Outline

• Security issues:
 – Threats
 – Methods of attack
• Encryption algorithms
 – Secret-key
 – Public-key
 – Hybrid protocols
Historical context

<table>
<thead>
<tr>
<th>Platforms</th>
<th>1965-75</th>
<th>1975-89</th>
<th>1990-99</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-user</td>
<td>Multi-user</td>
<td>Distributed systems</td>
<td>The Internet, wide-</td>
<td>The Internet + mobile</td>
</tr>
<tr>
<td>timesharing</td>
<td>timesharing</td>
<td>systems based on</td>
<td>area services</td>
<td>devices</td>
</tr>
<tr>
<td>computers</td>
<td>computers</td>
<td>local networks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Shared resources | Memory, files | Local services (e.g. | Email, web sites, | Distributed objects, |
| | | NFS), local networks | Internet commerce | mobile code |

Security	User identification	Protection of services	Strong security for	Access control for
requirements	and authentication		commercial transactions	individual objects,
				secure mobile code

Security	Single authority,	Single authority,	Many authorities,	Per-activity
management	single authorization	delegation, replicated	no network-wide	authorities, groups
environment	database (e.g. /etc/	authorization	authorities	with shared
	passwd)	databases (e.g. NIS)		responsibilities
Security Problems

- Attacks
 - On applications that handle financial transactions or other information whose secrecy or integrity is crucial
- Enemy (or adversary)
- Threats
 - To processes, to communication channels, denial of service
Eavesdropping:
 – Obtain private or secret information

Masquerading
 – Assume the identity of another user

Message tampering
 – Alter the content of messages in transit
 • Man-in-the-middle attack

Replaying
 – Store secure msgs and send them at a later data

Denial of service
 – Flood a channel or other resources, denying access to others
• Properties:
 – Each proc is sure of the identity of the other
 – Data is private and protected against tampering
 – Protection against repetition and reordering of data

• Important issues:
 – Cryptography
 – Authentication
plaintext: unencrypted message

ciphertext: encrypted form of message

Intruder may
- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms
A simple encryption algorithm

Substitution cipher:

abcdedfghijklmnopqrstuvwxyz

poiuytrewqasdfghjklmnbcxz

• replace each plaintext character in message with matching ciphertext character:

plaintext: Charlotte, my love

ciphertext: iepksgmmy, dz sgby
• key is pairing between plaintext characters and ciphertext characters
• $26! \ (\text{approx} \ 10^{26})$ different possible keys: unlikely to be broken by random trials
• substitution cipher subject to decryption using observed frequency of letters
 – 'e' most common letter, 'the' most common word
Public Key Cryptography

• Separate encryption/decryption keys
 – Receiver makes known (!) its encryption key
 – Receiver keeps its decryption key secret

• To send to receiver B:

• To decrypt:
• Knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
• Only receiver can decrypt message

Question: good encryption/decryption algorithms
RSAs: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:

to break RSA:
• need to know \(p, q \), given \(pq = n \), \(n \) known
• factoring 200 digit \(n \) into primes takes 4 billion years using known methods
Authentication

• **Question:** how does a receiver know that remote communicating entity is who it is claimed to be?
Authentication Protocol (ap)

- **Ap 1.0**
 - Alice to Bob: “I am Alice”
 - Problem: ?

- **Ap 2.0**
 - Authenticate source IP address is from Alice’s machine
 - Problem: ?

- **Ap 3.0: use a secret password**
 - Alice to Bob: “I am Alice, here is my password” (e.g., telnet)
 - Problem: ?
Protection Against Intruders: Firewalls

Diagram:
- Connections to internal networks
- Packet filtering router
- Application gateway
- Packet filtering router
- Inside LAN
- Outside LAN
- Firewall
- Connections to outside networks
Firewall: network components (host/router+software) sitting between inside ("us") and outside ("them")

Packet filtering firewalls: drop packets on basis of source or destination address (i.e., IP address, port)

Application gateways: application specific code intercepts, processes and/or relays application specific packets

- e.g., email of telnet gateways
- application gateway code can be security hardened
- can log all activity
Secure Sockets Layer (SSL)

- SSL: Developed by Netscape
 - Provides data encryption and authentication between web server and client
 - SSL lies above the transport layer
 - Features:
 - SSL server authentication
 - Encrypted SSL session
 - SSL client authentication
SSL protocol stack

- SSL Handshake protocol: negotiates cipher suite, exchanges certificates and key masters
- SSL Change Cipher Spec: changes the secure channel to a new spec
- SSL Alert Protocol: implements the secure channel

SSL Record Protocol

Transport layer (usually TCP)

Network layer (usually IP)

SSL protocols: HTTP, Telnet, ...
Other protocols:
Secure Socket Layer

- Protocol: https instead of http
 - Steps?
 - Browser -> Server: B’s SSL version and preferences
 - S->B: S’s SSL version, preferences, and certificate
 - Certificate: server’s RSA public key encrypted by CA’s private key
 - B: uses its list of CAs and public keys to decrypt S’s public key
 - B->S: generate K, encrypt K with with E_S
 - B->S: “future messages will be encrypted”, and K(m)
 - S->B: “future messages will be encrypted”, and K(m)
 - SSL session begins…
key concerns:
• encryption
• authentication
• key exchange

also:
• increasingly an important area as network connectivity increases
• digital signatures, digital cash, authentication, increasingly important
• an important social concern
• further reading:
 – Crypto Policy Perspectives: S. Landau et al., Aug 1994 CACM
 – www.eff.org
Questions