CS 550:

Advanced Operating Systems

Synchronization

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 550
Advanced Operating Systems
March 1¢, 2011

QOuiline

A Clock synchronization
I Physical clocks
I Synchronization algorithms

A Logical clock
I Lamport timestamps

A Election algorithms
I Bully algorithm
I Ring algorithm
A Distributed mutual exclusion
I Centralized algorithm
I Distributed algorithm
I Token ring algorithm

A DIStrIbUted deadl%‘k(ﬁ&dvanced Operating Systems

Canonical Problems in Disiribuied
Sysiems

A Time ordering and clock synchronization
A Leader election

A Mutual exclusion

A Distributed transactions

A Deadlock detection

CS550: Advanced Operating Systems

A Solar day

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

At the transit of the sun

n days later, the earth

has rotated fewer
than 360°

Earth on day O at the
transit of the sun

To distant galaxy

To distant galaxy

Earth on day n at the
transit of the sun

CS550: Advanced Operating Systems 4

Physical Clocks

A Coordinated universal time (UTC) i international standard
based on atomic time
I Add leap seconds to be consistent with astronomical time
I UTC broadcast on radio (satellite and earth)

I Receivers accurateto 0.1 7 10 ms

012345672891
AT T

0111213141516 17181920 21 22 23 24 25
| | | | | |
|

Solar 01 2 34 5 6 7 8 91 12131415 16 17 18192122324 25
seconds T T—T—T—T—t+—+y—FF+++—

\/

Leap seconds introduced into UTC to
get it in synch with TAI

CS550: Advanced Operating Systems

Clock Synchronization

A Time is unambiguous in centralized systems

A Distributed systems: each node has own system

clock
I Crystal-based clocks are less accurate (1 part in million)

I what is the problem?

Computer on 2144 2145 2146 2147 «— Time according

which compiler * | | | to local clock
runs

output.o created

Computer on 2142 2143 2144 2145 «— Time according
which editor | ‘ | | to local clock
runs

output.c created

CS550: Advanced Operating Systems

Clock Synchronization

A Each clock has a maximum drift rate r
Al-r dG&dt <= 1+r
I Two clocks may drift by 2r Dt in time Dt

I To limit drift to d => resynchronize every d 2r
seconds

dC

_>1

Clock time, C dt dC _

ng
o
=

&

o
E)Q ,&C}
Y.y dC

g <1
err’ Qa c’\oc’};' dt

go®

UTC, t
CS550: Advanced Operating Systems

ASynchronize machines to a time server with a UTC
receiver

Aviachine P requests time from server everyd / 2 r

seconds

process P

fime server

network

CS550: Advanced Operating Systems

time

Berkeley Algorithim

A Used in systems without UTC receiver
I Keep clocks synchronized with one another
I One computer is master, other are slaves
I Master periodically polls slaves for their times
I Failure of master => ?

CS550: Advanced Operating Systems

Time daemon
3:00 2300 3:00 0 3:05

B LB LB

CS550: Advanced Operating Systems 10

A Network Time Protocol (NTP)

A Uses advanced techniques for accuracies
of 1-50 ms

CS550: Advanced Operating Systems 11

Logical Clocks

A For many problems, internal consistency of
clocks is important
I Absolute time is less important
I Use logical clocks

A Key idea:
I Clock synchronization need not be absolute

I If two machines do not interact, no need to
synchronize them

I More importantly, processes need to agree on the
order in which events occur rather than the time at
which they occurred

CS550: Advanced Operating Systems 12

A Events in a single processor machine are
totally ordered

AIn a distributed system:

I No global clock, local clocks may be
unsynchronized

I Can not order events on different machines
using local times

CS550: Advance d Operating Systems

13

