IEEE TRANSACTION ON COMPUTERS 1

Adaptive Fault Management of Parallel
Applications for High Performance Computing

Zhiling Lan, Member, IEEE, and Yawei Li, Sudent Member, |IEEE

Abstract—As the scale of high performance computing (HPC) the failure. Thus, significant performance loss can be imeclir
continues to grow, application fault resilience becomes crucial. due to the work loss and failure recovery. Unlike checkpoint
In this paper, we present FT-Pro, an adaptive fault manage- ing, the newly emergegroactive approach (e.g. process mi-

ment approach that combines proactive migration with reactive
checkpointing. It aims to enable parallel applications to avoid gration) takes preventive actions before failures, therete-

anticipated failures via preventive migration, and in the case of Venting failure experiencing and avoiding rollbacks [67].
unforeseeable failures, to minimize their impact through selec- Nevertheless, it requires accurate fault prediction, Whic

tive checkpointing. An adaptation manager is designed to make hardly achievable in practice. Hence, proactive approémiea

runtime decisions in response to failure prediction. Extensive g \njikely sufficient to provide a reliable solution for fau
experiments, by means of stochastic modeling and case studies

with real applications, indicate that FT-Pro outperforms periodic manag(?ment in HPC. .
checkpointing, in terms of reducing application completion times In this paper, we preserfeT-Pro, an adaptive approach

and improving resource utilization, by up to 43%. for fault management of parallel applications by combining
Index Terms—Adaptive fault management, Parallel applica- the merits of proactive migration and reactive checkpoti
tions, High performance computing, Large-scale systems. Proactive actions enable applications to avoid anticip&alts

if possible, and reactive actions intend to minimize theaotp
| INTRODUCTION of unfor_eset_aablg failures. The goal_is to redl_Jce applina_tio
))) . completion time in the presence of failures. While checkpoin
N the field of high performance computing (HPC), the ingq ang process migration have been studied extensivedy, th
satiable demand for more computational power in SCIeNgRy challenge facing the design of FT-Prchiaw to effectively
and engineering has driven the development of ever-growiggect an appropriate action at runtime. Towards this end, an

supercomputers. Production systems with hundreds of thQyantation manager is designed to choose a best-fit action fr
sands of processors, ranging from tightly-coupled pré@ne onnortunistic skip, reactive checkpointing, and preevepihi-
clusters to loosely-coupled commodity-based clustes bar gration by considering a number of factors.

ing designed and deployed [1]. For systems of this scale, ~ \yg gemonstrate that FT-Pro can enhance fault resilience of
ability becomes a critical concern as the system-wide meggqie| applications and consequently improve their qrerf
time between failures (MTBF) decreases dramatically Withance by means of stochastic modeling and case studies with
the increasing count of components. Studies have shown thafa)ie| applications. Our results indicate that FT-Prepet
MTBFs for teraflop- and petaflop-scale systems are only @t ms periodic checkpointing, in terms of reducing appima

the order of 10-100 hours, even for systems based on ultg@inpetion time and improving resource utilization, by op t
reliable components [2], [3]. Meanwhile, to accurately miod 430, A modest allocation of spare nodes (less thf) is
realistic problems, parallel applications are designespan g4l sufficient for FT-Pro to achieve the above gain. Addi
across a substantial number of processors for days or Weﬁ5ﬁally the overhead caused by FT-Pro is less t&n

until completion. Unfortunately, the current state of p@la £1.pyg is puilt on the belief that technological innovation

processing is such that the failure of a single process lysuglompined with advanced data analysis makes it possibleeto pr
aborts the entire application. As a consequence, largecappl yic fajlures with a certain degree of accuracy. Recentistud

tions find it difficult to make any forward progress because Qfii actual failure traces have shown that with a proper sys-
failures. This situation is likely to deteriorate as systeg®t (om monitoring facility, critical events can be predicteéthw
bigger while applications become larger. an accuracy of up to 80% [8]-[12]. A distinguishing feature
Checkpointing is the conventional method for fault toler-o¢ F1.prg s that it does not require perfect failure predict
ance. It is reactive by periodically saving a snapshot of thg pe effective. As we will show, FT-Pro outperforms peri-
application and using it for restarting the execution inecaé ;¢ checkpointing as long as failure prediction is capatile

failures [4], [5]. When one of the application processes expganturing30% of failures, which is feasible by using existing
riences a failure, all the processes, including non-faphy- predictive technologies.

cesses, have to roll back to the previously saved state {ior £1.prg is intended to bridge the gap between failure pre-

Manuscript received April 25, 2007; revised August 14, 208@cepted diction and fault handlmg teChn'queS by effeCt|Ve|y exmg
December 4, 2007. failure prediction for better fault management. It compbets

Zhiling Lan is with the Department of Computer Science, lli;wnstitute the research on checkpointing and process migration by pro-
of Technology, Chicago, IL 60616. Email: lan@iit.edu

Yawei Li is with the Department of Computer Science, lllinaistitute of Vldlng adapt“/e strategies for runtime coordination ofsthe

Technology, Chicago, IL 60616. Email: liyawei@iit.edu techniques. The proposed FT-Pro can be integrated witb-stat

IEEE TRANSACTION ON COMPUTERS 2

of-the-art failure predictors and existing fault tolerartools There are several active research projects on providegni-
[9], [10], [13]-[20] to provide an end-to-end system for pela gration support for MPI applications [19], [20], [44]. While
tive fault management of parallel applications. proactive approach is cost efficient, it requires accuratie f
The remainder of this paper is organized as follows. Segre prediction. In practice, prediction misses and falsenas
tion 1l briefly discusses the related work. Section Il giveare common. Prediction misses can lead to significant perfor
an overview of FT-Pro, followed by a detailed description afhance damage, whereas false alarms can introduce intiderab
its adaptation manager in Section IV. Section V describeserhead. Hence, solely relying on proactive approach is no
our stochastic modeling and simulation results. Section ‘gufficient for HPC.
presents case studies with a number of parallel application Recognizing the limitations of reactive and proactive ap-
Finally, Section VII summarizes the paper and points oproaches, FT-Pro aims at getting the best of both worlds by
future directions. intelligently coordinating process migration with cheokp-
ing. Similar to cooperative checkpointing [45], FT-Pro dages
unnecessary fault tolerance requests when failure im@act i
trivial. Further, it enables an application to avoid imnhe
Checkpointing, in various forms, has been studied extefailures through preventive migration. The adaptatiorween
sively over the past decades. A detailed description and coprocess migration and selective checkpointing is builtrupo
parison of different checkpointing techniques can be foind quantitative modeling of application performance.
[4]. In the field of HPC, a number of checkpointing libraries The idea of using adaptation for fault management is not
and tools have been developed, and examples include libckpiv. It has been used in the fields such as mission-critical
[16], BLCR [17], open MPI [18], MPICH-V [13], and the spacecrafts and storage systems [46], [47]. Neverthetess,
C® (Cornell Checkpoint (pre)Compiler) [15]. Checkpointinghe best of our knowledge, we are among the first to exploit
optimization is generally approached by selecting an ogitimadaptive fault management for high performance computing.
intervals [21]-[23] or reducing the overhead per operatidpifferent from the above research that mainly focuses on ef-
such as copy-on-write [24], incremental checkpointing][25ficiently utilizing duplicated components for high availétyg,
diskless checkpointing [26], [27], double in-memory teicue this work centers upon reducing application completionetim
[28], etc. Generally speaking, checkpointing is a condama by dynamically choosing between proactive and reactive ac-
method. It requires increasing number of checkpoints td defns.
with higher failure rates as the computing scale increases.
Much progress has been made in failure analysis and pre-
diction. On the hardware side, modern computer systems are])]
designed with various features (e.g. hardware sensorsyana e define afailure as any event in hardware or software
monitor the degradation of an attribute over time for eagy dthat results in an immediate termination of a running applic
tection of hardware errors [29]-[32]. On the software sige, ion. To be effective, FT-Pro requires the presence of arfil
variety of predictive techniques have been developed w@r infPredictor. Predictive .technlques mentioned in Section adl,
implicit and useful fault patterns from historical data fail- Well as our own previous work [11], [48], [49], can be used to
ure prediction. They can be broadly classifiechaslel-based ~Provide such an engine. Failure prediction can be eithts-
or data-driven. A model-based approach derives an analytﬂ‘?”ca] where the_ predictor forecasts Whether a failure event
cal or probabilistic model of the system and then triggers ‘4!l occur or not in the near future, arumerical where the
warning when a deviation from the model is detected [33 robab.lllty of failures is prow_ded for a given time wm(_jow.
[37]. Data mining, in combination with intelligent systemsNumerical results can be easily translated into categorésa
focuses on learning and classifying fault patterns witrmast Sults by applying threshold based splitting; hence in thisep,
suming a priori model ahead of time [8]-[11]. In additionWe uniformly describeailure prediction as a process that pe-
leading HPC vendors have started to integrate hardware diftflically estimates whether a node will experience faiun
software components in their systems for fault analysishsu? 9iven time window (e.g. a few minutes to an hour). Such a
as the Cluster Monitoring and Control System (CMCS) servid¥ediction mechanism is generally measured by two accuracy
in IBM Blue Gene systems and Cray RAS and ManageméRetrics:precision and rgcqll. Precision is defllne_d as th(_e pro-
System (CRMS) in Cray XT series systems [38], [39]. poTrtlon of correct p.redlctlons to gll the predictions ma_de.(
Leveraging the research on failure prediction, there aneTpF,,)' and recall is the proportion of correct predictions to
growing interests in utilizing failure prediction for pratave the number of failures (i.e%). Here, T, is number of cor-
fault management. For example, the HA-OSCAR project proect predictions (i.etrue positives), and F), is number of false
vides high-availability for head nodes in Beowulf clustegs alarms (i.efalse positives), and F), is number of missed fail-
using a failover strategy [40]. There are several reseafch ares (i.efalse negatives). Obviously, a good prediction engine
forts on failure-aware scheduling [41], [42]. Process gecb should achieve a high value (closer to 1.0) for both metrics.
migration is a widely used proactive technique [7]. Most mi- A user can set fault tolerance requests denoteiagtation
gration methods adopt thetop-and-restart model for the mi- points for the application execution, and FT-Pro makes run-
gration of parallel applications, in which the applicatimkes time decision upon these points to determine which action
a checkpoint and then restarts on a new set of resources -sivuld be taken [50]. For example, a user may set adaptation
ter swapping the failure-prone nodes with healthy ones.[43joints to where the application completes a segment of lsefu

