

• Multicore processors are taking over,

manycore is coming

• The processor is the “new transistor”

• This is a “sea change” for HW designers

and especially for programmers

CS550: Advanced Operating Systems 2

• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

CS550: Advanced Operating Systems 3

• Is it good enough to just have multiple

programs running simultaneously?

• We want per-program performance gains!

 Crysis, Crytek 2007

CS550: Advanced Operating Systems 4

• Goal: to provide interleaved execution of several processes

to give an illusion of many simultaneously executing

processes.

• Computer can be a single-processor or multi-processor

machine.

• The OS must keep track of the state for each active process

and make sure that the correct information is properly

installed when a process is given control of the CPU.

• Many resource allocation issues to consider:

– How to give each process a chance to run?

– How is main memory allocated to processes?

– How are I/O devices scheduled among processes? CS550: Advanced Operating Systems 5

• A process is a “program” with its own address space.
– A process has at least one thread!

• A thread of execution is an independent sequential
computational task with its own control flow, stack,
registers, etc.
– There can be many threads in the same process sharing

the same address space

– There are several APIs for threads in several languages.
We will cover the PThread API in C. CS550: Advanced Operating Systems 6

• Threads/processes are run sequentially on

one core or simultaneously on multiple

cores
– The operating system schedules threads and

processes by moving them between states

– # threads running = # logical cores on CPU

– Many threads can be “ready” or “waiting”

Based on diagram from Silberschatz, Galvin, and Gagne CS550: Advanced Operating Systems 7

• Is threading useful without multicore?

– Yes, because of I/O blocking!

• Canonical web server example:
global workQueue;

dispatcher() {

 createThreadPool();

 while(true) {

 task = receiveTask();

 if (task != NULL) {

 workQueue.add(task);

 workQueue.wake();

 }

 }

}

worker() {

 while(true) {

 task = workQueue.get();

 doWorkWithIO(task);

 }

}
CS550: Advanced Operating Systems 8

CS550: Advanced Operating Systems 9

