

• Wrap-up of RPC

• Case study: Sun RPC

• Extended RPC

– Lightweight RPCs

– Asynchronous RPC

– One-way RPC

• Remote Method Invocation (RMI)

– Design issues

– Case study: JAVA RMI

• Web Services
CS550: Advanced Operating Systems 2

• Remember “performance” one of the

most important requirements

• Performance depends on ?

• RPC Protocol (options)

–connection vs connectionless oriented

–standard vs. specialized

CS550: Advanced Operating Systems 3

• Choice of protocol

– Use existing protocol or design from scratch

– Packet size restrictions

– Reliability in case of multiple packet messages

– Flow control

• Copying costs are dominant overheads

– Need at least 2 copies per message

– As many as 7 copies

CS550: Advanced Operating Systems 4

• One of the most widely used RPC systems
– Also known as Open Network Computing (ONC)

• Originally developed by Sun, but now widely available on
other platforms (including Digital Unix)

• Sun RPC package has an RPC compiler (rpcgen) that
automatically generates the client and server stubs.

• RPC package uses XDR (eXternal Data Representation)
to represent data sent between client and server stubs.

• Has built-in representation for basic types (int, float,
char)

• Also provides a declarative language for specifying
complex data types

CS550: Advanced Operating Systems 6

1. Write RPC protocol specification file foo.x

2. Write server procedure fooservices.c

3. Write client application foomain.c

CS550: Advanced Operating Systems 10

• There is a tool for automating the creation

of RPC clients and servers.

• The program rpcgen does most of the

work for you.

• The input to rpcgen is a protocol definition

in the form of a list of remote procedures

and parameter types.

CS550: Advanced Operating Systems 11

4. rpcgen –C foo.x

foo_clnt.c (client stubs)

foo_svc.c (server main)

foo_xdr.c (xdr filters)

foo.h (shared header file)

CS550: Advanced Operating Systems 13

5. gcc -o fooclient foomain.c foo_clnt.c

foo_xdr.c -lnsl

• foomain.c is the client main() (and

possibly other functions) that call rpc

services via the client stub functions in

foo_clnt.c

• The client stubs use the xdr functions.

CS550: Advanced Operating Systems 14

6. gcc -o fooserver fooservices.c

foo_svc.c foo_xdr.c –lrpcsvc -lnsl

• fooservices.c contains the definitions of

the actual remote procedures.

CS550: Advanced Operating Systems 15

7. Copy the server fooserver to the

remote machine, and run it in the

background

8. Now you can call the remote procedure

on a local machine

• Useful reference:
– http://tools.ietf.org/html/rfc1831

CS550: Advanced Operating Systems 16

• Many RPCs occur between client and server on

same machine

– use a lightweight RPC mechanism (LRPC)

• Server S exports interface to remote procedures

• Client C on same machine imports interface

• OS kernel creates data structures including an

argument stack shared between S and C

CS550: Advanced Operating Systems 17

1. Copy args 4. Execute procedure and copy results

Client

User stub

Server

Kernel

stub

A
 A stack

3. Upcall 5. Return (trap) 2. Trap to Kernel

CS550: Advanced Operating Systems 18

• Asynchronous RPC

– Server can reply as soon as request is received and execute

procedure later

• Deferred-synchronous RPC

– Use two asynchronous RPCs

– Client needs a reply but can’t wait for it; server sends reply

via another asynchronous RPC

• One-way RPC

– Client does not even wait for an ACK from the server

CS550: Advanced Operating Systems 21

a) The interconnection between client and server in a

traditional RPC

b) The interaction using asynchronous RPC

2-12

CS550: Advanced Operating Systems 22

• A client and server interacting through two asynchronous

RPCs
2-13

CS550: Advanced Operating Systems 23

• RPCs applied to objects

– Class: object-oriented abstraction; module with

data and operations

– Separation between interface and

implementation

– Interface resides on one machine, implementation

on another

• RMIs support system-wide object references

– Parameters can be object references

CS550: Advanced Operating Systems 24

• When a client binds to a distributed object, load the
interface (“proxy”) into client address space

• Server stub is referred to as a skeleton

 CS550: Advanced Operating Systems 25

• Proxy: client stub

– Maintains server ID, endpoint, object ID

– Sets up and tears down connection with the

server

– Does serialization of local object parameters

– In practice, can be downloaded/constructed on

the fly

• Skeleton: server stub

– Does deserialization and passes parameters to

server and sends result to proxy

CS550: Advanced Operating Systems 26

• An object reference must contain enough information
to allow a client to bind to an object
– Object reference include server ID, endpoint, and object ID

– Have a local daemon per machine that keeps track of the
server-to-endpoint assignments

– Use a location server

– Include an implementation handle in the object reference

CS550: Advanced Operating Systems 28

• Static invocation

– Use predefined interface definitions

– Require that the interfaces of an objects are

known when client application is being developed

• Dynamic invocation

– A method invocation is composed at runtime

– An application selects at runtime which method it

will invoke at a remote objects

CS550: Advanced Operating Systems 29

• Server
– Defines interface and implements interface methods

– Server program
• Creates server object and registers object with “remote object”

registry

• Client
– Looks up server in remote object registry

– Uses normal method call syntax for remote methods

• Java tools
– rmic: java RMI stub compiler

– rmiregistry: java remote object registry

– rmid: java RMI activation system daemon

• Useful reference:
– http://java.sun.com/j2se/1.4/docs/guide/rmi/

CS550: Advanced Operating Systems 31

• Java supports Monitors: synchronized objects

– Serializes accesses to objects

• Options: block at the client or the server

– Block at server

• Can synchronize across multiple proxies

• Problem: what if the client crashes while blocked?

– Block at proxy

• Need to synchronize clients at different machines

• Explicit distributed locking necessary

CS550: Advanced Operating Systems 32

 “Web services” is an effort to build a

distributed computing platform for the Web

 Yet another one!

• Goals

– Enable universal interoperability

– Widespread adoption, ubiquity: fast!

– Enable (Internet scale) dynamic binding

• Support a service oriented architecture (SOA)

– Efficiently support both open (Web) and more constrained

environments

• Requirements

– Based on standards. Pervasive support is critical

– Minimal amount of required infrastructure is assumed

• Only a minimal set of standards must be implemented

– Very low level of application integration is expected

• But may be increased in a flexible way

– Focuses on messages and documents, not on APIs

 Web service applications are

encapsulated, loosely coupled Web

“components” that can bind

dynamically to each other

• Web Services are logically simple

– Standard mechanisms for describing, discovering,

and accessing services

– Encourage loose coupling; service-oriented

architecture

• Web Services are complex in practice

– Due to the wide variety of interactions that can occur

• Broad adoption is encouraging.

• For more information

– Web Services Architecture: http://www.w3.org/TR/ws-

arch/

CS550: Advanced Operating Systems 50

