

• Layered protocols

• Remote Procedure Call (RPC)

• Issues:

– Parameter passing

– Binding

– Failure handling

– Performance and implementation issues

CS550: Advanced Operating Systems 2

• Protocols are agreements/rules on communication

• Protocols could be connection-oriented or

connectionless

CS550: Advanced Operating Systems 3

• A typical message as it appears on the network.

2-2

CS550: Advanced Operating Systems 4

• Goal: ?

• Sample Issues:

– how to encode a 0 Vs. 1?

– what voltage should be used?

– how long does a bit need to be signaled?

– what does the cable, plug, antenna, etc. look like?

• Examples:

– modems

– “knock once for yes, twice for no”

– X.21

CS550: Advanced Operating Systems 5

• Goal: ?

• Sample Issues:

– how big is a frame? (framing)

– can I detect an error in sending the frame? (error

control)

– what demarks the end of the frame?

– how to control access to a shared channel? (flow

control)

• Examples:

– Ethernet framing, Serial line IP (SLIP), Point-to-point

protocol (PPP)
CS550: Advanced Operating Systems 6

• Goal: ?

• Sample Issues:

– how to route packets that have to travel several

hops?

– Congestion control algorithm: traffic shaping, flow

specifications, and bandwidth reservation

– accounting - charge for use of the network

– fragment or combine packets depending on rules

of link layer

• Examples:

– IP
CS550: Advanced Operating Systems 7

• Goal: ?

• Sample Issues:

– how to order messages and detect duplicates

– error detection (corrupt packets) and

retransmission

– connectionless or connection-oriented

• Examples:

– TCP (transmission control protocol)

– UDP (universal datagram protocol)

CS550: Advanced Operating Systems 8

• Goal: ?

• Sample Issues:

– Session layer: Allows users on different machines

to establish sessions between them; Provides

dialog control, to keep track of which party is

currently talking, and synchronize

– Presentation layer: Encodes data in a standard

agreed upon way; Allows users to insert

checkpoints into long transfer

• Examples:

– eXternal Data Representation (XDR)

CS550: Advanced Operating Systems 9

• Goal: ?

• Sample Issues:

– when sending email, what demarks the subject

field

– how to represent cursor movement in a terminal

• Examples:
– Simple Mail Transport Protocol (SMTP), File Transfer Protocol

(FTP), Hyper-Text Transport Protocol (HTTP), Simple Network

Management Protocol (SNMP), Network File System (NFS),

Network Time Protocol (NTP), Net News Transport Protocol

(NNTP), X (X Window Protocol)

CS550: Advanced Operating Systems 10

• Middleware:

– An application that logically lives in the application layer

– Contains many general-purpose protocols that warrant their

own layers

CS550: Advanced Operating Systems 11

• Client-Server provides a mechanism for

services in distributed systems BUT

–requires explicit communication (send-

receive)

• Q: How do me make “distributed

computing look like traditional

(centralized) computing”?

• Can we use procedure calls?

CS550: Advanced Operating Systems 12

• In Distributed systems: the callee may be
on a different system

–Remote Procedure Call (RPC)

–NO EXPLICIT MESSAGE PASSING

• Goal: Make RPC look like local
procedure call

CS550: Advanced Operating Systems 13

• Parameter passing

• Binding

• Reliability/How to handle failures

–messages losses

–client crash

–server crash

• Performance and implementation issues

• Exception handling

• Interface definition

CS550: Advanced Operating Systems 14

a) Parameter passing in a
local procedure call: the
stack before the call to
read

b) The stack while the called
procedure is active

count=read(fd,buf,nbytes);

CS550: Advanced Operating Systems 15

• Parameters (in C):

–call-by-reference OR call-by-value

• Value parameter (e.g., fd, nbytes)

• Reference parameter (array buf)

• Many options are language dependent

CS550: Advanced Operating Systems 16

• Local procedure parameter passing

– Call-by-value

– Call-by-reference

• Remote procedure calls simulate this

through:

– Stubs – proxies

– Marshaling

• How about global variables?

CS550: Advanced Operating Systems 17

• Client makes procedure call (just like a

local procedure call) to the client stub

• Server is written as a standard procedure

• Stubs take care of packaging arguments

and sending messages

• Packaging is called marshaling

• Stub compiler generates stub

automatically from specs in an Interface

Definition Language (IDL)

CS550: Advanced Operating Systems 18

• Principle of RPC between a client and server program.

CS550: Advanced Operating Systems 19

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

CS550: Advanced Operating Systems 20

• Steps involved in doing remote computation through

RPC

CS550: Advanced Operating Systems 21

• Problem: different machines have

different data formats

– Intel: little endian, SPARC: big endian

• Solution: ?

CS550: Advanced Operating Systems 22

• Problem: how do we pass pointers?

– If it points to a well-defined data structure,

?

– What about data structures containing

pointers?

• Marshalling: transform

parameters/results into a byte stream

CS550: Advanced Operating Systems 23

• Problem: how does a client locate a

server?

• Binder can be a bottleneck

• Binder can do load balancing

CS550: Advanced Operating Systems 24

• Client unable to locate server: return error

• Lost request messages: simple timeout mechanisms

• Lost replies: timeout mechanisms
– Make operation idempotent

– Use sequence numbers, mark retransmissions

• Server failures: did failure occur before or after
operation?
– At least once semantics (SUNRPC)

– At most once

– No guarantee

– Exactly once: desirable but difficult to achieve

• Client failures

CS550: Advanced Operating Systems 25

• Reasons:

–server may be down

–new version of server but older client

• Solutions

–respond with error type “cannot locate

server”

–raise exception

CS550: Advanced Operating Systems 26

• Time Out

–Kernel starts timer when request sent

–If timer expires, resend message

–If message was lost - server cannot tell the

difference

–If message lost too many times ==> “cannot

locate server”

CS550: Advanced Operating Systems 27

• More difficult to handle

• Rely on timer again?

• Problem: Client’s kernel doesn't know why no

answer!

• Must distinguish between

–request/reply got lost?

–server slow

• Why?

CS550: Advanced Operating Systems 28

• When server crashes?
– After execution

– After receiving message but BEFORE execution

• Solutions:
– Wait until server reboots (or rebind)

– Give up immediately and report failure

– Guarantee nothing

– “exactly once semantics”

CS550: Advanced Operating Systems 29

• Client sends a request and crashes

–Computation active - but no parent active

–unwanted computation called “orphan”

• Orphan’s can create problems:?

• Solutions:

– Extermination:

– Reincarnation:

– Gentle reincarnation:

– Expiration:

CS550: Advanced Operating Systems 30

CS550: Advanced Operating Systems 31

