CS 550:

Advanced Operating Systems

Synchronization

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 550
Advanced Operating Systems
March 1¢, 2011

QOuiline

Clock synchronization
— Physical clocks
— Synchronization algorithms

Logical clock
— Lamport timestamps

Election algorithms

— Bully algorithm

— Ring algorithm

Distributed mutual exclusion
— Centralized algorithm

— Distributed algorithm

— Token ring algorithm

DIStrI bUted d ead I C)(Q'l'g(swvanced Operating Systems

Canonical Problems in Disiribuied
Sysiems

Time ordering and clock synchronization
Leader election

Mutual exclusion

Distributed transactions

Deadlock detection

CS550: Advanced Operating Systems

« Solar day

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

At the transit of the sun

n days later, the earth

has rotated fewer
than 360°

Earth on day O at the
transit of the sun

To distant galaxy

To distant galaxy

Earth on day n at the
transit of the sun

CS550: Advanced Operating Systems 4

Physical Clocks

Coordinated universal time (UTC) — international standard
based on atomic time

— Add leap seconds to be consistent with astronomical time
— UTC broadcast on radio (satellite and earth)
— Receivers accurate to 0.1 — 10 ms

012345672891
AT T

0111213141516 17181920 21 22 23 24 25
| | | | | |
|

Solar 01 2 34 5 6 7 8 91 12131415 16 17 18192122324 25
seconds T T—T—T—T—t+—+y—FF+++—

\/

Leap seconds introduced into UTC to
get it in synch with TAI

CS550: Advanced Operating Systems

Clock Synchronization

« Time is unambiguous in centralized systems

« Distributed systems: each node has own system
clock
— Crystal-based clocks are less accurate (1 part in million)
— what is the problem?

Computer on 2144 2145 2146 2147 «— Time according
| | | to local clock

which compiler * | | |
runs

output.o created

Computer on 2142 2143 2144 2145 «— Time according

which editor | ‘ | | to local clock
runs

output.c created

CS550: Advanced Operating Systems

Clock Synchronization

* Each clock has a maximum drift rate p
* 1-p<=dC/dt <= 1+p
— Two clocks may drift by 2p At In time At

— To limit drift to 6 => resynchronize every 6/2p
seconds

dC

_>1

Clock time, C dt dC _

ng
o
=

N
o
E)Q \,c}
& dC
g <1
err’ Qa c’\oc’};' dt

oo

UTC, t
CS550: Advanced Operating Systems

*Synchronize machines to a time server with a UTC
receiver

Machine P requests time from server every 6/2p
seconds

process P time server

trapty /
W time

network

CS550: Advanced Operating Systems 8

Berkeley Algorithim

* Used in systems without UTC receliver
— Keep clocks synchronized with one another
— One computer is master, other are slaves
— Master periodically polls slaves for their times
— Failure of master => ?

CS550: Advanced Operating Systems

Time daemon
3:00 2300 3:00 0 3:05

B LB LB

CS550: Advanced Operating Systems 10

* Network Time Protocol (NTP)

* Uses advanced technigques for accuracies
of 1-50 ms

CS550: Advanced Operating Systems 11

Logical Clocks

« For many problems, internal consistency of
clocks is important
— Absolute time is less important
— Use logical clocks
« Key idea:
— Clock synchronization need not be absolute

— |f two machines do not interact, no need to
synchronize them

— More importantly, processes need to agree on the
order in which events occur rather than the time at
which they occurred

CS550: Advanced Operating Systems

12

=
¢
-

Event Ordering

* Events In a single processor machine are
totally ordered

 In a distributed system:

— No global clock, local clocks may be
unsynchronized

— Can not order events on different machines
using local times

CS550: Advanced Operating Systems

13

Happened Beiore Relation

If A and B are events in the same process and A
executed before B, then A->B

If A represents sending of a message and B is the
receipt of this message, then A -> B

Relation is transitive
— IfA->Band B->C,then A->C

Relation is undefined across processes that do not
exchange messages
— Partial ordering on events

CS550: Advanced Operating Systems 14

Event Ordering Using B

« Goal: define the notion of time of an event
such that
— If A-> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, =or >

C(B)

« Lamport algorithm:
— Each processor maintains a logical clock LC,
— Whenever an event occurs locally at i, LC, = ?
— When i sends message to |, ?
— When | receives message from i
— Claim: this algorithm meets the above goals

CS550: Advanced Operating Systems

15

50

100

Clock adjusted

CS550: Advanced Operating Systems

(b)

50

16

Eleciion Algorithims

« Many distributed algorithms need one
process to act as coordinator

— Doesn’t matter which process does the job, just
need to pick one

 Election algorithms: technigue to pick a
unique coordinator (aka leader election)

* Types of election algorithms: Bully and Ring
algorithms

CS550: Advanced Operating Systems

28

Bully Algorithm

e Assumptions:
— Each proc has a unique ID
— Proc know the IDs and address of every other procs
— Communication is reliable

* Detalls:

— Any process P can initiate an election

— P sends Election messages to all process with higher IDs
and awaits OK messages

— If a process receives an Election msg from a lower-
numbered colleague, ?