Il. RELATED WORK

IIl. OVERVIEW OF FT-PrRO

IEEE TRANSACTION ON COMPUTERS 3

- A
Prediction & accuracy SKIP

- CHECKPOINT
________________________ . Operation costs Adaptation —
Ps i :ridle :r i i i iEIGI_I ' L “ b i e Mar?ager
“““ :‘"““:“““‘:"““ :f : J- ! Available Resources MIGRATION
Puln ool [o i e i
° 1 1 1 1 1 1 1
1 I 1 1 1 1 1
. i '] 1 ' 1] Fig. 2. Diagram of Adaptation Algorithm
Ps | 1 L, !L I I, 1 I !L fiﬁ | Is I; !L I
T T T
Pl [l fin | [[[J !] SKIP action atAP;.
P1| L U L L IJ L H | Lo | L U L @ | o At AP;, considering that the work loss would be sig-
A'P A'P A'P A'P A'P A'P ;P nificant if an unforeseeable failure occurred in the next
J 2 ° ¢ ° ¢ 7 interval, FT-Pro decides to take a coordinated checkpoint
Step1{ fstep‘l ; Step 5 1 I IS i i i
oiire) Srz_(Adapiation) S 3 (" Osi although no failure warning is issued at thls_ point.
Predictor Manager Monitor « At AP, where the predictor forecasts a failure &,

(which turns out to be a true positive), FT-Pro transfers

the process fronPy, to the spare nod®s. The applica-

W pae) B s oo ® et L Uactut work tion is first checkpointed, followed by a process migra-
tion. Once repairedP,; becomes a spare node.

At AP;s; where the predictor fails to warn the upcoming

failure on P; (e.g. a false negative), FT-Pro takes a SKIP

action. The application, therefore, loses the work done

work, i.e. the computation that is not redone due to a failure betweenAP; and the failure occurrence, suffers from
[51]. Three actions are currently considered in FT-Pro: failure recovery, rolls back to the last checkpoint com-

L . leted atAP,, recomputes the work due to the failure,
. SKIP where the fault tolerant request is |_gnored. Thls_ac— gnd proceeds to the rrJlext adaptation polit;.
tion is taken toI remove unnecessary actions when fallure. In case of false alarms, such asA4Ps where the pre-
impact is trivial. . L ! .
« CHECKPOINT, where the application takes a checkpoint. I(il':':-tg;oe:;?(Zzogs(%egé\ligf)iitwammg (e.g. afalse positive),
This action is to reduce application work loss caused by ’
unforeseeable failures.
« MIGRATION, where the processes on suspicious nodes V. ADAPTATION MANAGER

(i.e. the nodes predicted to be failure-prone n the_ nealrne adaptation manager is responsible for determining the
future) are transferred to healthy nodes. This action

¢ » imminent fail c { th Host suitable action upon each adaptation point. Desigaing
0 avoid an imminent failure. Lurrently, we assume aetl‘ficient manager is challenging. First, it must considearsge

process .mlgratlon is conducted by taking a cogrdlnat qfactors that may impact application performance. Thase i
checkpoint followed by a stop-and-restart migration [43 lude not only the available spare nodes, but also costs and
The main idea of FT-Pro is illustrated in Figure 1, where thgenefits of different fault tolerance actions. Second, myivet
useful work is segmented into intervals denoted hySuppose 3 failure predictor is subjected to false negatives ana: fiats-
the application runs ofiP;, P, ..., Py} and one spare nodeitives, it must take account of both errors during its dexisi
denoted as’s is allocated for proactive actions. Spare nodasaking process. Lastly, it must make a timely decision witho
can be either reserved at the application submission of a'&using noticeable overhead on app“cation performance_
cated through the resource manager during execution. UporBy considering the above requirements, we develop an adap-
each adaptation poinlP;, FT-Pro first consultshe failure tation manager, which is illustrated in Figure 2. It takes ac
predictor to get the status of each computation node. It thefhunt of three sets of parameters for decision making, namel
triggersthe adaptation manager (discussed in Section IV) to prediction accuracy, operation costs of different actjcarsd
determine a best-fit action in response to failure predictiothe number of available resources for proactive actions. Be
followed by invoking the corresponding action on the apmlic fore presenting our detailed algorithm, we first list a set of
tion. Here,the cost monitor component keeps track of runtime nomenclatures that will be frequently used in the rest of the
overhead different fault tolerance actions. If the appiaa paper (see Table).
fails during checkpointing or migration, it rolls back toeth Upon each adaptation poiMP;, if the failure predictor
most recent checkpoint. Let's take a look at a few examp|e§hticipates any failure on a computation node, the manager
o FT-Pro always grants the first fault tolerance request ttkes account of predictioprecision. Specifically, it esti-
AP, by taking a checkpoint. matesF,..; - the expected time for the application to reach the
« At AP, where the failure predictor does not anticipateext adaptation poini P, ; - andselects the action that min-
any failure in the near future, given that failure impacdtmizes E,,..;. Suppose the current interval indexlis +en;-
during the next interval is trivial, FT-Pro ignores the rebue to the uncertainty of the exact failure time, a consarmat
quest by taking a SKIP action. Similarly, FT-Pro takes siew is adopted by assuming that the failure will occur imme-

il skip DMigration DCheckpoinling D Recovery (Downtime/Restart)

Fig. 1. The Main Idea and Steps of FT-Pro. *

IEEE TRANSACTION ON COMPUTERS 4

TABLE |
NOMENCLATURE

Symbol | Description

Toppi Application failure-free execution time, i.e. time spent on useful work

Terp, Lft—pro Application completion time by using checkpointing or FT-Pro

Nw Number of computation nodes allocated to the application

Ng Number of spare nodes allocated to the application

1 Fault tolerance interval

leurrent Index of the current adaptation point

liast Index of the last adaptation point where a checkpoint is taken

precision, recall | Prediction accuracy, defined qﬁ% and ijjripFn respectively

Sappl application failure probability

C» Mean recovery cost

Cekp Checkpointing overhead

Cpm Migration overhead

Erext Expected time for the application to reach the next adaptation point
diately before the next adaptation point. Here, “conséreat Here, N% denotes the number of spare nodes that will be
is with respect to the amount of work loss. failure free during the next interval.

