
IEEE TRANSACTION ON COMPUTERS 1

Adaptive Fault Management of Parallel
Applications for High Performance Computing

Zhiling Lan, Member, IEEE, and Yawei Li,Student Member, IEEE

Abstract—As the scale of high performance computing (HPC)
continues to grow, application fault resilience becomes crucial.
In this paper, we present FT-Pro, an adaptive fault manage-
ment approach that combines proactive migration with reactive
checkpointing. It aims to enable parallel applications to avoid
anticipated failures via preventive migration, and in the case of
unforeseeable failures, to minimize their impact through selec-
tive checkpointing. An adaptation manager is designed to make
runtime decisions in response to failure prediction. Extensive
experiments, by means of stochastic modeling and case studies
with real applications, indicate that FT-Pro outperforms periodic
checkpointing, in terms of reducing application completion times
and improving resource utilization, by up to 43%.

Index Terms—Adaptive fault management, Parallel applica-
tions, High performance computing, Large-scale systems.

I. I NTRODUCTION

I N the field of high performance computing (HPC), the in-
satiable demand for more computational power in science

and engineering has driven the development of ever-growing
supercomputers. Production systems with hundreds of thou-
sands of processors, ranging from tightly-coupled proprietary
clusters to loosely-coupled commodity-based clusters, are be-
ing designed and deployed [1]. For systems of this scale,reli-
ability becomes a critical concern as the system-wide mean
time between failures (MTBF) decreases dramatically with
the increasing count of components. Studies have shown that
MTBFs for teraflop- and petaflop-scale systems are only on
the order of 10-100 hours, even for systems based on ultra-
reliable components [2], [3]. Meanwhile, to accurately model
realistic problems, parallel applications are designed tospan
across a substantial number of processors for days or weeks
until completion. Unfortunately, the current state of parallel
processing is such that the failure of a single process usually
aborts the entire application. As a consequence, large applica-
tions find it difficult to make any forward progress because of
failures. This situation is likely to deteriorate as systems get
bigger while applications become larger.

Checkpointing is the conventional method for fault toler-
ance. It is reactive by periodically saving a snapshot of the
application and using it for restarting the execution in case of
failures [4], [5]. When one of the application processes expe-
riences a failure, all the processes, including non-faultypro-
cesses, have to roll back to the previously saved state priorto

Manuscript received April 25, 2007; revised August 14, 2007; accepted
December 4, 2007.

Zhiling Lan is with the Department of Computer Science, Illinois Institute
of Technology, Chicago, IL 60616. Email: lan@iit.edu

Yawei Li is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, IL 60616. Email: liyawei@iit.edu

the failure. Thus, significant performance loss can be incurred
due to the work loss and failure recovery. Unlike checkpoint-
ing, the newly emergedproactive approach (e.g. process mi-
gration) takes preventive actions before failures, thereby pre-
venting failure experiencing and avoiding rollbacks [6], [7].
Nevertheless, it requires accurate fault prediction, which is
hardly achievable in practice. Hence, proactive approach alone
is unlikely sufficient to provide a reliable solution for fault
management in HPC.

In this paper, we presentFT-Pro, an adaptive approach
for fault management of parallel applications by combining
the merits of proactive migration and reactive checkpointing.
Proactive actions enable applications to avoid anticipated faults
if possible, and reactive actions intend to minimize the impact
of unforeseeable failures. The goal is to reduce application
completion time in the presence of failures. While checkpoint-
ing and process migration have been studied extensively, the
key challenge facing the design of FT-Pro ishow to effectively
select an appropriate action at runtime. Towards this end, an
adaptation manager is designed to choose a best-fit action from
opportunistic skip, reactive checkpointing, and preemptive mi-
gration by considering a number of factors.

We demonstrate that FT-Pro can enhance fault resilience of
parallel applications and consequently improve their perfor-
mance, by means of stochastic modeling and case studies with
parallel applications. Our results indicate that FT-Pro outper-
forms periodic checkpointing, in terms of reducing application
completion time and improving resource utilization, by up to
43%. A modest allocation of spare nodes (less than5%) is
usually sufficient for FT-Pro to achieve the above gain. Addi-
tionally, the overhead caused by FT-Pro is less than3%.

FT-Pro is built on the belief that technological innovation
combined with advanced data analysis makes it possible to pre-
dict failures with a certain degree of accuracy. Recent studies
with actual failure traces have shown that with a proper sys-
tem monitoring facility, critical events can be predicted with
an accuracy of up to 80% [8]–[12]. A distinguishing feature
of FT-Pro is that it does not require perfect failure prediction
to be effective. As we will show, FT-Pro outperforms peri-
odic checkpointing as long as failure prediction is capableof
capturing30% of failures, which is feasible by using existing
predictive technologies.

FT-Pro is intended to bridge the gap between failure pre-
diction and fault handling techniques by effectively exploring
failure prediction for better fault management. It complements
the research on checkpointing and process migration by pro-
viding adaptive strategies for runtime coordination of these
techniques. The proposed FT-Pro can be integrated with state-



IEEE TRANSACTION ON COMPUTERS 2

of-the-art failure predictors and existing fault tolerance tools
[9], [10], [13]–[20] to provide an end-to-end system for adap-
tive fault management of parallel applications.

The remainder of this paper is organized as follows. Sec-
tion II briefly discusses the related work. Section III gives
an overview of FT-Pro, followed by a detailed description of
its adaptation manager in Section IV. Section V describes
our stochastic modeling and simulation results. Section VI
presents case studies with a number of parallel applications.
Finally, Section VII summarizes the paper and points out
future directions.

II. RELATED WORK

Checkpointing, in various forms, has been studied exten-
sively over the past decades. A detailed description and com-
parison of different checkpointing techniques can be foundin
[4]. In the field of HPC, a number of checkpointing libraries
and tools have been developed, and examples include libckpt
[16], BLCR [17], open MPI [18], MPICH-V [13], and the
C3 (Cornell Checkpoint (pre)Compiler) [15]. Checkpointing
optimization is generally approached by selecting an optimal
intervals [21]–[23] or reducing the overhead per operation
such as copy-on-write [24], incremental checkpointing [25],
diskless checkpointing [26], [27], double in-memory technique
[28], etc. Generally speaking, checkpointing is a conservative
method. It requires increasing number of checkpoints to deal
with higher failure rates as the computing scale increases.

Much progress has been made in failure analysis and pre-
diction. On the hardware side, modern computer systems are
designed with various features (e.g. hardware sensors) that can
monitor the degradation of an attribute over time for early de-
tection of hardware errors [29]–[32]. On the software side,a
variety of predictive techniques have been developed to infer
implicit and useful fault patterns from historical data forfail-
ure prediction. They can be broadly classified asmodel-based
or data-driven. A model-based approach derives an analyti-
cal or probabilistic model of the system and then triggers a
warning when a deviation from the model is detected [33]–
[37]. Data mining, in combination with intelligent systems,
focuses on learning and classifying fault patterns withoutas-
suming a priori model ahead of time [8]–[11]. In addition,
leading HPC vendors have started to integrate hardware and
software components in their systems for fault analysis, such
as the Cluster Monitoring and Control System (CMCS) service
in IBM Blue Gene systems and Cray RAS and Management
System (CRMS) in Cray XT series systems [38], [39].

Leveraging the research on failure prediction, there are
growing interests in utilizing failure prediction for proactive
fault management. For example, the HA-OSCAR project pro-
vides high-availability for head nodes in Beowulf clustersby
using a failover strategy [40]. There are several research ef-
forts on failure-aware scheduling [41], [42]. Process or object
migration is a widely used proactive technique [7]. Most mi-
gration methods adopt thestop-and-restart model for the mi-
gration of parallel applications, in which the applicationtakes
a checkpoint and then restarts on a new set of resources - af-
ter swapping the failure-prone nodes with healthy ones [43].