— |If a process receives a Coordinator, ?

CS550: Advanced Operating Systems

29

Bully Algorithim

* Process initiates election if it just recovered
from failure or if coordinator failed

e Several processes can initiate an election
simultaneously
— Need consistent result

« ? messages required with n processes

CS550: Advanced Operating Systems

30

Previous coordinator
has crashed

(@) (b) ©)

CS550: Advanced Operating Systems 31

CS550: Advanced Operating Systems 32

Distributed Mutual Exclusion

Distributed system with multiple processes may need
to share data or access shared data structures
— Use critical sections with mutual exclusion

Single process with multiple threads
— Semaphores, locks, monitors

How do you do this for multiple processes in a
distributed system?
— Processes may be running on different machines

Solution: lock mechanism for a distributed
environment
— Can be centralized or distributed

CS550: Advanced Operating Systems

36

Ceniralized Algorithm

Assume processes are numbered

One process Is elected coordinator (highest ID process)

Every process:

— Needs to check with coordinator before entering the critical
section

— To obtain exclusive access:
— To release:

Coordinator:

— Receive request:

— Receive release:

CS550: Advanced Operating Systems

37

Request OK

/4 ﬂ Queue is
empt
Coordinator P

(@)

(b)

CS550: Advanced Operating Systems

38

Centralized Algorithm: Commentis

» Simulates centralized lock using
blocking calls

* Fair: requests are granted the lock In
the order they were received

« Simple: three msgs per use of a critical
section (request, grant, release)

» Shortcomings:

CS550: Advanced Operating Systems

* [Ricart and Agrawala]: Based on event
ordering and time stamps

CS550: Advanced Operating Systems 40

PPPPPPPPDE

(@) (b)
Use a token to arbitrate access to critical region
Must wait for token before entering critical region
Pass the token to neighbor once done or if not interested
Con: ?

CS550: Advanced Operating Systems 43

Algorithm

Messages per

Delay before entry (in

Problems

entry/exit message times)
Centralized 3 2 Coordinator crash
Distributed 2(n-1) 2(n-1) Crash of any
process
Token ring 1to Oton-1 Lost token, process

crash

CS550: Advanced Operating Systems

44

Disiribuied Deadlocks

Resource Deadlocks
— A process needs multiple resources for an activity

— Deadlock occurs if each process in a set request resources
held by another process in the same set, and it must receive
all the requested resources to move further

Communication Deadlocks

— Processes wait to communicate with other processes in a
set

— Each process in the set is waiting on another process’s
message, and no process in the set initiates a message
until it receives a message for which it is waiting

CS550: Advanced Operating Systems

45

Deadlock Handling Straiegies

Deadlock Prevention:

— Difficult!

— Before allocation, check for possible deadlocks
« Difficult as it needs global state info

Deadlock Detection:

— Find cycles

— Deadlock detection algorithms must satisfy 2
conditions:
* No undetected deadlocks.
* No false deadlocks.

CS550: Advanced Operating Systems

46

Graph Models

Graph models:
— Nodes: processes

— Edges of a graph: the pending requests or assignment of
resources

Wait-for Graphs (WFG): P1 -> P2 implies P1 is
waiting for a resource from P2.

Transaction-wait-for Graphs (TWF): WFG in
databases.

Deadlock: directed cycle in the graph.
Cycle example:

CS550: Advanced Operating Systems a7

Disiribuied Deadlocks

« Centralized Control

— A control node constructs wait-for graphs (WFGs) and
checks for directed cycles

— WEFG can be maintained continuously (or) built on-
demand by requesting WFGs from individual node

 Distributed Control

— WEFG is spread over different nodes. Any node can initiate
the deadlock detection process.

« Hierarchical Control
— Nodes are arranged in a hierarchy.
— A node checks for cycles only in descendents.

CS550: Advanced Operating Systems 48

Clock synchronization

— Physical clocks

— Synchronization algorithms
Logical clock

— Lamport timestamps
Election algorithms

— Bully algorithm

— Ring algorithm
Distributed mutual exclusion

— Centralized algorithm

— Distributed algorithm

— Token ring algorithm
Distributed deadlocks
Readings:

— Chpt 6 of AST CS550: Advanced Operating Systems

49

X

Quesiions

|

CS550: Advanced Operating Systems

50

