# CS 550: Advanced Operating Systems

## Naming

#### **Wei Tang**

Computer Science Department Illinois Institute of Technology

CS 550 Advanced Operating Systems February 24<sup>th</sup>, 2011

## **Outline**

- Definition
  - Names, Identifiers and Addresses
- Name spaces
- Name resolution
- Example: The Domain Name System
- Example: X.500, LDAP

## Naming

- A name in a distributed system is a string of bits or characters that is refer to an entity
  - Example of entity?

Hosts, printers, disks, files,

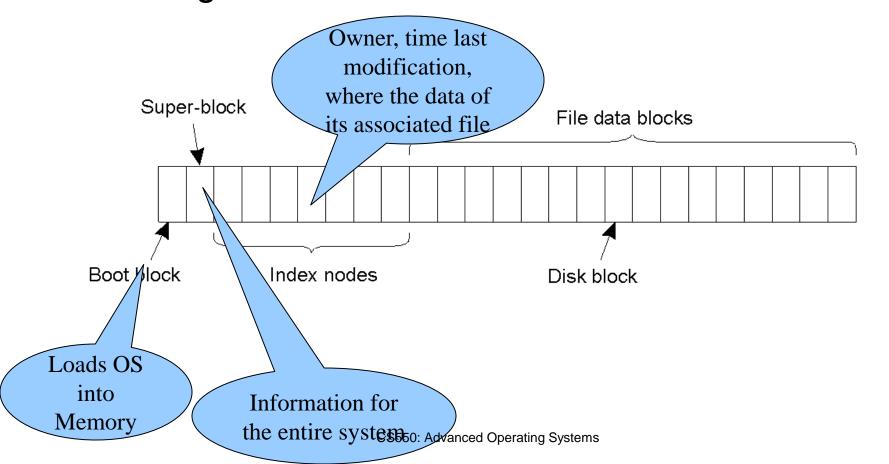
Processes, users, mailboxes, news groups,

Web pages, graphical windows, message, network connections,

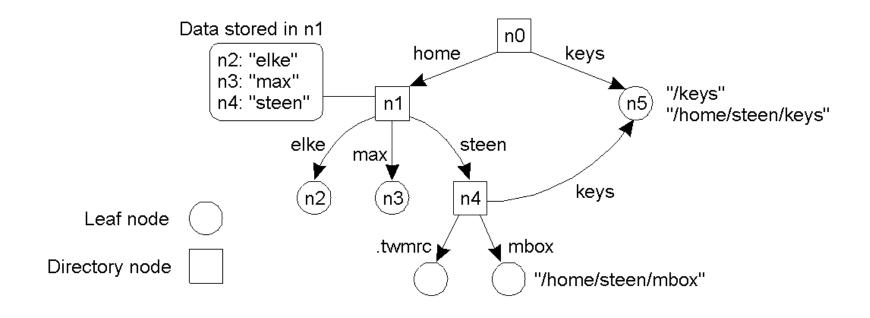
And so on.....

## Naming

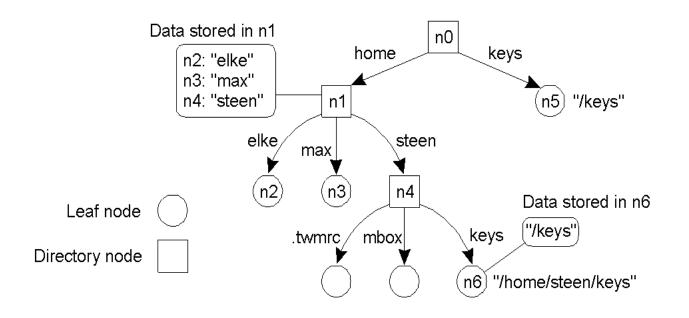
- Three types of names:
  - Address: the name of an access point to an entity
  - Identifier:
    - An identifier refers to at most one entity
    - Each entity is referred to by at most one identifier
    - An identifier always refers to the same entity
  - Human-friendly name:
    - · E.g. unix file name, DNS names
- Names are always organized in a name space
  - A name space is an organization mechanism for a group of names.