There are several active research projects on providinglive mi-
gration support for MPI applications [19], [20], [44]. While
proactive approach is cost efficient, it requires accurate fail-
ure prediction. In practice, prediction misses and false alarms
are common. Prediction misses can lead to significant perfor-
mance damage, whereas false alarms can introduce intolerable
overhead. Hence, solely relying on proactive approach is not
sufficient for HPC.

Recognizing the limitations of reactive and proactive ap-
proaches, FT-Pro aims at getting the best of both worlds by
intelligently coordinating process migration with checkpoint-
ing. Similar to cooperative checkpointing [45], FT-Pro ignores
unnecessary fault tolerance requests when failure impact is
trivial. Further, it enables an application to avoid imminent
failures through preventive migration. The adaptation between
process migration and selective checkpointing is built upon a
quantitative modeling of application performance.

The idea of using adaptation for fault management is not
new. It has been used in the fields such as mission-critical
spacecrafts and storage systems [46], [47]. Nevertheless,to
the best of our knowledge, we are among the first to exploit
adaptive fault management for high performance computing.
Different from the above research that mainly focuses on ef-
ficiently utilizing duplicated components for high availability,
this work centers upon reducing application completion time
by dynamically choosing between proactive and reactive ac-
tions.

III. OVERVIEW OF FT-PRO

We define afailure as any event in hardware or software
that results in an immediate termination of a running applica-
tion. To be effective, FT-Pro requires the presence of a failure
predictor. Predictive techniques mentioned in Section II,as
well as our own previous work [11], [48], [49], can be used to
provide such an engine. Failure prediction can be eithercate-
gorical where the predictor forecasts whether a failure event
will occur or not in the near future, ornumerical where the
probability of failures is provided for a given time window.
Numerical results can be easily translated into categorical re-
sults by applying threshold based splitting; hence in this paper,
we uniformly describefailure prediction as a process that pe-
riodically estimates whether a node will experience failures in
a given time window (e.g. a few minutes to an hour). Such a
prediction mechanism is generally measured by two accuracy
metrics:precision and recall. Precision is defined as the pro-
portion of correct predictions to all the predictions made (i.e.

Tp

Tp+Fp
), and recall is the proportion of correct predictions to

the number of failures (i.e. Tp

Tp+Fn
). Here,Tp is number of cor-

rect predictions (i.e.true positives), andFp is number of false
alarms (i.e.false positives), andFn is number of missed fail-
ures (i.e.false negatives). Obviously, a good prediction engine
should achieve a high value (closer to 1.0) for both metrics.

A user can set fault tolerance requests denoted asadaptation
points for the application execution, and FT-Pro makes run-
time decision upon these points to determine which action
should be taken [50]. For example, a user may set adaptation
points to where the application completes a segment of useful



IEEE TRANSACTION ON COMPUTERS 3

Fig. 1. The Main Idea and Steps of FT-Pro.

work, i.e. the computation that is not redone due to a failure
[51]. Three actions are currently considered in FT-Pro:

• SKIP, where the fault tolerant request is ignored. This ac-
tion is taken to remove unnecessary actions when failure
impact is trivial.

• CHECKPOINT, where the application takes a checkpoint.
This action is to reduce application work loss caused by
unforeseeable failures.

• MIGRATION, where the processes on suspicious nodes
(i.e. the nodes predicted to be failure-prone in the near
future) are transferred to healthy nodes. This action is
to avoid an imminent failure. Currently, we assume that
process migration is conducted by taking a coordinated
checkpoint followed by a stop-and-restart migration [43].

The main idea of FT-Pro is illustrated in Figure 1, where the
useful work is segmented into intervals denoted byIk. Suppose
the application runs on{P1, P2, . . . , PW } and one spare node
denoted asPS is allocated for proactive actions. Spare nodes
can be either reserved at the application submission or allo-
cated through the resource manager during execution. Upon
each adaptation pointAPi, FT-Pro first consultsthe failure
predictor to get the status of each computation node. It then
triggersthe adaptation manager (discussed in Section IV) to
determine a best-fit action in response to failure prediction,
followed by invoking the corresponding action on the applica-
tion. Here,the cost monitor component keeps track of runtime
overhead different fault tolerance actions. If the application
fails during checkpointing or migration, it rolls back to the
most recent checkpoint. Let’s take a look at a few examples:

• FT-Pro always grants the first fault tolerance request at
AP1 by taking a checkpoint.

• At AP2 where the failure predictor does not anticipate
any failure in the near future, given that failure impact
during the next interval is trivial, FT-Pro ignores the re-
quest by taking a SKIP action. Similarly, FT-Pro takes a

Fig. 2. Diagram of Adaptation Algorithm

SKIP action atAP7.
• At AP3, considering that the work loss would be sig-

nificant if an unforeseeable failure occurred in the next
interval, FT-Pro decides to take a coordinated checkpoint
although no failure warning is issued at this point.

• At AP4 where the predictor forecasts a failure onPW

(which turns out to be a true positive), FT-Pro transfers
the process fromPW to the spare nodePS . The applica-
tion is first checkpointed, followed by a process migra-
tion. Once repaired,PW becomes a spare node.

• At AP5 where the predictor fails to warn the upcoming
failure onP3 (e.g. a false negative), FT-Pro takes a SKIP
action. The application, therefore, loses the work done
betweenAP5 and the failure occurrence, suffers from
failure recovery, rolls back to the last checkpoint com-
pleted atAP4, recomputes the work due to the failure,
and proceeds to the next adaptation pointAP6.

• In case of false alarms, such as atAP6 where the pre-
dictor erroneously gives a warning (e.g. a false positive),
FT-Pro takes a checkpoint.

IV. A DAPTATION MANAGER

The adaptation manager is responsible for determining the
most suitable action upon each adaptation point. Designingan
efficient manager is challenging. First, it must consider a range
of factors that may impact application performance. These in-
clude not only the available spare nodes, but also costs and
benefits of different fault tolerance actions. Second, given that
a failure predictor is subjected to false negatives and false pos-
itives, it must take account of both errors during its decision
making process. Lastly, it must make a timely decision without
causing noticeable overhead on application performance.

By considering the above requirements, we develop an adap-
tation manager, which is illustrated in Figure 2. It takes ac-
count of three sets of parameters for decision making, namely
prediction accuracy, operation costs of different actions, and
the number of available resources for proactive actions. Be-
fore presenting our detailed algorithm, we first list a set of
nomenclatures that will be frequently used in the rest of the
paper (see Table I).

Upon each adaptation pointAPi, if the failure predictor
anticipates any failure on a computation node, the manager
takes account of predictionprecision. Specifically, it esti-
matesEnext - the expected time for the application to reach the
next adaptation pointAPi+1 - andselects the action that min-
imizes Enext. Suppose the current interval index islcurrent.
Due to the uncertainty of the exact failure time, a conservative
view is adopted by assuming that the failure will occur imme-



IEEE TRANSACTION ON COMPUTERS 4

TABLE I
NOMENCLATURE

Symbol Description
Tappl Application failure-free execution time, i.e. time spent on useful work
Tckp, Tft−pro Application completion time by using checkpointing or FT-Pro
NW Number of computation nodes allocated to the application
NS Number of spare nodes allocated to the application
I Fault tolerance interval
lcurrent Index of the current adaptation point
llast Index of the last adaptation point where a checkpoint is taken
precision, recall Prediction accuracy, defined asTp

Tp+Fp
and Tp

Tp+Fn
respectively

fappl application failure probability
Cr Mean recovery cost
Cckp Checkpointing overhead
Cpm Migration overhead
Enext Expected time for the application to reach the next adaptation point

diately before the next adaptation point. Here, “conservative”
is with respect to the amount of work loss.

