CS 550:

Advanced Operating Systems

Remote Procedure Call &
Remote Method Invocation &
Web Services

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 550
Advanced Operating Systems
February 3, 2011

Ouiline

Wrap-up of RPC
Case study: Sun RPC

Extended RPC

— Lightweight RPCs
— Asynchronous RPC
— One-way RPC

Remote Method Invocation (RMI)
— Design issues
— Case study: JAVA RMI

Web Services

CS550: Advanced Operating Systems

Periorimance Issues

 Remember “performance” one of the
most Important requirements

* Performance depends on ?

* RPC Protocol (options)
—connection vs connectionless oriented
—standard vs. specialized

CS550: Advanced Operating Systems

Implementation Issues

« Choice of protocol
— Use existing protocol or design from scratch
— Packet size restrictions
— Reliability in case of multiple packet messages
— Flow control

« Copying costs are dominant overheads
— Need at least 2 copies per message
— As many as 7 copies

CS550: Advanced Operating Systems

Sun RPC

One of the most widely used RPC systems
— Also known as Open Network Computing (ONC)

Originally developed by Sun, but now widely available on
other platforms (including Digital Unix)

Sun RPC package has an RPC compiler (rpcgen) that
automatically generates the client and server stubs.

RPC package uses XDR (eXternal Data Representation)
to represent data sent between client and server stubs.

Has built-in representation for basic types (int, float,
char)

Also provides a declarative language for specifying
complex data types

CS550: Advanced Operating Systems 6

Example: RPC Programming

1. Write RPC protocol specification file foo.x
2. Write server procedure fooservices.c
3. Write client application foomain.c

CS550: Advanced Operating Systems 10

Example: RPCGEN

* There Is a tool for automating the creation
of RPC clients and servers.

* The program rpcgen does most of the
work for you.

* The input to rpcgen is a protocol definition
In the form of a list of remote procedures
and parameter types.

CS550: Advanced Operating Systems 11

4. rpcgen —C f00.X

foo _cInt.c (client stubs)
foo_svc.c (server main)

foo _xdr.c (xdr filters)

foo.h (shared header file)

CS550: Advanced Operating Systems

13

Example: Client Creation

5. gcc -o fooclient foomain.c foo_cint.c
foo_xdr.c -Insl

» foomain.c is the client main() (and
possibly other functions) that call rpc
services via the client stub functions In
foo_clnt.c

 The client stubs use the xdr functions.

CS550: Advanced Operating Systems 14

Example: Server Creation

6. gcc -0 fooserver fooservices.c
foo_svc.c foo xdr.c —Irpcsvc -Insl

 fooservices.c contains the definitions of
the actual remote procedures.

CS550: Advanced Operating Systems

15

Example: Execution

/. Copy the server fooserver to the
remote machine, and run it in the
background

8. Now you can call the remote procedure
on a local machine

» Useful reference:
— http://tools.ietf.org/html/rfc1831

CS550: Advanced Operating Systems

16

Lightweight RPCs

Many RPCs occur between client and server on
same machine
— use a lightweight RPC mechanism (LRPC)

Server S exports interface to remote procedures
Client C on same machine imports interface

OS kernel creates data structures including an
argument stack shared between S and C

CS550: Advanced Operating Systems 17

Client Server

A stack
<\

4. Execute procedure and copy results

user [s stub stub /\
Kernel K_/ [r

2. Trap to Kernel 3. Upcal 5. Return (trap)

/

92)

1. Copy arg

|4

CS550: Advanced Operating Systems 18

Other RPC Models

« Asynchronous RPC

— Server can reply as soon as reguest is received and execute
procedure later

« Deferred-synchronous RPC
— Use two asynchronous RPCs

— Client needs a reply but can’t wait for it; server sends reply
via another asynchronous RPC

 One-way RPC
— Client does not even wait for an ACK from the server

CS550: Advanced Operating Systems

21

Asynchronous RPC

Client Wait for result Client Wait for acceptance
ﬂ v ﬂ 3
Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —» Server Call local procedure Time —»

and return results

(@) (b)