« SKIP: (1) If a failure occurs in the next interval, the ap- Upon an adaptation point where the failure predictor does
plication spendd time for the execution’, time for the not give any warning, the manager takes account of predic-
recovery, and thefl + (Icurrent —liast) X I] time to reach tion recall. Given the possibility of unpredictable failures, the
the next adaptation point from the most recent checkpoigrformance loss could be significant when a number of SKIP
(2) If no failure occurs, the application smoothly proceeddctions have been taken continuously before an unpredicted
to the next adaptation point. By using the total probabilitfailure. Hence, when the number of consecutive SKIP actions
law, we have: reaches a threshold, rather than blindly relying on theipred

tion, the manager enforces a checkpoint. The rationale here
Eneot = [Cr + 2+ leurrent = liast) X 1] X fappi is to enforce a checkpoint in case failure prediction is wgron
+I % (1= fappt) Currently, the threshold is set tﬁ%._lt is based on

(1 an intuitive estimation that the expected time betweenefals

_ negatives is%. Clearly, if recall is equal t01.0, the
Here,N‘fV denotes the number of computation nodes theireshold isco, meaning that there is no need to enforce pre-
are predicted to be failure prone in the next interval. ventive checkpoints as the predictor is able to captureyever

o CHECKPOINT: The application first spendsy,, for per- failure.
forming checkpointing and then updatgs,;. (1) If a The special cases are whenecision or recall is zero. If
failure occurs in the next interval, the application spengs-ecision is zero, meaning that every alarm provided is a false
I time for the execution(’, time for the recovery, and alarm. According to Equation (1)-(3), a SKIP action is stdédc
then I time to reach the next adaptation point from thepon these adaptation points.nécall is zero, meaning that
current adaptation point. (2) If no failure occurs, the apevery failure is missed by the predictor. In this case, mlcio
plication smoothly proceeds to the next adaptation pointheckpointing is adopted.

Thus, we have: In addition, the adaptation manager adopts an automatic
mechanism to assess application-specific parameterd liste

Jap = 1—(1— precision)N‘{V

Eneat = (Cekp + Cp + 2I) X fappi Equation (1)-(3), namely checkpointing overhe&g,, and
(I + Cekp) X (1 = fappt) migration overhead’,,, for its decision making. Both pa-
fappr = 1—(1 —precisz‘on)Nva (2) rameters depend on many factors like the implementations of

checkpointing and migration, system configurations, compu
tation scale, and application characteristics. The manage
» MIGRATION: The application first spendS,,,, for pro- tomates the acquisition of these parameters, without the us
cess migration and updatgs;,. Due to the possibility of involvement, in the following ways:
multiple simultaneous failures, the number of spare nodes, Upon the initiation of the application, it records the ap-
may not be enough to accommodate all the migration plication starting cost. Further, it always grants the first
requests. FT-Pro uses a best-effort strategy to migrate as checkpoint request (see Figure 1). A recent study done
many processes as possiblg,.. is calculated as below: by Oliner et al. has proved that any strategy that skips
. the first checkpoint is non-competitive [52]. At the second
Enear = (Cpm + Cr + 21) X fapp adaptation point, the manager uses the recorded check-
(L A+ Cpm) * (1= fappt) pointing overhead’.;,, and estimate’,,,, as the sum-
- 1-(1 fprecision)Név*Ng x> ~l(g mation of C..,, and the application starting cost.
Jappt = 0 i, < Ng(« During the subsequent execution, it always keeps track

IEEE TRANSACTION ON COMPUTERS 5

of these parameters via the cost monitor component ati@ last one -subnet of application performance - uses the
uses the last measured values for decision making at ttentinuous fluid to model application completion time. The
next adaptation point. detailed explanation of the model is given in the Appendix.

The adaptation manager can be easily implemented on tof® FSPN model is also built for periodic checkpointing. We
of existing checkpointing tools. For instance, we implemefen used these models to study FT-Pro as against periodic
FT-Pro with MPICH-VCL [13] by adding the adaptation mancheckpointing.
ager as a hew component (see Figure 8).)

C. Modeling Results
V. STOCHASTIC MODELING Four sets of simulations are conducted to examine the im-
. act of computation scales, allocation of spare nodes,gred

We now proceed to comprehensively evaluate the perfor- . . :

. . . on accuracies, and operational costs respectively. Hse-b
mance of FT-Pro. In this section we present a stochastic rnoFle

) . L . . ine configuration is summarized in Table Il. These parame-
of FT-Pro, and case studies with applications will be diseds . .
in the next section. ters and their corresponding ranges are selected basedon th

results reported in [5], [42], [54]. Note that the intervalcal-
culated based on the well-known optimal frequency [21], is

A. Performance Metrics used as the adaptation interval for FT-Pro and the checkpoin
Three performance metrics are used to compare FT-Proifiéerval for periodic checkpointing.
periodic checkpointing: 1) Impact of Computation Scales: In the first set of sim-

1) Execution Time. Considering that the main objective of-/ations, we tune the number of computation nodes from 16
HPC is to reduce application execution time, we therd® 192 (the maximum number of processing units allowed in
fore use it as our primary metric: SPNP is 200), with only one spare node being allocated. The

_ . purpose is to study the impact of computation scales on the
T - Tekp using checkpointing 4) performance of FT-Pro.
Tfi—pro Using FT-Pro To reflect the fact that checkpointing overhead and migra-

2) Time Reduction. For the convenience of comparison, wdion overhead generally grow with the application size, we

also measure the relative time reduction by using FT-PfBake corresponding changes on the values'qf, and €y,
over periodic checkpointing. It is defined as: How to accurately set these parameters is difficult, as they

are application-dependent. Considering the principlecofdi-
(5) nated checkpointing, we use a simple model@fo +Oyg),
Tekp where Ojo is a fixed I/O overhead and,,., is the mes-

3) Service Unit Reduction. On production HPC systems,sage passing overhead which is linearly increased with the
users are generally charged based on service units (SUpwing scale of computation. According to this formulae th
the product of the number of processors and time - uséfieckpointing overhead.y,, is set to 0.625, 0.917, 1.5, 2.667,
by their app”cations_ Thus, we measure the relative ra-833, 5.0, 6.167, 7.33 minutes as the number of computation
duction on SUs, which represents the improvement 8pdesNy changed from 8 to 192. Depending on the migra-
FT-Pro with respect to system utilization. It is definedion implementation (e.g. stop-and-restart model [43]ioe |
as: migration [19]), the overhead caused by migration may be

) _ e different too. Here, we set the migration overh , to be
Nw - Tekp = (Nw + Ns) - Tpt—pro (6) twice the value of the correspondir@.y,. “a
Nw - Terp Figure 4(a) showdime_Reduction and SU_Reduction
o achieved by FT-Pro with different computation scales. tiveh
B. Model Description three interesting patterns. First, although FT-Pro presic
Application performance (e.g. application completionég)m positive value onTime_Reduction when the computation
can be regarded as a continuous accumulated reward, whichle is set to 16, th8U_Reduction value is negative. This

is affected by many factors including failure arrival/reepy, indicates that when the computing scale is relatively siead).

fault tolerance actions, and available spare nodes. Such b6), the time reduction brought by FT-Pro may be overshad-

haviors are difficult to be modeled by the traditional stachaowed by the use of additional computing resources, thereby
tic petri net (SPN); hence we built a fluid stochastic petti neesulting in negative resource utilization. Second is tivedas-

(FSPN) to analyze FT-Pro and to validate its adaptive gjyateing gain achieved by FT-Pro as the number of computation

Basically, FSPN is an extension of the classical SPN andriedes is increased from 16 to 96. When more nodes are used,

capable of modeling both discrete and continuous variablegpplication failure probability is getting higher, theyaimply-

Additional details about FSPN can be found in [53]. ing more opportunities for FT-Pro to reduce performance-ove

Figure 3 presents our FSPN model of FT-Pro. It is generathdad by avoiding failures. The third feature is the decrepsi

by using the SPNP package developed at Duke University [5SBEnefit when the number of computation nodes is increased be-

The model consists of three subnets. The first subsabret yond 96. As shown in Table I, in this set of simulations, only

of failure behavior - describes failure behaviors of the systenmne spare node is allocated even when the number of compu-

the second one subnet of adaptation manager - models the tation nodes is set to 192. As a result, FT-Pro cannot avoid im

behaviors of the adaptation manager adopted in FT-Pro; améhent failures due to the lack of available spare nodese Not

Tckp - Tftfpro

IEEE TRANSACTION ON COMPUTERS 6

i S i
I > L - l..- |
. i 9, L
| Tdatect Wdelacted Soelec "; _ Tdetect :
I Smiss I
I -"'\ 1
i missed 4
. R g (P b |
| |
L wpro | [Je | PR Ry |
- Tiail Ttail & _fa" Spro i
E:l Tpmh I_ —— _.‘_ [o =] =1]
=3 v Y3k e i
1 migratea !
,'-_D,_ j | I q 1 I
o I T ¥ i
- wiiown! || |
I
@ 1 [
o | | i
5 -y ;
m | I |
1] Wialsedgtectad
T oy '
= - ;
= - :
gk - Tluls&alarm_l'_ R T L (| || o e i e e P i
A I il <) AT = LT NI | Foi TR = Thhg "= "= "= ="=" i
: J
| Ptimaer Z O :
1
| - ¢ / {) :
i = Paxec :
i 1
| i
1 +
I 1
: Psaved Tfinish Pfinish |
3 | I . . ;
Subnet of Adaptation Manager Teheckpow! F Subnetof Application Petfarmance !