• SKIP: (1) If a failure occurs in the next interval, the ap-
plication spendsI time for the execution,Cr time for the
recovery, and then[I+(lcurrent−llast)×I] time to reach
the next adaptation point from the most recent checkpoint.
(2) If no failure occurs, the application smoothly proceeds
to the next adaptation point. By using the total probability
law, we have:

Enext = [Cr + (2 + lcurrent − llast) × I] × fappl

+I × (1 − fappl)

fappl = 1 − (1 − precision)N
f

W (1)

Here,Nf
W denotes the number of computation nodes that

are predicted to be failure prone in the next interval.
• CHECKPOINT: The application first spendsCckp for per-

forming checkpointing and then updatesllast. (1) If a
failure occurs in the next interval, the application spends
I time for the execution,Cr time for the recovery, and
then I time to reach the next adaptation point from the
current adaptation point. (2) If no failure occurs, the ap-
plication smoothly proceeds to the next adaptation point.
Thus, we have:

Enext = (Cckp + Cr + 2I) × fappl

+(I + Cckp) × (1 − fappl)

fappl = 1 − (1 − precision)N
f

W (2)

• MIGRATION: The application first spendsCpm for pro-
cess migration and updatesllast. Due to the possibility of
multiple simultaneous failures, the number of spare nodes
may not be enough to accommodate all the migration
requests. FT-Pro uses a best-effort strategy to migrate as
many processes as possible.Enext is calculated as below:

Enext = (Cpm + Cr + 2I) × fappl

+(I + Cpm) × (1 − fappl)

fappl =

{

1 − (1 − precision)N
f
W

−Nh
S N

f
W

> Nh
S

0 N
f
W

≤ Nh
S

(3)

Here,Nh
S denotes the number of spare nodes that will be

failure free during the next interval.
Upon an adaptation point where the failure predictor does

not give any warning, the manager takes account of predic-
tion recall. Given the possibility of unpredictable failures, the
performance loss could be significant when a number of SKIP
actions have been taken continuously before an unpredicted
failure. Hence, when the number of consecutive SKIP actions
reaches a threshold, rather than blindly relying on the predic-
tion, the manager enforces a checkpoint. The rationale here
is to enforce a checkpoint in case failure prediction is wrong.
Currently, the threshold is set to MTBF

I·(1−recall) . It is based on
an intuitive estimation that the expected time between false
negatives is MTBF

(1−recall) . Clearly, if recall is equal to1.0, the
threshold is∞, meaning that there is no need to enforce pre-
ventive checkpoints as the predictor is able to capture every
failure.

The special cases are whenprecision or recall is zero. If
precision is zero, meaning that every alarm provided is a false
alarm. According to Equation (1)-(3), a SKIP action is selected
upon these adaptation points. Ifrecall is zero, meaning that
every failure is missed by the predictor. In this case, periodic
checkpointing is adopted.

In addition, the adaptation manager adopts an automatic
mechanism to assess application-specific parameters listed in
Equation (1)-(3), namely checkpointing overheadCckp and
migration overheadCpm for its decision making. Both pa-
rameters depend on many factors like the implementations of
checkpointing and migration, system configurations, compu-
tation scale, and application characteristics. The manager au-
tomates the acquisition of these parameters, without the user
involvement, in the following ways:

• Upon the initiation of the application, it records the ap-
plication starting cost. Further, it always grants the first
checkpoint request (see Figure 1). A recent study done
by Oliner et al. has proved that any strategy that skips
the first checkpoint is non-competitive [52]. At the second
adaptation point, the manager uses the recorded check-
pointing overheadCckp and estimatesCpm as the sum-
mation ofCckp and the application starting cost.

• During the subsequent execution, it always keeps track



IEEE TRANSACTION ON COMPUTERS 5

of these parameters via the cost monitor component and
uses the last measured values for decision making at the
next adaptation point.

The adaptation manager can be easily implemented on top
of existing checkpointing tools. For instance, we implement
FT-Pro with MPICH-VCL [13] by adding the adaptation man-
ager as a new component (see Figure 8).

V. STOCHASTIC MODELING

We now proceed to comprehensively evaluate the perfor-
mance of FT-Pro. In this section we present a stochastic model
of FT-Pro, and case studies with applications will be discussed
in the next section.

A. Performance Metrics

Three performance metrics are used to compare FT-Pro to
periodic checkpointing:

1) Execution Time. Considering that the main objective of
HPC is to reduce application execution time, we there-
fore use it as our primary metric:

T =

{

Tckp using checkpointing
Tft−pro using FT-Pro

(4)

2) Time Reduction. For the convenience of comparison, we
also measure the relative time reduction by using FT-Pro
over periodic checkpointing. It is defined as:

Tckp − Tft−pro

Tckp

(5)

3) Service Unit Reduction. On production HPC systems,
users are generally charged based on service units (SUs)-
the product of the number of processors and time - used
by their applications. Thus, we measure the relative re-
duction on SUs, which represents the improvement of
FT-Pro with respect to system utilization. It is defined
as:

NW · Tckp − (NW + NS) · Tft−pro

NW · Tckp

(6)

B. Model Description

Application performance (e.g. application completion time)
can be regarded as a continuous accumulated reward, which
is affected by many factors including failure arrival/recovery,
fault tolerance actions, and available spare nodes. Such be-
haviors are difficult to be modeled by the traditional stochas-
tic petri net (SPN); hence we built a fluid stochastic petri net
(FSPN) to analyze FT-Pro and to validate its adaptive strategy.
Basically, FSPN is an extension of the classical SPN and is
capable of modeling both discrete and continuous variables.
Additional details about FSPN can be found in [53].

Figure 3 presents our FSPN model of FT-Pro. It is generated
by using the SPNP package developed at Duke University [53].
The model consists of three subnets. The first subnet -subnet
of failure behavior - describes failure behaviors of the system;
the second one -subnet of adaptation manager - models the
behaviors of the adaptation manager adopted in FT-Pro; and

the last one -subnet of application performance - uses the
continuous fluid to model application completion time. The
detailed explanation of the model is given in the Appendix.

A FSPN model is also built for periodic checkpointing. We
then used these models to study FT-Pro as against periodic
checkpointing.

C. Modeling Results

Four sets of simulations are conducted to examine the im-
pact of computation scales, allocation of spare nodes, predic-
tion accuracies, and operational costs respectively. The base-
line configuration is summarized in Table II. These parame-
ters and their corresponding ranges are selected based on the
results reported in [5], [42], [54]. Note that the intervalI, cal-
culated based on the well-known optimal frequency [21], is
used as the adaptation interval for FT-Pro and the checkpoint
interval for periodic checkpointing.

1) Impact of Computation Scales: In the first set of sim-
ulations, we tune the number of computation nodes from 16
to 192 (the maximum number of processing units allowed in
SPNP is 200), with only one spare node being allocated. The
purpose is to study the impact of computation scales on the
performance of FT-Pro.

To reflect the fact that checkpointing overhead and migra-
tion overhead generally grow with the application size, we
make corresponding changes on the values ofCckp andCpm.
How to accurately set these parameters is difficult, as they
are application-dependent. Considering the principle of coordi-
nated checkpointing, we use a simple model of(OIO+Omsg),
where OIO is a fixed I/O overhead andOmsg is the mes-
sage passing overhead which is linearly increased with the
growing scale of computation. According to this formula, the
checkpointing overheadCckp is set to 0.625, 0.917, 1.5, 2.667,
3.833, 5.0, 6.167, 7.33 minutes as the number of computation
nodesNW changed from 8 to 192. Depending on the migra-
tion implementation (e.g. stop-and-restart model [43] or live
migration [19]), the overhead caused by migration may be
different too. Here, we set the migration overheadCpm to be
twice the value of the correspondingCckp.

