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Extreme scale computing

The leading edge of high performance computing
 FLOP: Float computing per second
* Petascale (10'°), exascale(10%?), ....

* One exaflop equals:

* The combined performance of 50 million laptops - enough to reach
1000 miles from the ground when stacked, weighing over 100,000
tons.

* 1000 times the power of today's most powerful supercomputer.

Key challenges:
 The energy and power challenge
* The memory and storage challenge
 The concurrency and locality challenge
* The resilience challenge



Reliability concerns

e Systems are getting bigger
e 2k-16k processors is today’s “medium” size (92% of TOP500)
e 0(100,000) processor systems are being designed/deployed

Even highly reliable HW can become an issue at scale

* 1 node fails every 10,000 hours
e 6,000 nodes fail every 1.6 hours
* 64,000 nodes fail every 5 minutes
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FENCE & RAPS

FENCE RAPS
Pre-failure prediction Post-failure diagnosis
& tolerance & recovery

Quickly resume
computing after
failure occurrence

Take precaution
action based on
failure forecasting

In collaboration with
«Xian-He Sun (lIT)
*N. Desai, D. Buettner, R. Thakur, S. Coghlan, R. Gupta and P. Beckman (ANL)
*B.H. Park and A. Geist (ORNL)
J. White and E. Hocks (SDSC)




Pre-Failure Prediction & Tolerance

* Checkpoint is widely used for fault tolerance
— Simple
— |/0 intensive, may trigger a cycle of deterioration
— Reactively handle failures through rollbacks

* Newly emerging proactive methods
— proactive failures and avoiding rollbacks
— But, relies on accurate prediction of failures
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Research Issues

Failure prediction
— Using data mining or machine learning mechanism

Adaptive management
— Based on quantitative performability modeling

Fault-aware rescheduling

— Design runtime strategies to facilitate spare node
allocation and job selection

Runtime system support
— Develop prototype system



Failure Prediction

e Challenges:
— Potentially overwhelming amount of system data collected
across the system

* How to automate system log anlaysis

— Faults are many and complex
* There is no one-size-fit-all predictive method!

— System changes are common in production system
* How to adapt to system changes

* Qur approach: dynamic meta-learning for failure prediction

— Filtering methods, base predicative methods, ensemble learning
techniques, ...

— ). Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, B.H. Park, “Dynamic Meta-Learning for
Failure Prediction in Large-Scale Systems: A Case Study”, Proc. of ICPP08, 2008.

— oP. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A Meta-Learning Failure Predictor for
Blue Gene/L Systems”, Proc. of ICPP07, 2007.



Evaluation: Dynamic Meta-Learning

RAS logs from production systems at national labs
and supercomputing centers

Cray XT4 at ORNL (7,832 XT4 compute nodes)
Blue Gene/L at SDSC (3,072 nodes)
Blue Gene/L at ANL (1,024 nodes)

Blue Gene/P at ANL (40,960 nodes)
— Note: each node contains two to four cores

Huge volume of data!
Over 100+GB data




Evaluation metrics

* Precision: A measure of the ability of a system to present
only relevant items.

* Recall: a measure of the ability of a system to present all
relevant items.

Predicted Predicted TN / True Negative: case was
Negative Positive negative and predicted negative

TP / True Positive: case was positive

Negative Tn Fp and predicted positive
Cases FN / False Negative: case was positive
Positive Fn Tp but predicted negative
Cases FP / False Positive: case was negative

but predicted positive

t f
P Recall = P
lp+ fp tp+ fn
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Precision is between
0.8-0.9, meaning less
than 20% false alarms
Recall is between 0.7-
0.8, meaning being
capable of capturing
over 70% failures
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Adaptive Management

 Runtime adaptation:
— SKIP, to remove unnecessary overhead

— CHECKPOINT, to mitigate the recovery cost in case
of unpredictable failures

— MIGRATION, to avoid anticipated failures
* Challenges:
— Imperfect prediction

— Overhead/Benefit of different actions
— The availability of spare resources

Z. Lan and Y. Li, “Adaptive Fault Management of Parallel Applications for High Performance
Computing”, IEEE Trans. on Computers, regular paper (14 pages), 2008,



Fault-Aware Rescheduling

* Focus on re-allocating active jobs (i.e., running
jobs) to avoid imminent failures

— A dynamic, non-intrusive strategy to allocate
spare nodes for failure prevention

— A general 0-1 Knapsack model to select active

To determune a binary vector X = {x; |1 <7 = J_} such that

maximize » X; -V, . X, =0or1
1557,

st. D> x-pi =5
1557,

Y. Li, Z. Lan, P. Gujrati, and X. Sun, “Fault-Aware Runtime Strategies for High Performance
Computing”, IEEE Trans. on Parallel and Distributed Systems, regular paper (14 pages), 2008.




Research Highlights

Post-failure
diagnosis
_& recovery

Quickly resume
computing after
failure occurrence




Post-Failure Diagnhosis & Recovery

* Relying on pre-failure prediction and tolerance
alone is insufficient!

— Despite progress on failure prediction, unexpected
failures occur in Practice

e Little attention has been paid to post-failure
diagnosis and Recovery
— Manual troubleshooting
— Manual job resubmission
— Inefficient application recovery
— No systematic study



RAPS Overview

RAPS for Post-Failure Diagnosis and Recovery

Failure Diagnosis

Multi-Layer
Data Collection

2D Diagnosis
Time vs. Space

System Orchestration 2 %3 Application Recovery
Resource || Recovery ¥ AFaillure 9 Process Data
Planner || Coordinator |<=p nalysis =~ <« | Recovery || Recovery
Recovery

Recovery-Aware System
Job Scheduler Assessment Support

t )

Resource Provisioning & System Planning

 RAPS: Recovery Aware Parallel computing Systems
e Algorithm design :
e System development
* Empirical study
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Research Issues

Fast failure diagnosis
— Explore data p mining/pattern recognition techniques

System orchestration

— Integrate resource manager, job scheduler, and
various recovery techniques

Fast application recovery

— Develop user-transparent support to improve process
and data recovery of parallel applications

Analysis and assessment



Failure Diagnosis
* Challenges: SYSIIDP

Data Preprocessor

* Overwhelming amount of data Categorizer
 Redundant & unformatted data — F”ter

Faults are many and complex

System changes are common
Failure Predictor

Statistical Rules
Meta- & Assoc. Rules
Learner " &Prob. Pattern

e QOur prototype tool

* Data mining, pattern recognition, [~ Reviser —»M
statistical learning, ...

\ Predictor

* Preprocessing, ensemble learning r '

techniques, dynamic relearning ... [—— Predicted Actual

Failures Failures
|




Fast Process Recovery

e Currently, a restart requires the entire checkpoint
image before it can proceed

— Substantial restart latency in networked environments
— Network transmission and |/O operation time

* |nsatiable data demand from applications leads
to larger checkpoint size
— Thus, longer restart latency

e Our solution: FREM (Fast REstart Mechanism)

— Overlapping process execution with checkpoint image
retrieval



FREM Overiview

e Key idea:

— To enable quick restart on a partial checkpoint
image by recording the process data accesses
after each checkpoint

* A prototype implementation with the BLCR
tool in Linux 2.6.22
e Address various OS issues

— Hardware bypassing, page swapping, dynamic
memory usage, ...

Y. L and Z. Lan, “A Fast Recovery Mechanism for Checkpointing in Hetworked
Environments”, Proc. of DSNO8, 2008.




Summary

* Our research addresses real problems in real
systems, with the goal to improve performance and
reliability

e Pre-failure prediction and proactive approaches
e Post-failure diagnosis and recovery



