CS 550:

Advanced Operating Systems

Project Ideas
Brainstorming

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 550
Advanced Operating Systems
January 27t, 2011



Developing a project proposal

dentify a problem
Review approaches to the problem
Propose an approach to a solution

Define, design, prototype an implementation to
evaluate your approach
— Could be a real system, simulation and/or theoretical

Write a technical report
Present your results




Distribuied Operaiing Sysiems

Distributed Operating Systems
Achieve a unified OS across machine boundaries

The opposite of virtualization, which creates
multiple virtual OS instances on one machine
Choose an OS to modify

— CPU scheduler =» load balancing

— Memory manager = shared memory

— File system =» leverage shared/parallel file systems

Choose a virtual machine to modify (e.g. Java)
Evaluate workloads for performance and scalability

3



Virtualization Impact for Daia-
intensive Computing

* Virtualization has overheads

« Quantify these overheads for a variety of
workloads
— Computational intensive
— Memory intensive
— Storage intensive
— Network intensive
— Across different virtualization technologies
— Across different hardware

« Survey the latest research in addressing
shortcomings of virtualization



Distributed Job Management

Goal:

— Maximize data locality in applications data access
patterns

Approach:
— Move application to data

Potential problems:
— Load balancing

Potential solutions:
— Move data to application sometimes

— Investigate work stealing algorithms for load
balancing in distributed job management



Automaitic parallelism discovery

* Most code is inherently sequential in nature =
this was OK while we doubled processor speeds
according to Moore’s Law

« Multi-core and manycore architectures are
making sequential codes inefficient

 How to parallelize existing codes without
burdening the programmer



 100~1000 cores per GPU

* Implement and compare various applications on GPUs
and CPUs



Data-intensive File Sysiems

* Implement a distributed file system
— Use of FUSE for a general POSIX interface

— Use structured distributed hash tables for distributed meta-
data management
« Can scale logarithmically with system size
« Can create network topology aware overlays

* Relaxed data access semantic to increase scalabllity
— eventual consistency on data modifications
— write-once read-many data access patterns

« Evaluation scalability and performance
— Compare to NFS, GPFS, PVES, Lustre, HDFS



Virtual Replicas in APC Sysiems

« High failure rate in modern HPC systems
— Large number of components
— Use of off-the-shelf unreliable components

 Failure rates dynamically varies based on
— System architecture and Workload

* Replication for fault detection (possible
tolerance)

* Independent virtual machines as replicas
Instead of stand-alone nodes



PVFS

* Modify the open source PVFS to achieve
Improvements In various areas:
— Fault tolerance
— High availability
— Metadata performance
— Scalabllity

 Compare PVFS to GPFS and Lustre for
various workloads

10



Cloud Computiing

* Explore Cloud Computing to construct
turn-key clusters with various software

stacks

« Compare cloud performance with grids
and clusters

» Explore variable pricing schemes,
utilization models, etc

11



* Explore the use of FUSE to implement
various file systems functionality not being
met by existing file systems

12



* Modify the OS scheduler to be aware of
threads and cache locality

13



TCP Performance

"CP performance Is sensitive to latency

‘une TCP to perform better over high
latency links

Implement reliability over UDP to offer
better performance

Compare to UDT

Find optimal number of TCP streams
automatically

14



Checkpoiniing

* Checkpointing Is used to implement
reliability

* Investigate novel approaches to achieve
reliable and fast checkpointing



MapReduce

Implement various applications on
MapReduce (Hadoop) and benchmark

their performance
Compare to other MapReduce frameworks
(Sector/Sphere)



* Implement a distributed sort
 Benchmark it on large datasets

17



* Implement a multi-threaded/process web
server and compare its performance to
Apache

18



* Benchmark the performance of various
web service implementations

19



* Implement a distributed monitoring system

« Compare to existing ones (Monalisa,
Ganglia, etc)

20



Quesiions