Figure 4(a) showsTime Reduction andSU Reduction

achieved by FT-Pro with different computation scales. It shows
three interesting patterns. First, although FT-Pro provides a
positive value onTime Reduction when the computation
scale is set to 16, theSU Reduction value is negative. This
indicates that when the computing scale is relatively small(e.g.
16), the time reduction brought by FT-Pro may be overshad-
owed by the use of additional computing resources, thereby
resulting in negative resource utilization. Second is the increas-
ing gain achieved by FT-Pro as the number of computation
nodes is increased from 16 to 96. When more nodes are used,
application failure probability is getting higher, thereby imply-
ing more opportunities for FT-Pro to reduce performance over-
head by avoiding failures. The third feature is the decreasing
benefit when the number of computation nodes is increased be-
yond 96. As shown in Table II, in this set of simulations, only
one spare node is allocated even when the number of compu-
tation nodes is set to 192. As a result, FT-Pro cannot avoid im-
minent failures due to the lack of available spare nodes. Note



IEEE TRANSACTION ON COMPUTERS 6

Fig. 3. Fluid Stochastic Petri Net Modeling of FT-Pro. It consists of three subnets: (1) subnet of failure behavior, (2) subnet of adaptation manager, and (3)
subnet of application performance. Together, they model the execution of parallel applications running on clustering systems in the presence of failures.

TABLE II
BASELINE PARAMETERS

NW NS Tappl I MTBF (node) Cr Cckp Cpm precision recall

128 1 1000 hrs 48 min. 500 hrs 2 hrs 5 min. 10 min. 0.7 0.7

Fig. 4. Impact of Computation Scales, where the number of spare nodes is set to 1. The left figure presentsT ime Reduction andSU Reduction, and
the right figure shows the breakdown of the gain achieved by FT-Pro. Generally, FT-Pro does better than periodic checkpointing. The decreasing performance
when the size of computation is increased beyond 96 is due to the scarce number of spare nodes. The majority gain of FT-Pro comesfrom proactive migration,
suggesting that avoiding failures in response to prediction is essential for reducing performance loss caused by potential failures.



IEEE TRANSACTION ON COMPUTERS 7

Fig. 5. Impact of Spare Nodes, where the number of spare nodes ranges from 1 to 16. The left figure presentsT ime Reduction, and the right figure shows
SU Reduction achieved by FT-Pro as against periodic checkpointing. Obviously, the more number of spare nodes is allocated, the betterT ime Reduction

is. However, allocating more spare nodes does not always increase the overall resource utilization.

that even when the scale increases beyond 128 with only one
spare node, FT-Pro still outperforms periodic checkpointing
by more than 8.4% in terms ofTime Reduction and 7.9%
in terms ofSU Reduction.

Figure 4(b) shows the breakdown of the gain achieved by
FT-Pro. The benefit of FT-Pro comes from two parts: one is to
take preventive migration to avoid imminent failures, and the
other is to skip unnecessary checkpoints when failure impact
is low. The figure indicates that the benefit achieved by selec-
tive checkpointing is relatively low. This is caused by the fact
that we use an optimal frequency for checkpointing, thereby
resulting in few chances for FT-Pro to skip unnecessary check-
points. Obviously, failure avoidance through preventive migra-
tion dominates, especially when the computing scale is large.
For instance, when the number of computation nodes is set
to 16, 68% of the gain comes from proactive migrations. The
percentage increases to nearly 100% when the computation
scale is increased beyond 160. We observe the similar pattern
in our case studies (see Section VI). This suggests that to fully
utilize failure prediction, taking proactive actions, in addition
to skipping unnecessary checkpoints, is essential for reducing
performance loss caused by potential failures.

2) Impact of Spare Nodes: In this set of simulations, we
investigate the sensitivity of FT-Pro to the allocation of spare
nodes.

Figure 5 presentsTime Reduction and SU Reduction

achieved by FT-Pro over periodic checkpointing, where the
number of spare nodesNS is ranging between 1 and 16. There
are two curves in each plot, showing the result with the number
of computation nodes set to 64 and 128 respectively.

As shown in Figure 5(a), although the improvement on
Time Reduction becomes less obvious as the number of
spare nodes increases, it grows monotonically with the increas-
ing number of spare nodes. With more spare nodes allocated,
FT-Pro can more effectively avoid simultaneous failures. In
other words, if time is the only concern, then allocating more
spare nodes definitely helps. A better performance is achieved
with the 128-node setting, as compared to the 64-node setting.
The main reason is that the larger a computation is, the higher
chance the application has to experience failures and the more
amount of work loss can be introduced in case of failures. As a
result, FT-Pro has more opportunities to provide improvement.

Figure 5(b) presentsSU Reduction with varying numbers

of spare nodes. While the gain is always positive, it also indi-
cates that allocating more spare nodes does not always increase
the overall resource utilization, asSU Reduction decreases
beyond a certain point. According to the figure, when the num-
ber of computation nodes is set to 64 and 128, the optimal
allocation is 2 and 4 respectively. The figure also shows that
in general, by allocating less than 5% of nodes for accommo-
dating preventive actions (e.g. 1-3 whenNW is 64 and 1-6
when NW is 128), the adaptive fault management approach
outperforms periodic checkpointing by 14%-24% in terms of
both Time Reduction andSU Reduction. The optimal al-
location of spare nodes depends on many factors, including
failure behaviors (e.g. how often are simultaneous failures)
and application size (e.g. how many nodes are requested for
computation). A theoretic proof of the optimal allocation of
spare nodes is the subject of our on-going research.

3) Impact of Prediction Accuracies: The performance of
FT-Pro is influenced by prediction accuracy. Obviously, the
more accurate a prediction mechanism is, the better perfor-
mance FT-Pro can achieve. In this set of simulations, we sim-
ulate different levels of prediction accuracies and quantify the
amount of gain achieved by FT-Pro under differentprecision

andrecall values.
Table III lists the application completion times obtained

by using FT-Pro, whereprecision and recall range from
1.0 to 0.1. Here, the computation scale is set to 128, and
only one additional spare node is allocated. In Figure 6,
we pictorially show the distributions ofTime Reduction and
SU Reduction with regards to differentprecision andrecall

values.
The results clearly show that the more accurate a predic-

tion mechanism is, the higher gain FT-Pro can provide. For
example, the best performance is achieved whenprecision =
recall = 1.0 (perfect prediction) and the worse case oc-
curs whenprecision = recall = 0.1 (meaning that 90% of
the predicted failures are false alarms and 90% of the fail-
ures are not captured by the failure predictor). Under perfect
prediction , the optimal gain achieved by FT-Pro is26.72%
on Time Reduction and26.15% on SU Reduction. When
both precision and recall are in the range of[0.6, 1.0], FT-
Pro outperforms periodic checkpointing by over10%. Our pre-
diction studies have shown that with a proper error checking
mechanism, it is feasible to predict failures with both rates



IEEE TRANSACTION ON COMPUTERS 8

Fig. 6. Impact of Prediction accuracies, corresponding to Table III. Under perfect prediction, FT-Pro outperforms periodic checkpointing by about26%.
For FT-Pro to be effective, the prediction engine should be able to capture30% of failures.

TABLE III
APPLICATION COMPLETION TIMES BY USING FT-PRO (IN HOURS), WHERE THE APPLICATION COMPLETION TIME BY USING PERIODIC CHECKPOINTING

IS 6500HOURS. THE NUMBER OF COMPUTATION NODESNW IS 128,AND THE NUMBER OF SPARE NODESNS IS SET TO1.

Precision
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

R
ec

al
l

1.0 4763 4853 4939 4944 4947 4980 5037 5322 5549 5915
0.9 4907 4963 5000 5089 5135 5150 5176 5427 5712 6131
0.8 5215 5334 5363 5367 5388 5404 5461 5474 5831 6198
0.7 5425 5468 5475 5494 5521 5554 5665 5756 5905 6231
0.6 5646 5689 5700 5745 5790 5826 5847 5897 5963 6230
0.5 5775 5846 5919 5936 5957 6005 6067 6145 6182 6435
0.4 5974 6150 6163 6170 6182 6231 6246 6345 6359 6579
0.3 6218 6338 6357 6394 6458 6462 6466 6493 6507 6639
0.2 6420 6554 6598 6618 6458 6666 6719 6732 6751 7055
0.1 6710 6834 6852 6858 6884 6886 6955 6993 7099 7134

above0.6 [11]. Similar results have also been reported in [9],
[10].