## Name Spaces

- Directed acyclic graph (DAG)
  - The graph does not have a cycle



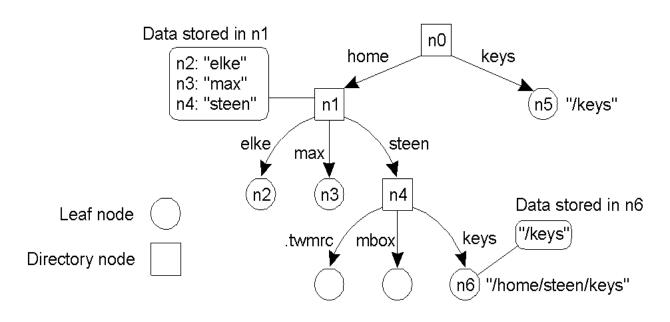

## Name Spaces


 The general organization of the UNIX file system implementation on a logical disk of contiguous disk blocks.



#### Hard Link

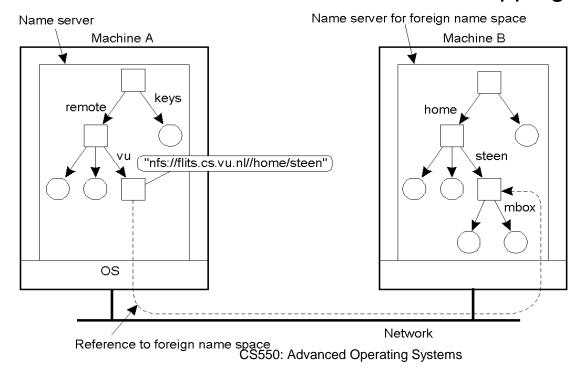



## Symbolic Link



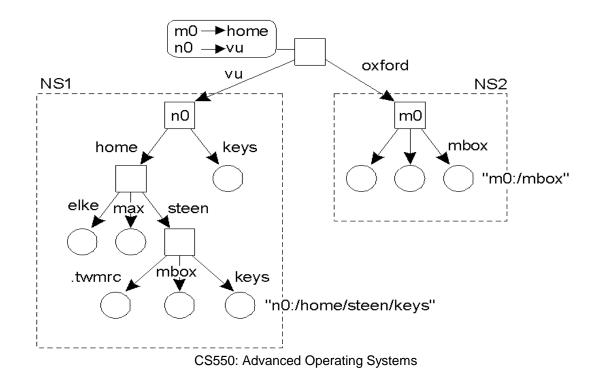
CS550: Advanced Operating Systems

#### Name Resolution


Name resolution: the process of looking up a name



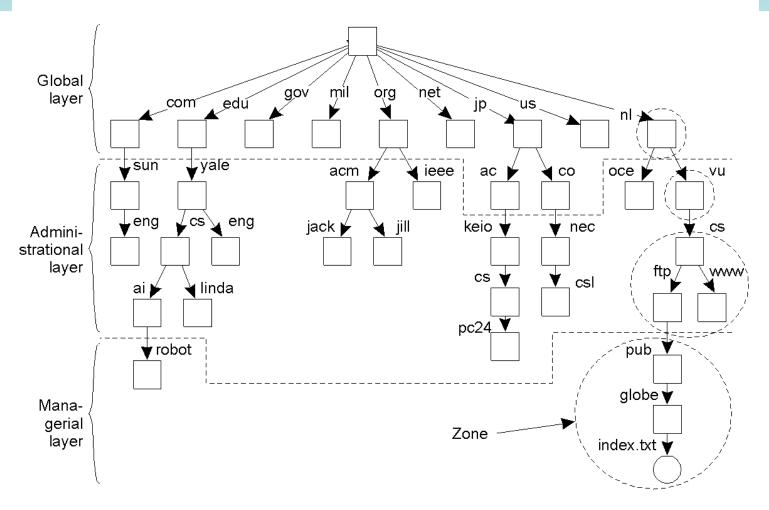
- Ways to merge different names spaces
  - Mounting
  - DEC's Global Name Service (GNS)