Odiscrete lace L R
P fluid transition

g Impulse fluid an:
@ fluidiplace | immedi ate transition ﬁ-

Htimed tranzition Inhibitar are fluid anz

Fig. 3. Fluid Stochastic Petri Net Modeling of FT-Pro. It s@is of three subnets: (1) subnet of failure behavior, ({@nst of adaptation manager, and (3)
subnet of application performance. Together, they model xeewtion of parallel applications running on clusteringtsyns in the presence of failures.

TABLE I
BASELINE PARAMETERS

Nw | Nsg Toppl T MTBF (node) | C' Cekp Cpm precision | recall
128 1 1000 hrs| 48 min. 500 hrs 2 hrs | 5 min. | 10 min. 0.7 0.7
FT-Pro vs. Periodic CKP DOGain via Selective CKP B Gain via Migration
’ @Time Reduction DOService Unit Reduction 100%
20%
° S, 80%
15% o]
£ 60%
9
10% 2 40%
[
o
5% 20%
0% 0%
59, 1 32 64 96 128 160 192 16 32 64 96 128 160 192
Number of Computation Nodes Number of Computation Nodes
(a) (b)

Fig. 4. Impact of Computation Scales, where the number of spadesis set to 1. The left figure presefitane_Reduction and SU_Reduction, and
the right figure shows the breakdown of the gain achieved byieT Generally, FT-Pro does better than periodic checkpw. The decreasing performance
when the size of computation is increased beyond 96 is duestsddirce number of spare nodes. The majority gain of FT-Pro cfroragroactive migration,
suggesting that avoiding failures in response to predicisoessential for reducing performance loss caused by palttéaiures.

IEEE TRANSACTION ON COMPUTERS 7

Time Reduction Service Unit Reduction
25% 25%

20% 7@::1;:;";% w0 |
159 155 m
10% + 10%

5% | ——No. of Comp. Nod 128 5% | —®—No. of Comp. Nodes=128

—&— No. of Comp. Nodes=64 A—No.of Comp. Nodes=64 | ““\“\‘

12 3 45 6 7 8 9 1011 12 13 14 15 16 1 2 3 4 5 6 7 8 9 101112 13 14 15 16
Number of Spare Nodes Number of Spare Nodes

(a) (b)

0% 0%

Fig. 5. Impact of Spare Nodes, where the number of spare nodgegdrom 1 to 16. The left figure presefitsme_Reduction, and the right figure shows
SU_Reduction achieved by FT-Pro as against periodic checkpointing. @isly, the more number of spare nodes is allocated, the €ttee_Reduction
is. However, allocating more spare nodes does not alwayeaserthe overall resource utilization.

that even when the scale increases beyond 128 with only afespare nodes. While the gain is always positive, it also-indi
spare node, FT-Pro still outperforms periodic checkpoti cates that allocating more spare nodes does not alwayssere
by more than 8.4% in terms dfime_Reduction and 7.9% the overall resource utilization, &l _Reduction decreases

in terms of SU_Reduction. beyond a certain point. According to the figure, when the num-

Figure 4(b) shows the breakdown of the gain achieved Iwer of computation nodes is set to 64 and 128, the optimal
FT-Pro. The benefit of FT-Pro comes from two parts: one is &location is 2 and 4 respectively. The figure also shows that
take preventive migration to avoid imminent failures, ahd t in general, by allocating less than 5% of nodes for accommo-
other is to skip unnecessary checkpoints when failure impafating preventive actions (e.g. 1-3 whéfy is 64 and 1-6
is low. The figure indicates that the benefit achieved by selaghen Ny, is 128), the adaptive fault management approach
tive checkpointing is relatively low. This is caused by thetf outperforms periodic checkpointing by 14%-24% in terms of
that we use an optimal frequency for checkpointing, therelopth Time_Reduction and SU_Reduction. The optimal al-
resulting in few chances for FT-Pro to skip unnecessarylchedocation of spare nodes depends on many factors, including
points. Obviously, failure avoidance through preventivigna failure behaviors (e.g. how often are simultaneous fadljre
tion dominates, especially when the computing scale islargand application size (e.g. how many nodes are requested for
For instance, when the number of computation nodes is semputation). A theoretic proof of the optimal allocatioh o
to 16, 68% of the gain comes from proactive migrations. Ttepare nodes is the subject of our on-going research.
percentage increases to nearly 100% when the computatio®) Impact of Prediction Accuracies: The performance of
scale is increased beyond 160. We observe the similar patte-Pro is influenced by prediction accuracy. Obviously, the
in our case studies (see Section VI). This suggests thatlyo funore accurate a prediction mechanism is, the better perfor-
utilize failure prediction, taking proactive actions, iddition mance FT-Pro can achieve. In this set of simulations, we sim-
to skipping unnecessary checkpoints, is essential foraiedu ulate different levels of prediction accuracies and guiprntie
performance loss caused by potential failures. amount of gain achieved by FT-Pro under differgntcision

2) Impact of Spare Nodes: In this set of simulations, we andrecall values.
investigate the sensitivity of FT-Pro to the allocation pase Table Il lists the application completion times obtained
nodes. by using FT-Pro, whererecision and recall range from

Figure 5 present§'ime_Reduction and SU_Reduction 1.0 to 0.1. Here, the computation scale is set to 128, and
achieved by FT-Pro over periodic checkpointing, where ttenly one additional spare node is allocated. In Figure 6,
number of spare nodess is ranging between 1 and 16. Therave pictorially show the distributions afime_Reduction and
are two curves in each plot, showing the result with the numb8U _Reduction with regards to differenprecision andrecall
of computation nodes set to 64 and 128 respectively. values.

As shown in Figure 5(a), although the improvement on The results clearly show that the more accurate a predic-
Time_Reduction becomes less obvious as the number dion mechanism is, the higher gain FT-Pro can provide. For
spare nodes increases, it grows monotonically with theeaesr example, the best performance is achieved whenrision =
ing number of spare nodes. With more spare nodes allocateeiall = 1.0 (perfect prediction) and the worse case oc-
FT-Pro can more effectively avoid simultaneous failures. lcurs whenprecision = recall = 0.1 (meaning that 90% of
other words, if time is the only concern, then allocating enorthe predicted failures are false alarms and 90% of the fail-
spare nodes definitely helps. A better performance is aetliewres are not captured by the failure predictor). Under gerfe
with the 128-node setting, as compared to the 64-node gettiprediction , the optimal gain achieved by FT-Pro2i&72%

The main reason is that the larger a computation is, the higls Time_Reduction and26.15% on SU_Reduction. When
chance the application has to experience failures and thme mboth precision andrecall are in the range 0f0.6,1.0], FT-
amount of work loss can be introduced in case of failures. AdPao outperforms periodic checkpointing by ou€f%. Our pre-
result, FT-Pro has more opportunities to provide improvaime diction studies have shown that with a proper error checking
Figure 5(b) presentSU_Reduction with varying numbers mechanism, it is feasible to predict failures with both sate

IEEE TRANSACTION ON COMPUTERS 8

Distribution of Time Reduction Distribution of Service Unit Reduction

|
09
08
07
06
05
0.4
= 03 = 0.3
: 02 0.2
0.1

TERET]

TERE]]

T
- 9 o M~ © 1T 0 N - -0 QN © o T 0 N
O O O O o O o o o O 0O O oo o o o o

precision precision

820.00%-30.00% @10.00%-20.00% 00.00%-10.00% 0O-10.00%-0.00%

Fig. 6. Impact of Prediction accuracies, corresponding toleTalll. Under perfect prediction, FT-Pro outperforms pditocheckpointing by abou26%.
For FT-Pro to be effective, the prediction engine should be & capture30% of failures.

TABLE Il
APPLICATION COMPLETION TIMES BY USING FT-PRO (IN HOURS), WHERE THE APPLICATION COMPLETION TIME BY USING PERIODIC CHEKPOINTING
1S 6500HOURS. THE NUMBER OF COMPUTATION NODESNyy 1S 128,AND THE NUMBER OF SPARE NODESNg IS SET TO1.