Additionally, as long as bothprecision and recall are in
the range of[0.3, 1.0], FT-Pro always surpasses periodic check-
pointing with a positive gain in terms ofTime Reduction.
In other words,to be effective, the failure predictor should
be able to capture at least 30% of failures. The figure also
suggests that FT-Pro could be further improved by turning off
adaptation when either ofprecision andrecall is lower than
0.3.

The figure also indicates that FT-Pro is more robust to
precision than to recall. For instance, under the extreme
case whereprecision is 0.1 (meaning that there is only
one true failure for every ten predicted failures), FT-Pro is
still capable of producing a positiveTime Reduction and
SU Reduction as long asrecall is controlled above 0.50.
Note that FT-Pro adopts a cooperative mechanism for adap-
tive management such that the user set his/her fault tolerance
requests and FT-Pro makes runtime decisions on the invocation
of different actions upon these points. If the warning is a false
alarm, rather than blindly triggering a MIGRATION action,
FT-Pro may take a different action based on its evaluation,
thereby making it robust to false positives.

4) Impact of Operation Costs: Finally, we investigate the
impact of operation costs on the performance of FT-Pro. More
specifically, we change the ratio between migration overhead
and checkpointing overhead by fixingCckp and varyingCpm.
The results achieved by FT-Pro as against periodic checkpoint-
ing are plotted in Figure 7. Here, the number of compu-
tation nodes is set to 128 and only one spare node is al-
located. Obviously, a more efficient migration support can
yield better performance. Even when migration overhead is
four times of checkpointing overhead, FT-Pro still maintains
Time Reduction at 11%.

In our current design, we use a stop-and-restart migration,
meaning that the application is stopped and restarted on a
new set of computation nodes after the suspicious nodes are
replaced by spare nodes. Our case studies with real applica-
tions (discussed in the next section) show that with such an
expensive migration support, the migration overheadCpm is
generally less than3Cckp. We believe that the development
of live migration such as the tool listed in [19], [20] can sig-
nificantly reduce migration overhead, thereby making FT-Pro
more promising.



IEEE TRANSACTION ON COMPUTERS 9

Fig. 7. Impact of Operation Costs, where the ratio between migration over-
head and checkpointing overhead is tuned between 0.1 and 5.0. The number
of computation nodes is set to 128, and only one spare node is allocated. The
performance gain achieved by adaptive fault tolerance is apparent. A more
efficient migration support, such as live migration, can make FT-Pro more
promising.

D. Modeling Summary

In summary, the above stochastic study has indicated that:

• Compared to the conventional checkpointing, FT-Pro can
effectively reduce application completion time by avoid-
ing anticipated failures through proactive migration and
skipping unnecessary fault tolerance requests through se-
lective checkpointing.

• When bothprecision and recall are in the range of
[0.6, 1.0], FT-Pro outperforms periodic checkpointing by
over 10%; as long as both metrics are above0.3, FT-Pro
does better than periodic checkpointing.

• In general, a modest allocation of spare nodes - less than
5% - is sufficient for FT-Pro to achieve the above perfor-
mance gain.

• To fully utilize failure prediction, the combination of fail-
ure avoidance and removing unnecessary fault tolerance
actions is of great importance for improving application
performance.

• A more efficient migration support, such as a live mi-
gration support, can further improve the performance of
FT-Pro.

VI. CASE STUDIES

In this section, we evaluate FT-Pro by using trace-based
simulations. Application traces and a failure trace collected
from production systems are used to investigate the potential
benefit of using FT-Pro in realistic HPC environments.

We implement FT-Pro in the open-source checkpointing
package MPICH-VCL 0.76 [13]. Note that FT-Pro is indepen-
dent of the underlying checkpointing tool, and can be easily
implemented with other tools such as LAM/MPI [14].

Figure 8 illustrates our implementation. There are four ma-
jor components: (1)FT-Pro daemons that are co-located with
application processes on computation nodes, (2)the dispatcher
that are responsible for managing computation resources, (3)
the adaptation manager which is in charge of decision making
as described in Section IV, and (4)the CKP server to perform
coordinated checkpointing. The migration support is basedon
the stop-and-restart model.

Fig. 8. Integrating FT-Pro with MPICH-VCL.

A. Methodology

The simulator is provided with a failure trace, an application
trace, computation scaleNW , and an intervalI. Here, an ap-
plication trace includes application failure-free execution time
Tappl and fault tolerance overheads such asCckp and Cpm.
The details about the applications and the failure trace will be
described in the following subsections.

In case of using periodic checkpointing, the application
takes a coordinated checkpoint at a constant interval ofI.
In case of using FT-Pro, a runtime decision is made at a con-
stant time ofI and the application takes an action from SKIP,
CHECKPOINT, or MIGRATION according to the decision
made by the adaptation manager. The outputs provided by the
simulator are application completion times, i.e.Tckp by using
periodic checkpointing andTft−pro by using FT-Pro.

B. Parallel Applications

Six parallel applications, including parallel benchmarksand
scientific applications, are tested in the study. They are the
benchmark CG and three pseudo applications (BT, LU, SP)
from NPB [55], the cosmology application ENZO [56], [58],
and the molecular dynamics application GROMACS [57],(see
Table IV). This test suite is from a mixture of scientific do-
mains, thereby enabling us to have a fair evaluation of FT-Pro
across a broad spectrum of HPC applications.

Application traces are collected on an IA32 Linux cluster at
Argonne National Laboratory (part of the TeraGrid). The clus-
ter consists of 96 nodes, each equipped with two 2.4GHz Intel
Xeon processors and 4G MB memory. All the nodes are con-
nected via Gigabyte Ethernet. A 4TB storage is shared among
the nodes via NFS. The operation system is SuSE Linux v8.1,
and the MPICH-V is of version 0.76.

Table V lists the measured data. The data includes single-
process checkpoint image, checkpointing overhead and migra-
tion overhead. Due to the special requirement on computation
scale, the number of computation nodes used for BT and SP
has to be in the form ofN2 (N is an integer).

According to the table, the size of single-process checkpoint
image decreases linearly with the increasing scale of compu-
tation. This is understandable due to the divide-and-conquer
principle. An interesting feature is withCckp. It first drops and
then starts to increase as the number of processors increases.
This is caused by the increasing synchronization overhead by



IEEE TRANSACTION ON COMPUTERS 10

TABLE IV
DESCRIPTION OFPARALLEL APPLICATIONS

Application Description

NPB [55]
(class C)

BT, dominating with point-to-point communications
CG, dominating with unstructured long-distance communications
LU, involving the computation of implicit CFD with message transferring
SP, solving non-diagonally dominant and scalar penta-diagonal equations

ENZO [56] A parallel cosmology simulation code using SAMR algorithm
GROMACS [57] A molecular dynamics code to study the evolution of interacting atoms

TABLE V
MEASUREDOPERATION COSTS ANDAPPLICATION EXECUTION TIMES USING CKP

Appl. NW
CKP Image

(MB)
Cckp

(Sec.)
Cpm

(Sec.)
Appl. NW

CKP Image
(MB)

Cckp

(Sec.)
Cpm

(Sec.)

BT

9 171 111 168

CG

4 170 30 76
16 100 81 146 8 90 33 51
25 66 82 156 16 46 35 40
36 48 88 195 32 25 37 56
64 28 91 198 64 13 88 107

LU

4 168 61 84

ENZO

4 38 17 29
8 87 36 64 8 32 15 28
16 45 37 70 16 19 10 28
32 24 33 79 32 14 22 49
64 12 36 116 64 12 32 81

SP

9 125 76 122

GROMACS

4 10 6 11
16 74 65 125 8 8 6 11
25 48 62 126 16 7 12 32
36 34 60 132 32 6 11 28
64 21 61 145 64 6 25 70

using coordinated checkpointing. It implies that process co-
ordination can be a potential performance bottleneck when
the computation scale is substantially large [5]. Migration cost
Cpm, in general, increases with the growing computation scale.
The main reason is that the stop-and-restart migration mecha-
nism is used and the current MPICHVCL device instantiates
the processes in a sequential order. As shown in the table,
generallyCpm ≤ 3Cckp.

