
Extending CloudKon to support HPC jobs

scheduling

By:- Karthik Belgodu

 Pankaj Purandare

Isha Kapur

CloudKon: CKHPC

Contents

 Goal of the Project

 Motivation

 Background

 Terms Used

 Implementation

 Architecture

 Minimum Messages Required

 Throughput Evaluation

Contents continued…

 Comparison Results

 Latency Evaluation

 Highlights

 Future Work

 Conclusion

 References

Goal of the Project

 Create a tightly coupled implementation of CloudKon for

HPC environments, using Amazon Services, which is highly

scalable and gives high performance for both MTC and HPC

jobs.

 Make sure that current performance of the system for MTC

tasks is not hampered to a large extent by our code.

 Extend CloudKon to act as a distributed job management

system for HPC that can support millions of tasks from

multiple users delivering over 2X the performance compared

to other systems like Slurm in terms of throughput.

Motivation

 Eliminate the need to have high performance private grids or

clusters when the system can be implemented on the “Cloud”

 Moving away from age old paradigms like master/slave

architectures that have single point of failure, bottleneck and

scalability issues.

 Stop using techniques like random sampling, resource/work

stealing and hierarchical system and use distributed queues

and NoSQL database services.

Background
 CloudKon: A job management system tailored to run MTC jobs on

AWS.

 Amazon Web Services
 SQS: Highly Scalable Distributed Queue
 EC2:Resizable, pay-as-you-go compute capacity
 DynamoDB: High performance NoSQL Database configured for high read

and write throughputs.

 MTC: Using many computing resources over short periods of time

 HPC: Aggregating computing power in a way that delivers much higher
performance.

 Google Protocol Buffer: Language-neutral, platform-neutral,
extensible mechanism for serializing structured data

 RMI: Java API that performs the object-oriented equivalent of remote
procedure calls (RPC)

Terms Used
 Global Request Queue

 HPC Queue

 Client Nodes

 Worker Nodes

 Managers

 Subworkers

 DynamoDB – for HPC support

 Client Response Queue

 Job

 Task

Implementation

 Dispatching jobs

 Pick up of jobs by workers

 Workers becoming managers and subworkers

 DynamoDB for deadlock prevention of worker availability

 RMI used for workers communications

 Deletion of tasks from queues

 Sending response back to client

Architecture

Minimum Messages Required

 Minimum number of internal messages used for the HPC

implementation = m(6n + 4)

 where ,

 n- number of tasks per job

 m- number of HPC jobs

Throughput Evaluation

Throughput for HPC jobs with different number of worker processes

with 4 tasks and 8 tasks

 Number of worker processes vs Throughput

0

100

200

300

400

500

600

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(J

o
b

s/
Se

c
)

Number of Worker Processes

Throughput against Number of Worker Processes

Throughput - 4 Tasks/Job Throughput - 8 Tasks/Job

Throughput Evaluation

Throughput with multiple invocations on a single node.

 Tasks per HPC Job : Total instances = 1:4

 Number of processes on a single node vs Throughput

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4 4.5

T
h

ro
u

g
h

p
u

t
(

Jo
b

s/
se

c
)

Number of Processes per Node

Throughput against Number of Processes per Node
(Tasks/Job : Nodes = 1:4)

16 Nodes - 4 Tasks/Job 32 Nodes - 8 Tasks/Job

Throughput Evaluation
Comparison of CloudKon-CKHPC with CloudKon (MTC tasks)

 Throughput with HPC support/Throughput without HPC support

= 2/3

Number of nodes vs Throughput

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(t

as
k

s/
se

c
)

Number of Nodes

Comparision between CloudKon and CloudKon-CKHPC for MTC tasks

CloudKon-CKHPC CloudKon

Comparison Results

 Comparison to Slurm and Slurm++

 Number of nodes vs HPC jobs/sec, where HPC jobs are of varying length.

0

10

20

30

40

50

60

50 100 150 200 250 300 350

T
h

ro
u

g
h

p
u

t
(J

o
b

s/
se

c
)

Number of Nodes

Comparison for medium job size (1:50)

CloudKon-CKHPC Slurm Slurm++

Latency Evaluation

 Latency calculated for different worker processes per node

 Number of nodes vs Latency

0

200000

400000

600000

800000

1000000

1200000

1400000

10 20 30 40 50 60 70

L
at

e
n

c
y

 (
m

s)

Number of Nodes

Latency vs Number of Nodes

1 Worker Process/Node 2 Worker Processes/Node 4 Worker Processes/Node

Highlights

 Invoking 4 processes per node gives better performance than

single process per node.

- Results for 4 worker processes per node:

 32 nodes, 4 Tasks per job, Throughput was 2101 tasks/sec

 64 nodes, 8 Tasks per job, Throughput was 3446 tasks/sec

 300 nodes having 40 tasks each giving a throughput of 119

tasks/sec.

 Contributed to the CCGrid CloudKon paper under the

guidance of Iman Sadooghi.

Future Work

 To reduce the centralized dependency on DynamoDB for

getting free workers.

 Make it run it for real-time tasks, instead of sleep tasks.

 Extend support for MPI applications.

Conclusion
 Deadlock avoidance better than deadlock recovery - increases the

resource utilization and has little effect on throughput.

 The evaluation of CloudKon CKHPC shows that it is able to
provide a very high throughput outperforming other scheduling
systems like Slurm.

 The throughput for CloudKon with HPC support is almost 2/3rd
of that for CloudKon standalone, hence not affecting much the
current support for MTC jobs.

 Since we have been able to test it upto the scale of 512 worker
processes, it should be able to scale up higher as well.

 Invoking 4 processes per node gives better performance than
single process per node.

References
 I. Sadooghi and I. Raicu, "CloudKon: a Cloud enabled Distributed

tasK executiON framework", 2013. Available from

http://www.cs.iit.edu/~iraicu/research/publications/2013_Qu

al-IIT_CloudKon.pdf

 High Performance Computing, Techopedia, [online] 2013,

http://www.techopedia.com/definition/4595/high-

performance-computing-hpc

 Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web

Services, [online] 2013, http://aws.amazon.com/ec2/

 Amazon DynamoDB (beta), Amazon Web Services, [online] 2013,

http://aws.amazon.com/dynamodb

http://www.cs.iit.edu/~iraicu/research/publications/2013_Qual-IIT_CloudKon.pdf
http://www.cs.iit.edu/~iraicu/research/publications/2013_Qual-IIT_CloudKon.pdf
http://www.cs.iit.edu/~iraicu/research/publications/2013_Qual-IIT_CloudKon.pdf
http://www.cs.iit.edu/~iraicu/research/publications/2013_Qual-IIT_CloudKon.pdf
http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://aws.amazon.com/ec2/

Thank You

