CS 550:
Advanced Operating Systems

Processes and Threads

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 550
Advanced Operating Systems
February 17, 2011



Motivation and definitions
Processes

Threads

Synchronization constructs

Speedup issues
— Overhead

— Caches

— Amdahl’s Law

CS550: Advanced Operating Systems



How can we make threads
cooperaie?

« |f task can be completely decoupled into
Independent sub-tasks, cooperation required is

minimal
— Starting and stopping communication
* Trouble when they need to share data!

« Race conditions:

Scenario 1 Scenario 2
Thread Al readX incX  writeX Thread AlreadX incX writeX
Thread B readX IncX  writeX Thread B readX IncX writeX
time --> time -->

« We need to force some serialization
— Synchronization ¢gnstructs daq that! .

S550: Advanced Operating Systems



Lock /| mutex semantics

* A lock (mutual exclusion, mutex) guards a
critical section in code so that only one thread at
a time runs its corresponding section

— acquire a lock before entering crit. section
— releases the lock when exiting crit. section
— Threads share locks, one per section to synchronize
 |If a thread tries to acquire an in-use lock, that
thread Is put to sleep

— When the lock is released, the thread wakes up with
the lock! (blocking call)

CS550: Advance d Operating Systems 4



Lock / muiex syniax
example in PThreads

pthread_mutex_t lock = PTHREAD MUTEX_INITIALIZER;

" hreadA() { threadB() {
int temp = foo(x): Int temp = foo(9000);

pthread_mutex_lock(&lock): pthread_mutex_lock(&lock);
X = bar(x) + temp; baz(x) + bar(x);
pthread_mutex_unlock(&lock); X *=temp;
// continue. .. pthread_mutex_unlock(&lock);
Thread Al readX ... acquireLock => SLEEP |, / COmmue'WAKE w/ LOCK.. releasel.ock
Thread Bl ... acquireLockreadX readX WriteX releaseLock

time -->

* But locks don’t solve everything...

» Problem: potential deadlock!

threadA() { threadB() {
pthread_mutex_lock(&lockl); pthread mutex_lock(&lock?2);

pthread_mutex_lock(&lock2); pthread mutex_lock(&lockl);

} CS550: Advanced OTrating Systems



Condition variable semantics

« A condition variable (CV) is an object that threads can
sleep on and be woken from

— Wait or sleep ona CV
— Signal a thread sleeping on a CV to wake
— Broadcast all threads sleeping on a CV to wake
— | like to think of them as thread pillows...
« Always associated with a lock!
— Acquire a lock before touching a CV
— Sleeping on a CV releases the lock in the thread’s sleep
— |If a thread wakes from a CV it will have the lock

* Multiple CVs often share the same lock

CS550: Advanced Operating Systems



Motivation and definitions
Processes

Threads

Synchronization constructs

Speedup issues
— Overhead

— Caches

— Amdahl’s Law

CS550: Advanced Operating Systems



Speedup issues: overhead

* More threads does not always mean
better!

— | only have two cores...

— Threads can spend too much time
synchronizing (e.g. waiting on locks and
condition variables)

* Synchronization is a form of overhead

— Also communication and creation/deletion
overhead

CS550: Advanced Operating Systems



Speedup issues: caches

« Caches are often one of the largest
considerations in performance

* For multicore, common to have independent L1
caches and shared L2 caches

e Can drive domain
decomposition design

|

(a) “Horizontal” Decomposition (b) *Vertical” Decomposition

CS550: Advanced Operating Systems 9



Speedup Issues: Amdahl’s Law

« Applications can almost never be completely parallelized; some serial code remains

Parallel portion

Time
Serial portion H
1 2 3 4 5 ]

Number of Processors
« sis serial fraction of program, P is # of processors

 Amdahl’s law:
Speedup(P) = Time(1) / Time(P)
<1/(s+((1-s)/P)),andas P — «

<1/s

« Even if the parallel portion of your application speeds up perfectly, your performance may
be Ilmlted by the Sequential porEiSQ)[Sb: Advanced Operating Systems 10



Pseudo Quiz

» Super-linear speedup Is possible

* Multicore Is hard for architecture people,
but pretty easy for software

* Multicore made it possible for Google to
search the web

CS550: Advanced Operating Systems

11



Quiz Answers!

« Super-linear speedup is possible
True: more cores means simply more cache accessible
(e.g. L1), so some problems may see super-linear
speedup

« Multicore is hard for architecture people, but pretty easy
for software
False: parallel processors put the burden of concurrency
largely on the SW side

« Multicore made it possible for Google to search the web
False: web search and other Google problems have
huge amounts of data. The performance bottleneck
becomes RAM amounts and speeds! (CPU-RAM gap)

CS550: Advanced Operating Systems 12



Summary

Threads can be awake and ready/running on a core or
(or blocking 1/0O)

Use PThreads to thread C code and use your multicore processors
to their full extent!

- pthread create(), pthread join(), pthread exit()
- pthread mutex t, pthread mutex lock(), pthread mutex unlock()
- pthread cond t, pthread cond wait(), pthread cond signal(),

pthread cond broadcast ()

Domain decomposition is a common technique for multithreading
programs

Watch out for
— Synchronization
(for sharing data, decomposing)
and algorithm parallelizability

Reading Ch. 3
Programming Assignme At fogrtdpreraing Systems 13



Programming Assignment

« Part 1: Peer-to-peer file sharing with centralized

Index

Peer 1

Peer 2

4: obtain (foo.avi) \

1: registry(node 1,foo.avi)

.~ Foo.avi: Nodel

Bar.c: Node 1

Peer 3

Foo.avi: Node 2
2: search(foo.avi) T ..
/ T . MYPIC.glf: Node 3
3: Nodel, node?2 I

ndexing server

CS550: Advanced Operating Systems

14



gramming Assignment

« Two entities

— Central indexing server
« List of all files at peers

— Peer (both client and server)
« [client] Search for a file at the indexing server
« Download file from a peer, update indexing server
* [server] listen for download requests and service

— Provide concurrency at the central indexing
server and peer
* Feel free to use any prog language and any
mechanism (threads, RPC, RMI, sockets,
semaphores...)

S550: Advanced Operating Systems

15



X

Quesiions

|

CS550: Advanced Operating Systems

16