C. Failure Trace

Rather than using synthetic failure events, we use a fail-
ure trace collected from a production system at NCSA [27].
The machine has 520 two-way SMP 1 GHz Pentium-III nodes
(1040 CPUs), 512 of which are compute nodes (2 GB mem-
ory), and the rest are storage nodes and interactive access
nodes (1.5 GB memory). Table VI gives the statistics of
the failure trace. We randomly select 96 nodes to match the
testbed.

The trace-based simulator scans the failure trace in the time
order and simulates a failure when a real failure entry is en-
countered. The prediction accuracy is emulated as below:

1) Recall: If there exists a failure on a node between the
current and the next adaptation point, the predictor re-
ports a failure of its type with the probability ofrecall

on the node.
2) Precision: Suppose the predictor has totally reportedx

failures for the intervals with actual failures. Accord-
ing to the definition ofprecision, for intervals with-
out an actual failure, the predictor randomly selects
x×(1−precision)

precision
intervals and gives a false alarm on each

of them.

TABLE VI
STATISTICS OFFAILURE EVENTS

Failure Type Percentage Downtime (in hrs)
software 83% 0.7
hardware 1% 100.7

maintenance 16% 1.2

D. Results

Table VII lists our trace-based simulation results. Here,
Tappl denotes the application execution time in a failure-
free computing environment, andTckp andTft−pro represents
the application completion times in the presence of failures
by using periodic checkpointing and FT-Pro respectively. We
increase application failure-free execution times to simulate
long-running applications. In case of using FT-Pro, an addi-
tional spare node is allocated to accommodate proactive ac-
tions. The parenthesized numbers in the table denote perfor-
mance overheads (in percentage) on the application by using
periodic checkpointing or FT-Pro; it is defined asTckp−Tappl

Tappl

when using periodic checkpointing andTft−pro−Tappl

Tappl
when

using FT-Pro. Note that performance overhead includes appli-
cation recovery time and delay time caused by fault manage-
ment.

As we can see from the table, the overhead caused by check-
pointing is not trivial. For example, when the computing scale
is 64, the extra overhead introduced by checkpointing is more
than 50% for BT,SP,CG and ENZO. In contrast, the perfor-
mance overhead introduced by FT-Pro is usually less than 3%.
Further, for both SP and ENZO, we observe that application



IEEE TRANSACTION ON COMPUTERS 11

TABLE VII
APPLICATION COMPLETION TIMES BY USING FT-PRO AND PERIODIC CHECKPOINTING. THE PARENTHESIZED NUMBERS IN THE TABLE ARE

PERFORMANCE OVERHEADS(IN PERCENTAGE) ON THE APPLICATION BY USING PERIODIC CHECKPOINTING ORFT-PRO. THE INTERVAL I IS SET TO0.56
HOURS. WITH FT-PRO, IN ADDITION TO NW , ONE SPARE NODE IS ALLOCATED. BOTH precision AND recall ARE SET TO0.7.

Appl. NW
Tappl

(hours)
Tckp

(hours)
Tft−pro

(hours)
Appl. NW

Tappl

(hours)
Tckp

(hours)
Tft−pro

(hours)

BT

9 666 720.31 (8.2%) 675.23 (1.4%)

CG

4 657.81 708.32 (7.7%) 663.37 (0.8%)
16 408 465.06 (14.0%) 413.58 (1.4%) 8 410.52 424.14 (3.3%) 412.59 (0.5%)
25 286 374.17 (30.8%) 291.63 (2.0%) 16 290 319.19 (10.1%) 294.46 (1.5%)
36 227 322.70 (42.2%) 230.22 (1.5%) 32 188 244.69 (30.2%) 190.63 (0.7%)
64 166 269.71 (62.5%) 169.70 (2.2%) 64 128 236.28 (84.6%) 132.20 (3.3%)

LU

4 1625 1704.47 (4.9%) 1636.91 (1.0%)

ENZO

4 991 1014.22 (2.3%) 996.41 (0.5%)
8 862 925.68 (7.4%) 867.64 (0.7%) 8 590 610.92 (3.5%) 592.93 (0.5%)
16 528 622.70 (17.9%) 532.68 (0.9%) 16 320 374.13 (16.9%) 322.28 (0.7%)
32 419 520.58 (24.2%) 422.78 (0.9%) 32 197 260.64 (32.3%) 199.37 (1.2%)
64 350 502.12 (43.5%) 354.58 (1.3%) 64 169 302.67 (79.1%) 170.75 (1.5%)

SP

9 915 1000.00 (9.3%) 924.04 (1.0%)

GROMACS

4 4466 4934.17 (10.5%) 4848 (8.6%)
16 592 673.36 (13.7%) 596.28 (0.7%) 8 2529 2592.60 (2.5%) 2537.78 (0.3%)
25 409 488.17 (19.4%) 413.94 (1.2%) 16 1589 1702.12 (7.1%) 1595.61 (0.3%)
36 293 383.63 (30.9%) 296.94 (1.3%) 32 1328 1506.12 (13.4%) 1337.72 (0.7%)
64 259 412.79 (59.4%) 264.11 (2.0%) 64 2328 2711.71 (16.5%) 2348.84 (0.9%)

Fig. 9. T ime Reduction andSU Reduction Achieved by FT-Pro against periodic checkpointing. The performance gain achieved by FT-Pro increases
as the size of computation increases.

Fig. 10. Performance Benefit Achieved by FT-Pro through Proactive Migration (in percentages).



IEEE TRANSACTION ON COMPUTERS 12

completion times on 64 computation nodes are longer than
those on 32 nodes by using periodic checkpointing, whereas
FT-Pro is able to reduce them as the computing scale grows.
It implies that FT-Pro has better scalability.

Figure 9 showsTime Reduction andSU Reduction in-
troduced by FT-Pro with these applications. It shows that in
general, both metrics increase with the growing scale of com-
putation. The larger scale an application is, the higher proba-
bility it has to experience failures, thereby resulting in more
opportunities for FT-Pro to improve its performance.

As presented in Figure 9 (a)-(b),Time Reduction is in
the range of 2%-43%, depending on applications and computa-
tion scales. The value is relatively small with GROMACS than
with other applications. This is due to the use of a small-sized
computation domain with GROMACS. As shown in Table V,
a small checkpoint image per process is observed with GRO-
MACS, thereby reducing the potential gain that can be brought
by removing unnecessary checkpoints by using FT-Pro.

According to Figure 9(c)-(d), when the computation
scale is smaller than 10, FT-Pro may result in negative
SU Reduction. A major reason is that the allocation of one
spare node by FT-Pro is not trivial when the computation scale
is small (e.g. 4,8 or 9). If the time reduction brought by FT-
Pro is small, then the use of additional computing resources
can overshadow its gain, thereby resulting in negative gainon
SU Reduction. In general, FT-Pro provides positive results
in terms ofTime Reduction andSU Reduction when the
computing scale is larger than 16.

We also plot the gain achieved through proactive migrations
on these applications (see Figure 10). Note that FT-Pro im-
proves over checkpointing from two aspects: one is to avoid
failures via preventive migrations and the other is to skip un-
necessary checkpoints. The figure only plots the first part and
the second part can be easily inferred from the figure. These
results are consistent with those shown in Figure 4, that is,
failure avoidance through proactive migrations is the domi-
nant factor for improvement. In general, more than 50% of
performance gain is achieved by proactive actions, and this
percentage is increased to nearly 100% when the computation
scale is increased to 64. Again, it demonstrates that in order
to effectively utilize failure prediction, proactive migration is
indispensable for substantially improving application perfor-
mance under failures.

