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Motivation and definitions
Processes

Threads

Synchronization constructs

Speedup issues
— Overhead

— Caches

— Amdahl’s Law
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How can we make threads
cooperaie?

« |f task can be completely decoupled into
Independent sub-tasks, cooperation required is

minimal
— Starting and stopping communication
* Trouble when they need to share data!

« Race conditions:

Scenario 1 Scenario 2
Thread Al readX incX  writeX Thread AlreadX incX writeX
Thread B readX IncX  writeX Thread B readX IncX writeX
time --> time -->

« We need to force some serialization
— Synchronization ¢gnstructs daq that! .
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Lock /| mutex semantics

* A lock (mutual exclusion, mutex) guards a
critical section in code so that only one thread at
a time runs its corresponding section

— acquire a lock before entering crit. section
— releases the lock when exiting crit. section
— Threads share locks, one per section to synchronize
 |If a thread tries to acquire an in-use lock, that
thread Is put to sleep

— When the lock is released, the thread wakes up with
the lock! (blocking call)
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Lock / muiex syniax
example in PThreads

pthread_mutex_t lock = PTHREAD MUTEX_INITIALIZER;

" hreadA() { threadB() {
int temp = foo(x): Int temp = foo(9000);

pthread_mutex_lock(&lock): pthread_mutex_lock(&lock);
X = bar(x) + temp; baz(x) + bar(x);
pthread_mutex_unlock(&lock); X *=temp;
// continue. .. pthread_mutex_unlock(&lock);
Thread Al readX ... acquireLock => SLEEP |, / COmmue'WAKE w/ LOCK.. releasel.ock
Thread Bl ... acquireLockreadX readX WriteX releaseLock

time -->

* But locks don’t solve everything...

» Problem: potential deadlock!

threadA() { threadB() {
pthread_mutex_lock(&lockl); pthread mutex_lock(&lock?2);

pthread_mutex_lock(&lock2); pthread mutex_lock(&lockl);
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Condition variable semantics

« A condition variable (CV) is an object that threads can
sleep on and be woken from

— Wait or sleep ona CV
— Signal a thread sleeping on a CV to wake
— Broadcast all threads sleeping on a CV to wake
— | like to think of them as thread pillows...
« Always associated with a lock!
— Acquire a lock before touching a CV
— Sleeping on a CV releases the lock in the thread’s sleep
— |If a thread wakes from a CV it will have the lock

* Multiple CVs often share the same lock
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Speedup issues: overhead

* More threads does not always mean
better!

— | only have two cores...

— Threads can spend too much time
synchronizing (e.g. waiting on locks and
condition variables)

* Synchronization is a form of overhead

— Also communication and creation/deletion
overhead
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Speedup issues: caches

« Caches are often one of the largest
considerations in performance

* For multicore, common to have independent L1
caches and shared L2 caches

e Can drive domain
decomposition design

|

(a) “Horizontal” Decomposition (b) *Vertical” Decomposition
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Speedup Issues: Amdahl’s Law

« Applications can almost never be completely parallelized; some serial code remains

Parallel portion

Time
Serial portion H
1 2 3 4 5 ]

Number of Processors
« sis serial fraction of program, P is # of processors

 Amdahl’s law:
Speedup(P) = Time(1) / Time(P)
<1/(s+((1-s)/P)),andas P — «

<1/s

« Even if the parallel portion of your application speeds up perfectly, your performance may
be Ilmlted by the Sequential porEiSQ)[Sb: Advanced Operating Systems 10



Pseudo Quiz

» Super-linear speedup Is possible

* Multicore Is hard for architecture people,
but pretty easy for software

* Multicore made it possible for Google to
search the web
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Quiz Answers!

« Super-linear speedup is possible
True: more cores means simply more cache accessible
(e.g. L1), so some problems may see super-linear
speedup

« Multicore is hard for architecture people, but pretty easy
for software
False: parallel processors put the burden of concurrency
largely on the SW side

« Multicore made it possible for Google to search the web
False: web search and other Google problems have
huge amounts of data. The performance bottleneck
becomes RAM amounts and speeds! (CPU-RAM gap)
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Summary

Threads can be awake and ready/running on a core or
(or blocking 1/0O)

Use PThreads to thread C code and use your multicore processors
to their full extent!

- pthread create(), pthread join(), pthread exit()
- pthread mutex t, pthread mutex lock(), pthread mutex unlock()
- pthread cond t, pthread cond wait(), pthread cond signal(),

pthread cond broadcast ()

Domain decomposition is a common technique for multithreading
programs

Watch out for
— Synchronization
(for sharing data, decomposing)
and algorithm parallelizability

Reading Ch. 3
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Programming Assignment

« Part 1: Peer-to-peer file sharing with centralized

Index

Peer 1

Peer 2

4: obtain (foo.avi) \

1: registry(node 1,foo.avi)

.~ Foo.avi: Nodel

Bar.c: Node 1

Peer 3

Foo.avi: Node 2
2: search(foo.avi) T ..
/ T . MYPIC.glf: Node 3
3: Nodel, node?2 I

ndexing server
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gramming Assignment

« Two entities

— Central indexing server
« List of all files at peers

— Peer (both client and server)
« [client] Search for a file at the indexing server
« Download file from a peer, update indexing server
* [server] listen for download requests and service

— Provide concurrency at the central indexing
server and peer
* Feel free to use any prog language and any
mechanism (threads, RPC, RMI, sockets,
semaphores...)
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