## Name Resolution: Mounting

- NFS mount protocol: map a remote node onto local DAG
  - Remote files are accessed using local names! (location independence)
  - OS maintains a mount table with the mappings



#### Name Resolution: GNS


- Another way to merge different name spaces, DEC's Global Name Service (GNS)
  - To add a new root node and to make the existing root nodes its children



## Implementing Name Spaces

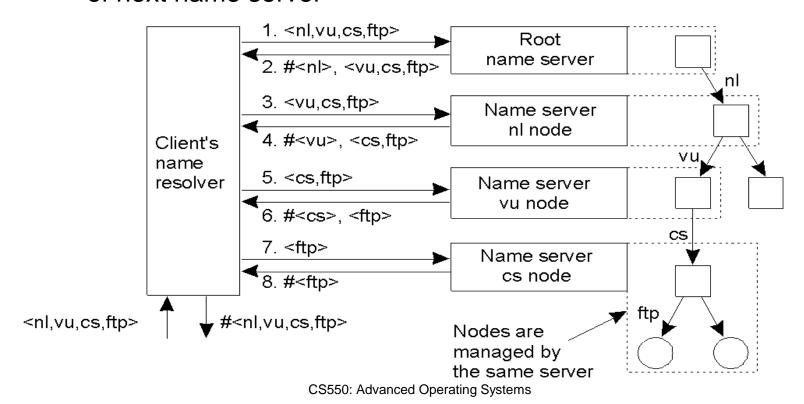
- Naming service: a service that allows users and processes to add, remove and lookup names
- Name spaces for large-scale widely distributed systems are typically organized hierarchically
- Name space is distributed and has three logical layers
  - Global layer: formed by highest-level nodes, rarely changed
  - Administrational layer: directory nodes within a single organization
  - Managerial layer: nodes may change frequently

## Name Space Distribution Example



## Name Space Distribution

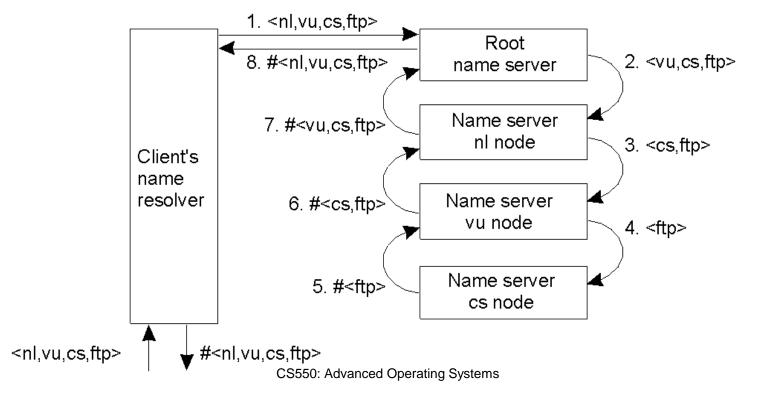
| Item                            | Global    | Administration al | Managerial      |
|---------------------------------|-----------|-------------------|-----------------|
| Geographical scale of network   | Worldwide | Organization      | Department      |
| Total number of nodes           | Few       | Many              | Vast<br>numbers |
| Responsiveness to lookups       | Seconds   | Milliseconds      | Immediate       |
| Update propagation              | Lazy      | Immediate         | Immediate       |
| Number of replicas              | Many      | None or few       | None            |
| Is client-side caching applied? | Yes       | Yes               | Sometimes       |


- A comparison between name servers for implementing nodes from a large-scale name space partitioned into a global layer, as an administrational layer, and a managerial layer.
- The more stable a layer, the longer are the lookups valid (and can be cached longer)

#### Name resolution

- Name resolution: The process of looking up a name
- Two techniques: iterative and recursive

## Implementing Name Resolution


- Iterative name resolution
  - Start with the root
  - Each layer resolves as much as it can and returns address of next name server



## Implementing Name Resolution

#### Recursive name resolution

- Start at the root
- Each layer resolves as much as it can and hands the rest to the next layer