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

CS550: Advanced Operating Systems

22

Deferred Synchronous RPC

« A client and server interacting through two asynchronous
RPCs

A&t for Interrupt client
acceptance
Client eeptan]
A >
Call remote Return et
d from call eturn
PIBGEEHrE results Acknowledge
Accept
Request request
SEIVEL e ——————————— - X
Call local procedure Time ——»
Call client with
ohe-way RPC

CS550: Advanced Operating Systems 23

Remoie Method Invocation (RMI)

 RPCs applied to objects

— Class: object-oriented abstraction; module with
data and operations

— Separation between interface and
Implementation

— Interface resides on one machine, implementation
on another

* RMIs support system-wide object references
— Parameters can be object references

CS550: Advanced Operating Systems 24

Disiributed Objecis

Client machine

Client

Proxy

Same
Client i”tefi‘ce
invokes - as object
a method
/ Skeleton

invokes

at object

Client OS

Server machine

[

same method

Object
Server e
\:|< State
D D D‘ Method
‘\‘H
[[~ Interface
Skeleton
Server OS

J

Network

w

Marshalled invocation

is passed across network

When a client binds to a distributed object, load the
interface (“proxy”) into client address space

Server stub is referred to as a skeleton

CS550: Advanced Operating Systems

25

Proxies and Skeletons

* Proxy: client stub
— Maintains server 1D, endpoint, object ID

— Sets up and tears down connection with the
server

— Does serialization of local object parameters

— In practice, can be downloaded/constructed on
the fly

o Skeleton: server stub

— Does deserialization and passes parameters to
server and sends result to proxy

CS550: Advanced Operating Systems

26

Binding a Client to an Object

An object reference must contain enough information
to allow a client to bind to an object

— ODbject reference include server ID, endpoint, and object ID

— Have a local daemon per machine that keeps track of the
server-to-endpoint assignments

— Use a location server

— Include an implementation handle in the object reference

CS550: Advanced Operating Systems 28

Static vs. Dynamic RMI

« Static invocation
— Use predefined interface definitions

— Require that the interfaces of an objects are
known when client application is being developed

« Dynamic invocation
— A method invocation is composed at runtime

— An application selects at runtime which method it
will invoke at a remote objects

CS550: Advanced Operating Systems

29

Java RMI

Server
— Defines interface and implements interface methods

— Server program

» Creates server object and registers object with “remote object”
reqgistry

Client

— Looks up server in remote object registry

— Uses normal method call syntax for remote methods
Java tools

— rmic: java RMI stub compiler

— rmiregistry: java remote object registry

— rmid: java RMI activation system daemon

Useful reference:
— http://java.sun.com/j2se/1.4/docs/guide/rmi/

CS550: Advanced Operating Systems

31

Java RWMI

« Java supports Monitors: synchronized objects
— Serializes accesses to objects

* Options: block at the client or the server

— Block at server
« Can synchronize across multiple proxies
« Problem: what if the client crashes while blocked?

— Block at proxy
* Need to synchronize clients at different machines
« Explicit distributed locking necessary

CS550: Advanced Operating Systems

32

“Web services” is an effort to build a
distributed computing platform for the Web

Yet another one!

Designing Web Services

Goals
— Enable universal interoperability
— Widespread adoption, ubiquity: fast!
— Enable (Internet scale) dynamic binding
« Support a service oriented architecture (SOA)
— Efficiently support both open (Web) and more constrained
environments
Requirements
— Based on standards. Pervasive support is critical

— Minimal amount of required infrastructure is assumed
« Only a minimal set of standards must be implemented
— Very low level of application integration is expected
« But may be increased in a flexible way
— Focuses on messages and documents, not on APIs

Web Services Model

Web service applications are
encapsulated, loosely coupled Web
“components” that can bind
dynamically to each other

Web Services Summary

Web Services are logically simple

— Standard mechanisms for describing, discovering,
and accessing services

— Encourage loose coupling; service-oriented
architecture

Web Services are complex in practice
— Due to the wide variety of interactions that can occur
Broad adoption is encouraging.

For more information

— Web Services Architecture: http://www.w3.0rg/TR/ws-
arch/

X

Quesiions

|

CS550: Advanced Operating Systems

50