We have also evaluated the performance of FT-Pro on these
applications by changing spare node allocations and tuning
prediction accuracies [59]. The results are similar to those
shown in Section V. For instance, when the computation scale
is set to 64, by allocating one or two spare nodes, the relative
gain achieved by FT-Pro over checkpointing is between 14%
and 43%; and FT-Pro is more sensitive to false negatives.

E. Summary of Case Studies

In summary, our trace-based simulations with six different
applications have shown that FT-Pro has the potential to re-
duce application completion times in realistic HPC environ-
ments. The results are consistent with those obtained by using
stochastic modeling. Our studies show that the performance

overhead caused by FT-Pro is very low (i.e. less than 3%).
Further, FT-Pro can be easily integrated with existing check-
pointing tools by adding the adaptation manager as a new
module.

VII. C ONCLUSIONS

In this paper, we have presented an adaptive fault man-
agement approach called FT-Pro for parallel applications.An
adaptation manager has been proposed to dynamically choose
an appropriate action from SKIP, CHECKPOINT, and MI-
GRATION at runtime in response to failure prediction. We
have studied FT-Pro under a wide range of parameters through
stochastic modeling and case studies with parallel applications.

Experimental results demonstrate that FT-Pro can effectively
improve the performance of parallel applications in the pres-
ence of failures. Specifically, (1) FT-Pro outperforms periodic
checkpointing, when bothprecision andrecall are above than
0.3. (2) A modest allocation of spare nodes (i.e. less than 5%)
is usually sufficient for FT-Pro to provide the aforementioned
performance gain. And (3) the performance overhead caused
by FT-Pro is very low, e.g. less than 3% on the applications
tested.

Our study has some limitations that remain as our future
work. First, we will investigate how to modify our algorithmto
work with other checkpointing mechanisms such as log-based
[4], [13] and live migration [19], [20], [44]. Second, we plan
to provide a theoretic proof on the optimal allocation of spare
nodes. Lastly, we are in the process of integrating our pre-
diction work [11], [48], [49] with FT-Pro. Upon completion,
we will evaluate it with parallel applications on production
systems.

APPENDIX A
DESCRIPTION OFFSPN MODELING

A. Subnet of Failure Behavior

We first describe failure behaviors on computation nodes.
When the application starts, all the computation nodes are in
theWup state. A firing of the timed transitionTprob represents
a failure arrival, and the corresponding node enters the vul-
nerable stateWprob. If the failure event is predicted via the
transitionTdetect, the node enters the stateWdetected; other-
wise it entersWmissed via the transitionTmissed. The node
at Wdetected goes toWdown with a firing of Tfail if there
are enough spare nodes available. The nodes atWmissed will
eventually enterWdown via a deterministic transitionTfail.
The crashed nodes atWdown recover back toWup when
Tnoderepair fires. The transitionTfalsefail simulates the false
alarm behavior of the predictor. When it fires, the nodes at
Wup entersWfalsedetected and then automatically goes back
to Wup via Tfalsefail.

The spare nodes have the similar state transitions, except
that failures on spare nodes do not pose direct performance
penalty on the application.

B. Subnet of Adaptation Manager

We use the statePtimer and the deterministic transition
Ttimeout to represent the adaptation interval. The firing of



IEEE TRANSACTION ON COMPUTERS 13

Ttimeout makes the subnet to enter thePdecision state, where
FT-Pro makes a runtime decision. Upon invocation, the sub-
net enters one of the three states: (1)Pskip, whenTskip fires;
it means that a SKIP action is taken and the subnet enters
Pskip and immediately returns to the statePtimer; (2) Pckp,
whenTckp fires; it means that a CHECKPOINT action is taken
and the subnet waits for the firing of the timed transition
Tcheckpoint (i.e. representing the checkpointing overhead) and
then returns toPtimer; (3) Ppm, when Tpm fires; it means
that a MIGRATION action is taken and the subnet waits for
the firing of the timed transitionTmigrate (i.e. representing
the migration cost) and then returns toPtimer. Further, the
firing of Tmigrate swaps vulnerable nodes atWdetected, and
Wfaseledetected with the spare nodes atSup andSmissed.

C. Subnet of Application Performance

In this subnet, we use fluid places to model the continu-
ous quantities like time and workload. The transitionTtime

pumps fluid to the placePexec with a constant rate of 1.0,
representing the elapsed time. Similarly,Twork pumps fluid
to the placePvol, representing the accumulated volatile work.
Through three inhibitor arcs,Twork is disabled if the subnet
is at Pckp, Ppm or Wdown. Pckp, Ppm and Wdown represent
checkpointing overhead, migration overhead, and the recovery
cost. Through the impulse arcs toTfail, the work atPvol is
flushed out to zero, representing the work loss due to fail-
ures. The work is flushed out toPsaved via the impulse arcs
to Tmigrate or Tcheckpoint, representing the work saved to a
stable storage. Once the accumulated work at eitherPvol or
Psaved exceeds the application workload,Tfinish fires and
the subnet entersPfinish. The fluid atPexec is the application
completion time.

ACKNOWLEDGMENT

The authors appreciate the valuable comments and sugges-
tions from the anonymous referees. Many thanks are due to
the members in the Scalable Computing Systems Laboratory
at Illinois Institute of Technology. This work is supportedin
part by US National Science Foundation grants CNS-0720549,
CCF-0702737, NGS-0406328, and a TeraGrid Compute Allo-
cation. Some preliminary results of this work were presented
in [50] and [59].

REFERENCES

[1] The top500 supercomputer site. [Online]. Available: http://www.top500.
org

[2] D. Reed, C. Lu, and C. Mendes, “Big systems and big reliability chal-
lenges,” inProc. of Parallel Computing, Germany, 2003.

[3] B. Schroeder and G. Gibson, “A large scale study of failures in high-
performance-computing systems,” inProc. of DSN ’06, 2006.

[4] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A surveyof rollback-
recovery protocols in message-passing systems,”ACM Computing Sur-
veys, vol. 34(3), 2002.

[5] E. Elnozahy and J. Plank, “Checkpointing for peta-scalesystems: A
look into the future of practical rollback-recovery,”IEEE Transactions
on Dependable and Secure Computing, vol. 1(2), 2004.

[6] V. Castelli, R. Harper, P. Heldelberger, S. Hunter, K. Trivedi,
K. Vaidyanathan, and W. Zeggert, “Proactive management of software
aging,” IBM Journal of Research and Development, vol. 45(2), 2001.

[7] S. Chakravorty, C. Mendes, and L. Kale, “Proactive faulttolerance in
large systems,” inProc. of HPCRI Workshop, 2005.

[8] R. Vilalta and S. Ma, “Predicting rare events in temporal domains,” in
Proc. of IEEE Intl. Conf. On Data Mining, 2002.

[9] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, and S. Ma, “Criti-
cal event prediction for proactive management in large-scalecomputer
clusters,” inProc. of SIGKDD’03, 2003.

[10] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, “Blue
gene/l failure analysis and prediction models,” inProc. of DSN’06, 2006.

[11] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A meta-learning
failure predictor for blue gene/l systems,” inProc. of International Con-
ference on Parallel Processing, 2007.

[12] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” inProc. of the International Conference on Dependable
Systems and Networks (DSN), 2007.

[13] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“Mpich-v: A multiprotocol automatic fault tolerant mpi,”International
Journal of High Performance Computing and Applications, 2005.

[14] J. Squyres and A. Lumsdaine, “A component architecture for lam/mpi,”
in Proc. of 10th European PVM/MPI Users’ Group Meeting, 2003.

[15] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K.Pingali, and
P. Stodghill, “Implementation and evaluation of a scalable application-
level checkpoint-recovery scheme for mpi programs,” inProc. of Super-
computing, 2004.

[16] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent check-
pointing under unix,” inProc. of Usenix Winter 1995 Technical Confer-
ence, 1995.

[17] J. Duell, P. Hargrove, and E. Roman, “Requirements for linux check-
point/restart,” Berkeley Lab Technical Report, Tech. Rep.LBNL-49659.