### Which is better?

- Disadvantage of recursive name resolution
  - Higher performance demand on each name server
- Advantages of recursive name resolution
  - Caching possible at name servers, why?
  - Communication cost reduced

## Case Studies

- So far, we have discussed:
  - Definition of name
  - Name space
  - Name resolution
- Now, let's look at some naming service systems (aka directory service systems)
  - DNS
  - LDAP

# Domain Name Space

- One of the largest distributed naming services
- Primarily used for looking up host addresses and mail servers
- Comparable to a telephone book
- Its name space is hierarchically organized as a rooted tree
- DNS also maintains an inverse mapping of IP addresses to host names

# The DNS Name Space

| Type of record | Associate d entity | Description                                                   |  |
|----------------|--------------------|---------------------------------------------------------------|--|
| SOA            | Zone               | Holds information on the represented zone                     |  |
| А              | Host               | Contains an IP address of the host this node represents       |  |
| MX             | Domain             | Refers to a mail server to handle mail addressed to this node |  |
| SRV            | Domain             | Refers to a server handling a specific service                |  |
| NS             | Zone               | Refers to a name server that implements the represented zone  |  |
| CNAME          | Node               | Symbolic link with the primary name of the represented node   |  |
| PTR            | Host               | Contains the canonical name of a host                         |  |
| HINFO          | Host               | Holds information on the host this node represents            |  |
| TXT            | Any kind           | Contains any entity-specific information considered useful    |  |

# **DNS** Implementation

- DNS name space is divided into a global and an administrational layer
- Each zone is implemented by a name server, which is always replicated
- Example:

| Name                              | Record type | Record value                              |  |
|-----------------------------------|-------------|-------------------------------------------|--|
| cs.vu.nl                          | SOA         | star (1999121502,7200,3600,2419200,86400) |  |
| cs.vu.nl                          | NS          | star.cs.vu.nl                             |  |
| cs.vu.nl                          | NS          | top.cs.vu.nl )Name Servers                |  |
| cs.vu.nl                          | NS          | solo.cs.vu.nl                             |  |
| cs.vu.nl                          | TXT         | "Vrile Universiteit - Math. & Comp. Sc."  |  |
| cs.vu.nl                          | MX          | 1 zephyr.cs.vu.hl                         |  |
| cs.vu.nl                          | MX          | 2 tornado.cs.vu.nl) Mail Servers          |  |
| cs.vu.nl                          | MX          | 3 star.cs.vu.nl                           |  |
| star.cs.vu.nl                     | HINFO       | Sun Unix                                  |  |
| star.cs.vu.nl                     | MX          | 1 star.cs.vu.nl                           |  |
| star.cs.vu.nl                     | MX          | 10 zephyr.cs.vu.nl                        |  |
| star.cs.vu.nl                     | Α           | 130.37.24.6                               |  |
| star.cs.vu.nl                     | Α           | 192.31.231.42                             |  |
| zephyr.cs.vu.nl                   | HINFO       | Sun Unix                                  |  |
| zephyr.cs.vu.nl                   | MX          | 1 zephyr.cs.vu.nl                         |  |
| zephyr.cs.vu.nl                   | MX          | 2 tornado.cs.vu.nl                        |  |
| zephyr.cs.vu.nl                   | Α           | 192.31.231.66                             |  |
| www.cs.vu.nl                      | CNAME       | soling.cs.vu.nl                           |  |
| ftp.cs.vu.nl                      | CNAME       | soling.cs.vu.nl                           |  |
| soling.cs.vu.nl                   | HINFO       | Sun Unix                                  |  |
| soling.cs.vu.nl                   | MX          | 1 soling.cs.vu.nl                         |  |
| soling.cs.vu.nl                   | MX          | 10 zephyr.cs.vu.nl                        |  |
| soling.cs.vu.nl                   | Α           | 130.37.24.11                              |  |
| laser.cs.vu.nl                    | HINFO       | PC MS-DOS                                 |  |
| laser.cs.vu.nl                    | Α           | 130.37.30.32                              |  |
| vucs-das.cs.vu.nl                 | PTR         | 0.26.37.130.in-addr.arpa                  |  |
| VCS5502Advanced Operating Systems |             | 130.37.26.0                               |  |