Precision
10 J 09 [08] 07 06] 05] 04] 03] 02701

1.0 || 4763 | 4853 | 4939 | 4944 | 4947 | 4980 | 5037 | 5322 | 5549 | 5915
0.9 [| 4907 | 4963 | 5000 | 5089 | 5135 | 5150 | 5176 | 5427 | 5712 | 6131
0.8 || 5215 | 5334 | 5363 | 5367 | 5388 | 5404 | 5461 | 5474 | 5831 | 6198
0.7 || 5425 | 5468 | 5475 | 5494 | 5521 | 5554 | 5665 | 5756 | 5905 | 6231
. 5646 | 5689 | 5700 | 5745 | 5790 | 5826 | 5847 | 5897 | 5963 | 6230
0.5 || 5775 | 5846 | 5919 | 5936 | 5957 | 6005 | 6067 | 6145 | 6182 | 6435
0.4 || 5974 | 6150 | 6163 | 6170 | 6182 | 6231 | 6246 | 6345 | 6359 | 6579
0.3 || 6218 | 6338 | 6357 | 6394 | 6458 | 6462 | 6466 | 6493 | 6507 | 6639
0.2 || 6420 | 6554 | 6598 | 6618 | 6458 | 6666 | 6719 | 6732 | 6751 | 7055
0.1 || 6710 | 6834 | 6852 | 6858 | 6884 | 6886 | 6955 | 6993 | 7099 | 7134

Recall
(&
(o))

above0.6 [11]. Similar results have also been reported in [9], 4) Impact of Operation Costs: Finally, we investigate the
[10]. impact of operation costs on the performance of FT-Pro. More
Additionally, as long as bothrecision andrecall are in specifically, we change the ratio between migration ovethea
the range 0f0.3, 1.0], FT-Pro always surpasses periodic checkand checkpointing overhead by fixirtg.,,, and varyingCy,, .
pointing with a positive gain in terms dfime_Reduction. The results achieved by FT-Pro as against periodic cheakpoi
In other words,to be effective, the failure predictor should ing are plotted in Figure 7. Here, the number of compu-
be able to capture at least 30% of failures. The figure also tation nodes is set to 128 and only one spare node is al-
suggests that FT-Pro could be further improved by turnirig dbcated. Obviously, a more efficient migration support can
adaptation when either gfrecision andrecall is lower than Yyield better performance. Even when migration overhead is
0.3. four times of checkpointing overhead, FT-Pro still maingi
The figure also indicates that FT-Pro is more robust tbime_Reduction at 11%.
precision than to recall. For instance, under the extreme
case whereprecision is 0.1 (meaning that there is only
one true failure for every ten predicted failures), FT-Pso i In our current design, we use a stop-and-restart migration,
still capable of producing a positivEime_Reduction and meaning that the application is stopped and restarted on a
SU_Reduction as long asrecall is controlled above 0.50. new set of computation nodes after the suspicious nodes are
Note that FT-Pro adopts a cooperative mechanism for adapplaced by spare nodes. Our case studies with real applica-
tive management such that the user set his/her fault talerations (discussed in the next section) show that with such an
requests and FT-Pro makes runtime decisions on the ineocatexpensive migration support, the migration overhégg, is
of different actions upon these points. If the warning islaga generally less thaC.;,. We believe that the development
alarm, rather than blindly triggering a MIGRATION action,of live migration such as the tool listed in [19], [20] can sig
FT-Pro may take a different action based on its evaluationificantly reduce migration overhead, thereby making F3-Pr
thereby making it robust to false positives. more promising.

IEEE TRANSACTION ON COMPUTERS 9

FT-Pro vs. Periodic CKP

@Time Reduction
DOService Unit Reduction . -

T-Pro Adaptive Fault Managemen|

R t | CKP Servers
Netwark ‘

5% |
0.1 05 1 1.5 2 25 3 35 4 4.5 5
Migration Cost/CKP Cost @ @ @ @ LILY] @ e

Computation Nodes Spare Nodes

-

MPICHY |

Fig. 7. Impact of Operation Costs, where the ratio betweenati@r over-

head and checkpointing overhead is tuned between 0.1 andeOnumber B Daemen
of computation nodes is set to 128, and only one spare nodecatd. The

performance gain achieved by adaptive fault tolerance isr@op. A more Fig. 8. Integrating FT-Pro with MPICH-VCL.
efficient migration support, such as live migration, can makePFd more

promising.

[] Failure Predictor

A. Methodology

The simulator is provided with a failure trace, an applicati
trace, computation scal&y;,, and an intervall. Here, an ap-
In summary, the above stochastic study has indicated thatication trace includes application failure-free exémutime

« Compared to the conventional checkpointing, FT-Pro cT ppl anq fault tolerance (_)verheads such % » and Cpm‘.
: S o . The details about the applications and the failure trackbsil
effectively reduce application completion time by avoid-

ing anticipated failures through proactive migration angescnbed in the following subsections.

? In case of using periodic checkpointing, the application
skipping unnecessary fault tolerance requests through E’:ﬁies a coordinated checkpoint at a constant interval.of
lective checkpointing. :

- . In case of using FT-Pro, a runtime decision is made at a con-
o When bothprecision and recall are in the range of ; N .
- L2 stant time ofl and the application takes an action from SKIP,
[0.6, 1.0], FT-Pro outperforms periodic checkpointing by’ ; .
. . CHECKPOINT, or MIGRATION according to the decision
over 10%; as long as both metrics are abavs, FT-Pro made by the adaptation manager. The outputs provided by the
does better than periodic checkpointing. y P ger. puts p y

« In general, a modest allocation of spare nodes - less thse{rrpulator are application completion times, {fe,,, by using

5% - is sufficient for FT-Pro to achieve the above perfor‘—)e”odIC checkpointing andy; . by using FT-Pro.
mance gain.
« To fully utilize failure prediction, the combination of fai B. Parallel Applications

ure avoidance and removing unnecessary fault tolerancesiy parallel applications, including parallel benchmaaksi
actions is of great importance for improving applicatiogcientific applications, are tested in the study. They aee th
performance. o . benchmark CG and three pseudo applications (BT, LU, SP)
« A more efficient migration S_uppOI’t, such as a live mifrom NPB [55], the cosmology application ENZO [56], [58],
gration support, can further improve the performance gq the molecular dynamics application GROMACS [57],(see
FT-Pro. Table V). This test suite is from a mixture of scientific do-
mains, thereby enabling us to have a fair evaluation of Fer-Pr
across a broad spectrum of HPC applications.
VI. CASE STUDIES Application traces are collected on an IA32 Linux cluster at
Argonne National Laboratory (part of the TeraGrid). Theselu
In this section, we evaluate FT-Pro by using trace-basest consists of 96 nodes, each equipped with two 2.4GHz Intel
simulations. Application traces and a failure trace coddc xegn processors and 4G MB memory. All the nodes are con-
from production systems are used to investigate the palenthected via Gigabyte Ethernet. A 4TB storage is shared among
benefit of using FT-Pro in realistic HPC environments. the nodes via NFS. The operation system is SUSE Linux v8.1,
We implement FT-Pro in the open-source checkpointinghd the MPICH-V is of version 0.76.
package MPICH-VCL 0.76 [13]. Note that FT-Pro is indepen- Table V lists the measured data. The data includes single-
dent of the underlying checkpointing tool, and can be easiytocess checkpoint image, checkpointing overhead andamigr
implemented with other tools such as LAM/MPI [14]. tion overhead. Due to the special requirement on computatio
Figure 8 illustrates our implementation. There are four maeale, the number of computation nodes used for BT and SP
jor components: (1FT-Pro daemons that are co-located with has to be in the form ofV2 (N is an integer).
application processes on computation nodesth@ylispatcher According to the table, the size of single-process checakpoi
that are responsible for managing computation resour&s, image decreases linearly with the increasing scale of cempu
the adaptation manager which is in charge of decision makingtation. This is understandable due to the divide-and-cenqu
as described in Section 1V, and (#e CKP server to perform principle. An interesting feature is witi.,. It first drops and
coordinated checkpointing. The migration support is based then starts to increase as the number of processors insrease
the stop-and-restart model. This is caused by the increasing synchronization overhgad b

D. Modeling Summary

IEEE TRANSACTION ON COMPUTERS 10

TABLE IV
DESCRIPTION OFPARALLEL APPLICATIONS

Application [Description
BT, dominating with point-to-point communications
NPB [55] CG, dominating with unstructured long-distance communications
(class C) LU, involving the computation of implicit CFD with message transferring

SP, solving non-diagonally dominant and scalar penta-diagonal egsatio
ENZO [56] A parallel cosmology simulation code using SAMR algorithm
GROMACS [57] | A molecular dynamics code to study the evolution of interacting atoms

TABLE V
MEASURED OPERATION COSTS ANDAPPLICATION EXECUTION TIMES USING CKP

CKP Image Cekp Cpm CKP Image Cekp Cpm
Appl. | Nw (MB) (Sec) | (See) Appl. | Nw (MB) (Sec) | (See)
9 171 111 168 4 170 30 76
16 100 81 146 8 90 33 51
BT 25 66 82 156 CG 16 46 35 40
36 48 88 195 32 25 37 56
64 28 91 198 64 13 88 107
4 168 61 84 4 38 17 29
8 87 36 64 8 32 15 28
LU 16 45 37 70 ENZO 16 19 10 28
32 24 33 79 32 14 22 49
64 12 36 116 64 12 32 81
9 125 76 122 4 10 6 11
16 74 65 125 8 8 6 11
SP | 25 48 62 126 GROMACS | 16 7 12 32
36 34 60 132 32 6 11 28
64 21 61 145 64 6 25 70
. . - _ TABLE VI
using qoordlnated checkp0|_nt|ng. It implies that process c STATISTICS OF FAILURE EVENTS
ordination can be a potential performance bottleneck when
the computation scale is substantially large [5]. Mignatomst Failure Type| Percentagd Downtime (in hrs)
Cpm, in general, increases with the growing computation scale. software 83% 0.7
The main reason is that the stop-and-restart migration azech hardware 1% 100.7
nism is used and the current MPICYCL device instantiates maintenance] 16% 12

the processes in a sequential order. As shown in the table,
generallyCy,,, < 3Cckp.

