

• Identify a problem

• Review approaches to the problem

• Propose an approach to a solution

• Define, design, prototype an implementation to

evaluate your approach

– Could be a real system, simulation and/or theoretical

• Write a technical report

• Present your results

2

• Distributed Operating Systems

• Achieve a unified OS across machine boundaries

• The opposite of virtualization, which creates

multiple virtual OS instances on one machine

• Choose an OS to modify

– CPU scheduler  load balancing

– Memory manager  shared memory

– File system  leverage shared/parallel file systems

• Choose a virtual machine to modify (e.g. Java)

• Evaluate workloads for performance and scalability
3

• Virtualization has overheads

• Quantify these overheads for a variety of

workloads

– Computational intensive

– Memory intensive

– Storage intensive

– Network intensive

– Across different virtualization technologies

– Across different hardware

• Survey the latest research in addressing

shortcomings of virtualization
4

• Goal:

– Maximize data locality in applications data access

patterns

• Approach:

– Move application to data

• Potential problems:

– Load balancing

• Potential solutions:

– Move data to application sometimes

– Investigate work stealing algorithms for load

balancing in distributed job management
5

• Most code is inherently sequential in nature 

this was OK while we doubled processor speeds

according to Moore’s Law

• Multi-core and manycore architectures are

making sequential codes inefficient

• How to parallelize existing codes without

burdening the programmer

6

• 100~1000 cores per GPU

• Implement and compare various applications on GPUs

and CPUs

7

• Implement a distributed file system

– Use of FUSE for a general POSIX interface

– Use structured distributed hash tables for distributed meta-

data management

• Can scale logarithmically with system size

• Can create network topology aware overlays

• Relaxed data access semantic to increase scalability

– eventual consistency on data modifications

– write-once read-many data access patterns

• Evaluation scalability and performance

– Compare to NFS, GPFS, PVFS, Lustre, HDFS
8

• High failure rate in modern HPC systems

– Large number of components

– Use of off-the-shelf unreliable components

• Failure rates dynamically varies based on

– System architecture and Workload

• Replication for fault detection (possible

tolerance)

• Independent virtual machines as replicas

instead of stand-alone nodes

• Modify the open source PVFS to achieve

improvements in various areas:

– Fault tolerance

– High availability

– Metadata performance

– Scalability

• Compare PVFS to GPFS and Lustre for

various workloads

10

• Explore Cloud Computing to construct

turn-key clusters with various software

stacks

• Compare cloud performance with grids

and clusters

• Explore variable pricing schemes,

utilization models, etc

11

• Explore the use of FUSE to implement

various file systems functionality not being

met by existing file systems

12

• Modify the OS scheduler to be aware of

threads and cache locality

13

• TCP performance is sensitive to latency

• Tune TCP to perform better over high

latency links

• Implement reliability over UDP to offer

better performance

• Compare to UDT

• Find optimal number of TCP streams

automatically

14

• Checkpointing is used to implement

reliability

• Investigate novel approaches to achieve

reliable and fast checkpointing

15

• Implement various applications on

MapReduce (Hadoop) and benchmark

their performance

• Compare to other MapReduce frameworks

(Sector/Sphere)

16

• Implement a distributed sort

• Benchmark it on large datasets

17

• Implement a multi-threaded/process web

server and compare its performance to

Apache

18

• Benchmark the performance of various

web service implementations

19

• Implement a distributed monitoring system

• Compare to existing ones (Monalisa,

Ganglia, etc)

20

21