## Attribute-based Naming

- Flat and structured names generally provide a unique and location-independent way of referring to entities.
- How to identify an entity merely by a description?
- Describe an entity in terms of (attribute, value)
  pairs, generally referred to as attribute-based
  naming.
- Structured Naming -> naming systems
- Attribute-based Naming -> directory service

# X.500 Directory Service

- OSI Standard
- Directory service: special kind of naming service where:
  - Clients can lookup entities based on attributes instead of full name
  - Real-world example: Yellow pages: look for a plumber

#### LDAP

- Lightweight Directory Access Protocol (LDAP)
  - LDAP: Simplified version of X.500
  - Widely used for Internet services
  - Application-level protocol, uses TCP
  - Lookups and updates can use strings instead of OSI encoding
  - Use master servers and replicas servers for performance improvements
  - Example LDAP implementations:
    - Active Directory (Windows 2000)
    - Novell Directory services
    - iPlanet directory services (Netscape)
    - Typical uses: user profiles, access privileges, network resources

#### LDAP

- LDAP originated at the University of Michigan.
- LDAP can be used as a front-end to X.500 or stand-alone.
- LDAP is now available commercially from a number of sources (including Netscape)
- Refs:
  - Netscape LDAP server docs
  - U. of Michigan LDAP docs
  - www.openldap.org docs
  - RFCs: 1777, 1773, 1823, ...

# LDAP Name Space

- Portions of namespace are contained on each LDAP server
  - These portions are sometimes called partitions
  - Some servers cooperate to provide the same portion
- Each entry on an LDAP server is uniquely identified by its distinguished name (DN for short)
  - Each DN is a sequence of attribute=value pairs
- In X.500, the theory is that each DN is globally unique; in LDAP, the theory is that the combination of the LDAP host plus the DN are globally unique

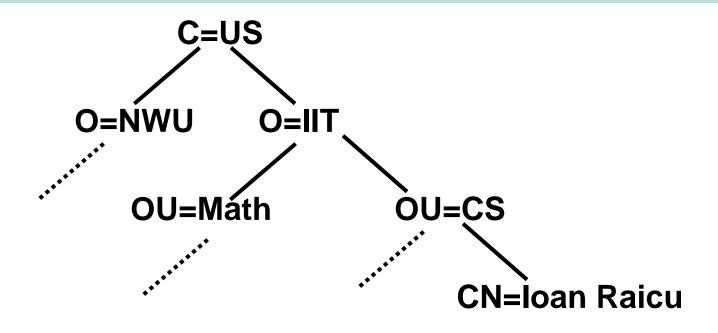
### **Attributes**

 The attributes can be anything, but there is a standard hierarchy used (for a *global* LDAP namespace):

c country name

o organization name

OU organizational unit


**CN** common name

L locality name

state or province

**STREET** street address

# Sample DN & Hierarchy

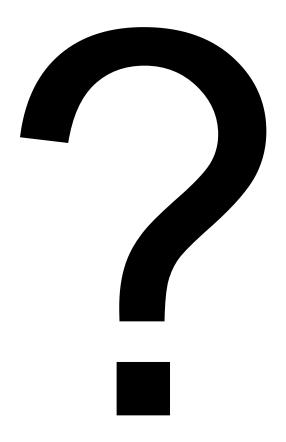


dn: CN=loan Raicu, OU=CS, O=IIT, C=US

## LDAP Services

#### LDAP ObjectClass

 LDAP uses the concept of object classes to define which attributes are allowed for objects of any given type


#### LDAP replication

- LDAP servers can be set to replicate some or all of their data, on a push or a pull basis, using simple authentication or certificate-based authentication
- Security and access control
  - LDAP provides for a complex level of access control instances, or ACIs

# Summary

- Names
- Name spaces
- Name resolution
- Example: The Domain Name System
- Example: X.500, LDAP
- Readings:
  - Chpt 5 of AST

## Questions