) D. Results
C. Failure Trace

Rather than using synthetic failure events, we use a fail- Table VIl lists our trace-based simulation results. Here,

ure trace collected from a production system at NCSA [27}&17Pl denotes the application execution time in a failure-
The machine has 520 two-way SMP 1 GHz Pentium-Iil nodd€€ computing environment, arid, and Ty, ., represents
(1040 CPUSs), 512 of which are compute nodes (2 GB meﬁl;l_e appllcan(_)n _completlon_ tlmes in the presence o_f fadure
ory), and the rest are storage nodes and interactive acc®%d/Sing periodic checkpointing and FT-Pro respectivelg W
nodes (1.5 GB memory). Table VI gives the statistics gpcrease _appl|cat|_on faﬂure—free execuugn times to $aeu)
the failure trace. We randomly select 96 nodes to match tHQg-runnlng appllqatlons. In case of using FT-Pro, an ,add'
testbed. tional spare node is allocated to accommodate proactive ac-

The trace-based simulator scans the failure trace in the tifP"S- The parenthesized numbers in the table denote perfor

order and simulates a failure when a real failure entry is eflance overheads (in percentage) on the _appllcatlclnT by using
countered. The prediction accuracy is emulated as below: Periodic checkpointing or FT-Pro; it is defined w

1) Recall: If there exists a failure on a node between theshen using periodic checkpointing a t";;;; ezl when
current and the next adaptation point, the predictor rgsing FT-Pro. Note that performance overhead includes-appl
ports a failure of its type with the probability efcall cation recovery time and delay time caused by fault manage-
on the node. ment.

2) Precision: Suppose the predictor has totally reported As we can see from the table, the overhead caused by check-
failures for the intervals with actual failures. Accordpointing is not trivial. For example, when the computingleca
ing to the definition ofprecision, for intervals with- is 64, the extra overhead introduced by checkpointing issmor
out an actual failure, the predictor randomly selecthian 50% for BT,SP,CG and ENZO. In contrast, the perfor-
zx(=precision) jtaryals and gives a false alarm on eachmance overhead introduced by FT-Pro is usually less than 3%.

Tecision

of them. Further, for both SP and ENZO, we observe that application

IEEE TRANSACTION ON COMPUTERS

PERFORMANCE OVERHEADS(IN PERCENTAGE) ON THE APPLICATION BY USING PERIODIC CHECKPOINTING OFF T-PRO. THE INTERVAL I IS SET T00.56
HOURS. WITH FT-PRO, IN ADDITION TO Ny, ONE SPARE NODE IS ALLOCATED BOTH precision AND recall ARE SET TO0.7.

TABLE VII
APPLICATION COMPLETION TIMES BY USING FT-PRO AND PERIODIC CHECKPOINTING THE PARENTHESIZED NUMBERS IN THE TABLE ARE

Tappl Tek Trt—pro Tappt Tek Trt—pro
Appl. | Nw (hogis) (hou?l”)s) (i{om{}s) Appl. Nw (hm};?}:s) (howl“’s) (i{om{}s)
9 666 720.31 (8.2%) | 675.23 (1.4%) 4 657.81 708.32 (7.7%) | 663.37 (0.8%)
16 408 465.06 (14.0%)| 413.58 (1.4%) 8 410.52 424.14 (3.3%) | 412.59 (0.5%)
BT 25 286 374.17 (30.8%)| 291.63 (2.0%) CG 16 290 319.19 (10.1%) | 294.46 (1.5%)
36 227 322.70 (42.2%)| 230.22 (1.5%) 32 188 244.69 (30.2%) | 190.63 (0.7%)
64 166 269.71 (62.5%)| 169.70 (2.2%) 64 128 236.28 (84.6%) | 132.20 (3.3%)
4 1625 1704.47 (4.9%)| 1636.91 (1.0%) 4 991 1014.22 (2.3%) | 996.41 (0.5%)
8 862 925.68 (7.4%) | 867.64 (0.7%) 8 590 610.92 (3.5%) | 592.93 (0.5%)
LU 16 528 622.70 (17.9%)| 532.68 (0.9%) ENZO 16 320 374.13 (16.9%) | 322.28 (0.7%)
32 419 520.58 (24.2%)| 422.78 (0.9%) 32 197 260.64 (32.3%) | 199.37 (1.2%)
64 350 502.12 (43.5%)| 354.58 (1.3%) 64 169 302.67 (79.1%) | 170.75 (1.5%)
9 915 1000.00 (9.3%)| 924.04 (1.0%) 4 4466 4934.17 (10.5%)| 4848 (8.6%)
16 592 673.36 (13.7%)| 596.28 (0.7%) 8 2529 2592.60 (2.5%) | 2537.78 (0.3%)
SP 25 409 488.17 (19.4%)| 413.94 (1.2%) || GROMACS | 16 1589 1702.12 (7.1%) | 1595.61 (0.3%)
36 293 383.63 (30.9%)| 296.94 (1.3%) 32 1328 1506.12 (13.4%)| 1337.72 (0.7%)
64 259 412.79 (59.4%)| 264.11 (2.0%) 64 2328 2711.71 (16.5%)| 2348.84 (0.9%)

Fig. 9. Time_Reduction and SU_Reduction Achieved by FT-Pro against periodic checkpointing. Thefgremance gain achieved by FT-Pro increases

Time Reduction

Time Reduction

50%

| oBT Bmsp |

50%

40%

30%

20%
10%

0%7 EEI D:l

40%

J OENZO BOGROMACS ®CG BLUL

30%

20%
10%

T T

0%

i

9 16 25 36 64 8 16 32 64
Number of Computation Nodes Number of Computation Nodes
(a) (b)
Service Unit Reduction Service Unit Reduction
50% 50%
e | oBT @sp | 0% «l DENZO DGROMACS BGG @mLU L
A
30% 30%
0% _ 20%
. 10%
10% = 0% |
0% o= 10% |
© 16 32 o4

26

-10%

©

16
t

o5
25

D
»

36

Number of Computation Nodes

-20%

Number of Computation Nodes

()

as the size of computation increases.

Fig. 10.

(d)

100%

Gain via Migration

80%
60%

40% A
20% A
0%

100%

Gain via Migration

80%
60%
40%
20%

0%

9

16 25

36 64

Number of Computation Nodes

16

Number of Computation Nodes

32 64

‘ OENZO OGROMACS EBCG ELU

(@

(b)

Performance Benefit Achieved by FT-Pro through Riaadigration (in percentages).