[18] E. Gabriel, G. Fagg, and et al., “Open mpi: Goals, concept, and design of
a next generation mpi implementation,” inProc. of The 11th European
PVM/MPI Users’ Group Meeting, 2004.

[19] C. Du and X. Sun, “Mpi-mitten: Enabling migration technology in mpi,”
in Proc. of CCGrid’06, 2006.

[20] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “A job pause ser-
vice under lam/mpi+blcr for transparent fault tolerance,” inProc. of
IPDPS’07, 2007.

[21] J. Young, “A first order approximation to the optimal checkpoint inter-
val,” Comm. ACM, vol. 17(9), 1974.

[22] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Min-max checkpoint
placement under incomplete failure information,” inProc. of DSN’04,
2004.

[23] S. Toueg and O. Babaoglu, “On the optimum checkpoint selection prob-
lem,” SIAM J. Comput., vol. 13(3), 1984.

[24] O. Babaoglu and W. Joy, “Converting a swap-based systemto do paging
in an architecture lacking page reference bits,” inProc. Symp. Operating
Systems Principles, 1981.

[25] J. Sancho, F. Petrini, G. Johnson, J. Fernandez, and E. Frachtenberg, “On
the feasibility of incremental checkpointing for scientificcomputing,” in
Proc. of IPDPS’04, 2004.

[26] J. Plank, K. Li, and M. Puening, “Diskless checkpointing,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 9(10), 1998.

[27] C.-D. Lu, “Scalable diskless checkpointing for large parallel systems,”
Ph.D. dissertation, Univ. of Illinois at Urbana-Champaign,Illinois, 2005.

[28] G. Zheng, L. Shi, and L. Kale, “Ftc-charm++: An in-memory
checkpoint-based fault tolerant runtime for charm++ and mpi,”in Proc.
of Cluster04, 2004.

[29] B. Allen, “Monitoring hard disks with smart,”Linux Journal, January
2004.

[30] Hardware monitoring by lm sensors. [Online]. Available: http://secure.
netroedge.com/-lm78/info.html

[31] Health application programming interface. [Online]. Available: http:
//www.renci.org

[32] Intelligent platform management interface. [Online]. Available: http:
//www.intel.com/design/servers/ipmi

[33] K. Trivedi and K. Vaidyanathan, “A measurement-based model for esti-
mation of resource exhaustion in operational software systems,” in Proc.
of the 10th International Symposium on Software Reliability Engineer-
ing, 1999.

[34] G. Weiss and H. Hirsh, “Learning to predict rare events in event se-
quences,” inProc. of SIGKDD, 1998.

[35] G. Hoffmann, F. Salfner, and M. Malek, “Advanced failureprediction
in complex software systems,” inProc. of SRDS, 2004.

[36] G. Hamerly and C. Elkan, “Bayesian approaches to failureprediction
for disk drives,” inProc. of ICML, 2001.

[37] J. Hellerstein, F. Zhang, and P. Shahabuddin, “A statistical approach to
predictive detection,”Computer Networks: The International Journal of
Computer and Telecommunications Networking, 2001.



IEEE TRANSACTION ON COMPUTERS 14

[38] A. Gara, M. A. Blumrich, and et al., “Overview of the blue gene/l system
architecture,”IBM J. Res. and Dev., vol. 49 (2/3), 2005.

[39] Cray, “Cray xt series system management,”available at
http://docs.cray.com/books/S-2393-15/S-2393-15.pdf, 2005.

[40] C. Leangsuksun, T. Liu, T. Rao1, S. Scott, and R. Libby, “A failure pre-
dictive and policy-based high availability strategy for linux high perfor-
mance computing cluster,” inProc. of 5th LCI International Conference
on Linux Clusters, 2004.

[41] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubramaniam,
“Fault-aware job scheduling for blue gene/l systems,” inProc. Of
IPDPS’04, 2004.

[42] Y. Zhang, M. Squillante, A. Sivasubramaniam, and R. Sahoo, “Perfor-
mance implications of failures in large-scale cluster scheduling,” in Proc.
of 10th Workshop on Job Scheduling Strategies for Parallel Processing,
held in conjunction with SIGMETRICS, 2004.

[43] T. Tannenbaum and M. Litzkow, “Checkpointing and migration of unix
processes in the condor distributed processing system,”Dr Dobbs Jour-
nal, February 1995.

[44] C. Clark, K. Fraser, S. Hand, and et al., “Live migration of virtual
machines,” inProc. of the 2nd Symposium on Networked Systems Design
and Implementation (NSDI ’05), 2005.

[45] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative checkpointing: A
robust approach to large-scale systems reliability,” inProc. of ICS06,
2006.

[46] G. Brown, D. Bernard, and R. Rasmussen, “Attitude and articulation con-
trol for the cassini spacecraft: A fault tolerance overview,” JPL Technical
Report, 1997.

[47] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker,“Total re-
call: System support for automated availability management,”in Proc.
of NSDI’04, 2004.

[48] Z. Lan, P. Gujrati, Y. Li, Z. Zheng, R. Thakur, and J. White, “A fault
diagnosis and prognosis service for teragrid clusters,” inProc. of The
2nd TeraGrid Conference, Madison, WI, 2007.

[49] Z. Zheng, Y. Li, and Z. Lan, “Anomaly localization in large-scale clus-
ters,” in Proc. of IEEE Cluster Conference, 2007.

[50] Y. Li and Z. Lan, “Exploit failure prediction for adaptive fault-tolerance
in cluster computing,” inProc. of IEEE CCGrid’06, 2006.

[51] J. Plank and M. Thomason, “Processor allocation and checkpoint in-
terval selection in cluster computing systems,”Journal of Parallel and
Distributed Computing, vol. 61(11), 2001.

[52] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative checkpointing the-
ory,” in Proc. of the International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

[53] G. Ciardo, J. Muppala, and K. Trivedi, “Spnp: Stochastic petri net pack-
age,” in Proc. of the PNPM’89, 1989.

[54] L. Wang, K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Modeling coor-
dinated checkpointing for large-scale supercomputers,” inProc. DSN’05,
2005.

[55] Nasa nas parallel benchmarks. [Online]. Available: http://www.nas.
nasa.gov/Resources/Software/npb.html

[56] G. Bryan, T. Abel, and M. Norman, “Achieving extreme resolution in
numerical cosmology using adaptive mesh refinement: Resolving pri-
mordial star formulation,” inProc. of SC’01, 2001.

[57] H. Berendsen, D. V. der Spoel, and R. van Drunen, “Gromacs: A
message-passing parallel molecular dynamics implementation,”Comp.
Phys. Comm., vol. 91:43-56, 1995.

[58] Z. Lan, V. Taylor, and G. Bryan, “Dynamic load balancing for structured
adaptive mesh refinement applications,” inProc. of SC’01, 2001.

[59] Y. Li and Z. Lan, “Using adaptive fault tolerance to improve application
robustness on the teragrid,” inProc. of The Second TeraGrid Conference,
Madison, WI, 2007.

PLACE
PHOTO
HERE

Zhiling Lan received the BS degree in Mathemat-
ics from Beijing Normal University in 1992, the
MS degree in Applied Mathematics from Chinese
Academy of Sciences in 1995, and the PhD degree
in Computer Engineering from Northwestern Uni-
versity in 2002. She has been an assistant profes-
sor of computer science at the Illinois Institute of
Technology since 2002. Her research interests are
in the area of parallel and distributed systems, in
particular, fault tolerance, dynamic load balancing,
and performance analysis and modeling. She is an

IEEE member.

PLACE
PHOTO
HERE

Yawei Li received the BS and MS degrees in the
University Of Electronic Science & Technology of
China in 1999 and 2002. He is now a PhD candidate
of Computer Science at Illinois Institute of Technol-
ogy since 2004. He specializes in parallel and dis-
tributed computing, scalable software systems. His
current research focuses on adaptive fault manage-
ment in large-scale computer systems, checkpoint-
ing optimization and load balancing in Grid envi-
ronment. He is also an IEEE member.


