution

– Replication (caching)

– …

CS550: Advanced Operating Systems 32

• Client-pull architecture
– Clients pull data from servers (by sending requests)

– Example: HTTP

– Pro: ?

– Con: ?

• Server-push architecture
– Servers push data to client

– Example: video streaming, stock tickers

– Pro: ?

– Con:?

• When/how-often to push or pull?

CS550: Advanced Operating Systems 33

• Architectural styles

• System architectures

• Discussion on Client-Server Model

• Readings

– Chapter

CS550: Advanced Operating Systems 34

CS550: Advanced Operating Systems 35