IEEE TRANSACTION ON COMPUTERS 12

completion times on 64 computation nodes are longer thamerhead caused by FT-Pro is very low (i.e. less than 3%).
those on 32 nodes by using periodic checkpointing, whergagrther, FT-Pro can be easily integrated with existing khec
FT-Pro is able to reduce them as the computing scale groygsinting tools by adding the adaptation manager as a new

It implies that FT-Pro has better scalability. module.
Figure 9 showdime_Reduction and SU_Reduction in-
troduced by FT-Pro with these applications. It shows that in VII. CONCLUSIONS

general, both metrics increase with the growing scale of-com |n this paper, we have presented an adaptive fault man-

putation. The larger scale an application is, the higheb@o agement approach called FT-Pro for parallel applicatidms.

bility it has to experience failures, thereby resulting o adaptation manager has been proposed to dynamically choose

opportunities for FT-Pro to improve its performance. an appropriate action from SKIP, CHECKPOINT, and MI-
As presented in Figure 9 (a)-(bJ;ime_Reduction is in. GRATION at runtime in response to failure prediction. We

the range of 2%-43%, depending on applications and computave studied FT-Pro under a wide range of parameters through

tion scales. The value is relatively small with GROMACS thagtochastic modeling and case studies with parallel agjsits.

with other applications. This is due to the use of a smal#diz Experimental results demonstrate that FT-Pro can effelgtiv

computation domain with GROMACS. As shown in Table Vimprove the performance of parallel applications in thespre

a small checkpoint image per process is observed with GRéhce of failures. Specifically, (1) FT-Pro outperforms peic

MACS, thereby reducing the potential gain that can be brougtheckpointing, when botprecision andrecall are above than

by removing unnecessary checkpoints by using FT-Pro. (.3. (2) A modest allocation of spare nodes (i.e. less than 5%)
According to Figure 9(c)-(d), when the computations usually sufficient for FT-Pro to provide the aforemené&dn

scale is smaller than 10, FT-Pro may result in negatiyrformance gain. And (3) the performance overhead caused

SU_Reduction. A major reason is that the allocation of oneyy FT-Pro is very low, e.g. less than 3% on the applications

spare node by FT-Pro is not trivial when the computationescaksted.

is small (e.g. 4,8 or 9). If the time reduction brought by FT- Our study has some limitations that remain as our future

Pro is small, then the use of additional computing resourc@srk. First, we will investigate how to modify our algorithim

can overshadow its gain, thereby resulting in negative gain work with other checkpointing mechanisms such as log-based

SU_Reduction. In general, FT-Pro provides positive result$4], [13] and live migration [19], [20], [44]. Second, we pla

in terms of T'ime_Reduction and SU_Reduction when the to provide a theoretic proof on the optimal allocation ofrepa

computing scale is larger than 16. nodes. Lastly, we are in the process of integrating our pre-
We also plot the gain achieved through proactive migratiowiction work [11], [48], [49] with FT-Pro. Upon completion,

on these applications (see Figure 10). Note that FT-Pro inve will evaluate it with parallel applications on productio

proves over checkpointing from two aspects: one is to avoigstems.

failures via preventive migrations and the other is to skip u

necessary checkpoints. The figure only plots the first patt an APPENDIXA

the second part can be easily inferred from the figure. These DESCRIPTION OFFSPN MODELING

results are consistent with those shown in Figure 4, that |§, g pnet of Failure Behavior

failure avoidance through proactive migrations is the domi)
gh p 9 We first describe failure behaviors on computation nodes.

nant factor for improvement. In general, more than 50% s . .
mp . 9 . . ° %hen the application starts, all the computation nodes are in
performance gain is achieved by proactive actions, and tw]s

percentage is increased to nearly 100% when the computatm% Way state. Afiring of the timed transitiof, .o, represents

S o . failure arrival, and the corresponding node enters the vul
scale is increased to 64. Again, it demonstrates that inrorde
. i . D nerable statdV,,,. If the failure event is predicted via the
to effectively utilize failure prediction, proactive maion is

indispensable for substantially improving applicatiorrfpe transition Tacrcct, the node enters the Statciceed; other-

. wise it entersW,,,;sseq Via the transitionT;,;ss.q. The node

mance under failures. at W, oes toW, with a firing of T, if there
We have also evaluated the performance of FT-Pro on thége " detected 9 down T 9 Jail :
are enough spare nodes available. The nodé¥,at;s.q will

applications by changing spare node allocations and tumg\gentually enteriVou, via a deterministic transition .

prediction accuracies [59]. The results are similar to ¢ho
shown in Section V. For instance, when the computation sc;ﬁQe crash?ic:ego_?ﬁz t?gg;ﬁ?o nrre cover b;(r:rﬁultgtlg/swj[h\elzv?glrs]e
. falsefail

: : < noderepair
is set to 64, by allocating one or two spare nodes, the relatlé/ arm behavior of the predictor. When it fires, the nodes at

gain achieved by FT-Pro over checkpointing is between 14 entersi’ and then automatically qoes back
and 43%; and FT-Pro is more sensitive to false negatives. , "% : Jalsedetected 79
to Wup via Tfalsefail'

The spare nodes have the similar state transitions, except
E. Summary of Case Studies that failures on spare nodes do not pose direct performance

In summary, our trace-based simulations with six differerﬁltenalty on the application.
applications have shown that FT-Pro has the potential to re-
duce application completion times in realistic HPC envirorP- Subnet of Adaptation Manager
ments. The results are consistent with those obtained Imngusi We use the staté’;,,.. and the deterministic transition
stochastic modeling. Our studies show that the performanfg,,....: t0 represent the adaptation interval. The firing of

IEEE TRANSACTION ON COMPUTERS

Tiimeour Makes the subnet to enter thy..;:0. State, where [8]
FT-Pro makes a runtime decision. Upon invocation, the sub-
net enters one of the three states: £1),,, whenTy,, fires;

it means that a SKIP action is taken and the subnet enters
Pyrip and immediately returns to the staf®,c,; (2) Pep, 10
whenT., fires; it means that a CHECKPOINT action is taker[‘il]
and the subnet waits for the firing of the timed transition

Teheckpoint (i-€. representing the checkpointing overhead) and
then returns toPmer; (3) Ppm, When Ty, fires; it means (12
that a MIGRATION action is taken and the subnet waits for

the firing of the timed transitiorY},;grqte (i.€. representing [13]
the migration cost) and then returns f;,..,. Further, the
firing of T)igrate SWapsS vulnerable nodes #tyetecteqd, and
Wfaseledetected with the Spare nodes aup and Smisssd-

(14]
(15]

C. Subnet of Application Performance

In this subnet, we use fluid places to model the contingg;
ous quantities like time and workload. The transiti®y,,,.
pumps fluid to the placé’.,.. with a constant rate of 1.0,
representing the elapsed time. Similarly,,,. pumps fluid
to the placeP,,;, representing the accumulated volatile work1s]
Through three inhibitor arcsl’,..« is disabled if the subnet
is at Pekp, Ppm Of Waown. Pekp, Ppm and Wey,, represent 19
checkpointing overhead, migration overhead, and the srgov
cost. Through the impulse arcs 1., the work atP,,; is [20]
flushed out to zero, representing the work loss due to fail-
ures. The work is flushed out t8,,,.q Via the impulse arcs [21]
t0 Tonigrate OF Teneckpoint, rEPresenting the work saved to a
stable storage. Once the accumulated work at eithgr or (22]
P,q.ucq €xceeds the application workloay;,;., fires and
the subnet enterBy;,;s,. The fluid atP. .. is the application [23]
completion time.

(17]

(24]

ACKNOWLEDGMENT

The authors appreciate the valuable comments and sugdze‘ré—
tions from the anonymous referees. Many thanks are due to
the members in the Scalable Computing Systems Laborat&$!
at lllinois Institute of Technology. This work is supported 27]
part by US National Science Foundation grants CNS-0720549,
CCF-0702737, NGS-0406328, and a TeraGrid Compute All&8]
cation. Some preliminary results of this work were presgnte
in [50] and [59]. [29]

REFERENCES (301

[1] The top500 supercomputer site. [Online]. Availablephitivww.top500. [31]
org

[2] D. Reed, C. Lu, and C. Mendes, “Big systems and big religbdhal- [32]
lenges,” inProc. of Parallel Computing, Germany, 2003.

[3] B. Schroeder and G. Gibson, “A large scale study of faitum high- [33]
performance-computing systems,” Rroc. of DSN 06, 2006.

[4] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A survefrollback-
recovery protocols in message-passing systedsiM Computing Sur-
veys, vol. 34(3), 2002. [34]

[5] E. Elnozahy and J. Plank, “Checkpointing for peta-scgystems: A
look into the future of practical rollback-recoveryEEE Transactions [35]
on Dependable and Secure Computing, vol. 1(2), 2004.

[6] V. Castelli, R. Harper, P. Heldelberger, S. Hunter, K.ivédi, [36]
K. Vaidyanathan, and W. Zeggert, “Proactive management divaoé
aging,” IBM Journal of Research and Development, vol. 45(2), 2001. [37]

[7]1 S. Chakravorty, C. Mendes, and L. Kale, “Proactive faolerance in

large systems,” ifProc. of HPCRI Workshop, 2005.

13

R. Vilalta and S. Ma, “Predicting rare events in temporahdhins,” in
Proc. of IEEE Intl. Conf. On Data Mining, 2002.

] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, and Sa,MCriti-

cal event prediction for proactive management in large-scafeputer
clusters,” inProc. of SGKDD’03, 2003.

Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and Fhd®a “Blue
gene/l failure analysis and prediction models,Piroc. of DSN' 06, 2006.
P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A metaalning
failure predictor for blue gene/l systems,” Rnoc. of International Con-
ference on Parallel Processing, 2007.

] A. Oliner and J. Stearley, “What supercomputers say: Alstof five

system logs,” inProc. of the International Conference on Dependable
Systems and Networks (DSN), 2007.

A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinieméa F. Cappello,
“Mpich-v: A multiprotocol automatic fault tolerant mpiJnternational
Journal of High Performance Computing and Applications, 2005.

J. Squyres and A. Lumsdaine, “A component architecturdaim/mpi,”
in Proc. of 10th European PVM/MPI Users' Group Meeting, 2003.

M. Schulz, G. Bronevetsky, R. Fernandes, D. MarquesPikgali, and
P. Stodghill, “Implementation and evaluation of a scalablpliaption-
level checkpoint-recovery scheme for mpi programs Pioc. of Super-
computing, 2004.

J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Traparent check-
pointing under unix,” inProc. of Usenix Winter 1995 Technical Confer-
ence, 1995.

J. Duell, P. Hargrove, and E. Roman, “Requirements fouXicheck-
point/restart,” Berkeley Lab Technical Report, Tech. RepNL-49659.
E. Gabriel, G. Fagg, and et al., “Open mpi: Goals, concapd design of
a next generation mpi implementation,” Rroc. of The 11th European
PVM/MPI Users Group Meeting, 2004.

] C. Duand X. Sun, “Mpi-mitten: Enabling migration techagy in mpi,”

in Proc. of CCGrid’ 06, 2006.

C. Wang, F. Mueller, C. Engelmann, and S. Scott, “A job gmser-
vice under lam/mpi+blcr for transparent fault tolerance,”Rroc. of
IPDPS 07, 2007.

J. Young, “A first order approximation to the optimal chpolnt inter-
val,” Comm. ACM, vol. 17(9), 1974.

T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Min-max checlpt
placement under incomplete failure information,” Bnoc. of DSN' 04,
2004.

S. Toueg and O. Babaoglu, “On the optimum checkpointcsiele prob-
lem,” SSAM J. Comput., vol. 13(3), 1984.

O. Babaoglu and W. Joy, “Converting a swap-based sy$tetio paging
in an architecture lacking page reference bits Pioc. Symp. Operating
Systems Principles, 1981.

J. Sancho, F. Petrini, G. Johnson, J. Fernandez, anchEhtenberg, “On
the feasibility of incremental checkpointing for scientifiemputing,” in
Proc. of IPDPS 04, 2004.

J. Plank, K. Li, and M. Puening, “Diskless checkpoigtinl EEE Trans-
actions on Parallel and Distributed Systems, vol. 9(10), 1998.

C.-D. Lu, “Scalable diskless checkpointing for largeralel systems,”
Ph.D. dissertation, Univ. of lllinois at Urbana-Champaitiimois, 2005.
G. Zheng, L. Shi, and L. Kale, “Ftc-charm++: An in-memory
checkpoint-based fault tolerant runtime for charm++ and mipiProc.
of Cluster04, 2004.

B. Allen, “Monitoring hard disks with smart,Linux Journal, January
2004.

Hardware monitoring by Im sensors. [Online]. Availabletp://secure.
netroedge.com/-Im78/info.html

Health application programming interface. [Online]. aftable: http:
/lwww.renci.org

Intelligent platform management interface. [Onlinelvaflable: http:
Ilwww.intel.com/design/servers/ipmi

K. Trivedi and K. Vaidyanathan, “A measurement-based rhémfeesti-
mation of resource exhaustion in operational software systen Proc.
of the 10th International Symposium on Software Reliability Engineer-
ing, 1999.

G. Weiss and H. Hirsh, “Learning to predict rare evemtsevent se-
quences,” inProc. of SGKDD, 1998.

G. Hoffmann, F. Salfner, and M. Malek, “Advanced failysesdiction
in complex software systems,” iAroc. of SRDS, 2004.

G. Hamerly and C. Elkan, “Bayesian approaches to failediction
for disk drives,” inProc. of ICML, 2001.

J. Hellerstein, F. Zhang, and P. Shahabuddin, “A dtatisapproach to
predictive detection,Computer Networks: The International Journal of
Computer and Telecommunications Networking, 2001.

IEEE TRANSACTION ON COMPUTERS

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

A. Gara, M. A. Blumrich, and et al., “Overview of the bluemg/l system
architecture,”IBM J. Res. and Dev., vol. 49 (2/3), 2005.

Cray, “Cray xt series system managementavailable at
http://docs.cray.com/books/S-2393-15/S-2393-15.pdf, 2005.

C. Leangsuksun, T. Liu, T. Raol, S. Scott, and R. LibByféilure pre-
dictive and policy-based high availability strategy fardk high perfor-
mance computing cluster,” iRroc. of 5th LCI International Conference
on Linux Clusters, 2004.

A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubaniam,
“Fault-aware job scheduling for blue gene/l systems,” Rroc. Of
IPDPS 04, 2004.

Y. Zhang, M. Squillante, A. Sivasubramaniam, and R. SaliBerfor-
mance implications of failures in large-scale cluster schiegfiin Proc.
of 10th Workshop on Job Scheduling Strategies for Parallel Processing,
held in conjunction with SGMETRICS, 2004.

T. Tannenbaum and M. Litzkow, “Checkpointing and migratof unix
processes in the condor distributed processing systempDobbs Jour-
nal, February 1995.

C. Clark, K. Fraser, S. Hand, and et al., “Live migratioh vartual
machines,” inProc. of the 2nd Symposium on Networked Systems Design
and Implementation (NSDI '05), 2005.

A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative chgmkting: A
robust approach to large-scale systems reliability,Phoc. of ICS06,
2006.

G. Brown, D. Bernard, and R. Rasmussen, “Attitude anidw@letion con-
trol for the cassini spacecraft: A fault tolerance overyiel?L Technical
Report, 1997.

R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelkestal re-
call: System support for automated availability managementProc.
of NSDI'04, 2004.

Z. Lan, P. Gujrati, Y. Li, Z. Zheng, R. Thakur, and J. Whita fault
diagnosis and prognosis service for teragrid clustersPrioc. of The
2nd TeraGrid Conference, Madison, WI, 2007.

Z. Zheng, Y. Li, and Z. Lan, “Anomaly localization in laggscale clus-
ters,” in Proc. of IEEE Cluster Conference, 2007.

Y. Li and Z. Lan, “Exploit failure prediction for adapt fault-tolerance
in cluster computing,” inProc. of IEEE CCGrid' 06, 2006.

J. Plank and M. Thomason, “Processor allocation and lgiwnt in-
terval selection in cluster computing systemigurnal of Parallel and
Distributed Computing, vol. 61(11), 2001.

A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative chmmkting the-
ory,” in Proc. of the International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

G. Ciardo, J. Muppala, and K. Trivedi, “Spnp: Stochagtetri net pack-
age,” inProc. of the PNPM’89, 1989.

L. Wang, K. Pattabiraman, Z. Kalbarczyk, and R. lyer, ‘déting coor-
dinated checkpointing for large-scale supercomputerdtac. DSN' 05,
2005.

Nasa nas parallel benchmarks. [Online]. Available:pittvww.nas.
nasa.gov/Resources/Software/npb.html

G. Bryan, T. Abel, and M. Norman, “Achieving extreme ragan in
numerical cosmology using adaptive mesh refinement: ResoluilRg
mordial star formulation,” irProc. of SC'01, 2001.

H. Berendsen, D. V. der Spoel, and R. van Drunen, “Gromdcs
message-passing parallel molecular dynamics implementaiZomip.
Phys. Comm.,, vol. 91:43-56, 1995.

Z. Lan, V. Taylor, and G. Bryan, “Dynamic load balanciray Structured
adaptive mesh refinement applications,”Hroc. of SC'01, 2001.

Y. Li and Z. Lan, “Using adaptive fault tolerance to impeoapplication
robustness on the teragrid,” Broc. of The Second TeraGrid Conference,
Madison, WI, 2007.

PLACE
PHOTO
HERE

IEEE member.

PLACE
PHOTO
HERE

14

Zhiling Lan received the BS degree in Mathemat-
ics from Beijing Normal University in 1992, the
MS degree in Applied Mathematics from Chinese
Academy of Sciences in 1995, and the PhD degree
in Computer Engineering from Northwestern Uni-
versity in 2002. She has been an assistant profes-
sor of computer science at the lllinois Institute of
Technology since 2002. Her research interests are
in the area of parallel and distributed systems, in
particular, fault tolerance, dynamic load balancing,
and performance analysis and modeling. She is an

Yawei Li received the BS and MS degrees in the
University Of Electronic Science & Technology of
China in 1999 and 2002. He is now a PhD candidate
of Computer Science at lllinois Institute of Technol-
ogy since 2004. He specializes in parallel and dis-
tributed computing, scalable software systems. His
current research focuses on adaptive fault manage-
ment in large-scale computer systems, checkpoint-
ing optimization and load balancing in Grid envi-
ronment. He is also an IEEE member.

