HDMQ :Towards In-Order and
Exactly-Once Delivery using
Hierarchical Distributed Message
Queues

Outline

- What is Distributed Queue Service?

- Major Queue Service

- Amazon SQS, Couch RQS, Apache Hedwig, Apache Kafka, RabbitMQ, ActiveMQ.
. Design and Implementation of HDMQ

. Operation Overview

R AU o b4 LAV DR b s D ey 4. e =it i el o A | ST) =N R o T Sy Y < S il 4 o~ P P £ v,
TMmante M T e i e e SR e T (i T AR A s 0 oo 2
[1 "o LA g ! B 4 .,,“ 1 b j& g (W ou LY F p il S b L WL e Y S "= _ A T

11 l»“_ =11 ' 1
nnn -'Vr; =y ~

& - Pt Y L
AT e, ¥ = Y

. BPoafine
- M L "‘ ", -1_')“

How Distributed Queue
Service look like?

Your Distributed Your Queue

System's (Distributed on
Components SQS Servers)

Component

In today’s world distributed message queues is used in many systems and
play different roles such as content delivery, notification system and message
delivery tools

Distributed Queue Service

Multiple Client are connected to this Service.
. Each client is flooding the gueue with the messages.

. Each messages Is stored on multiple nodes for reliability.

P - -
y - i v“‘ oy -3— | | . IR — .. |1‘ — :"' a : l. : -..I. et .) e I‘ .' a gs s 3 a o a -:/\:.";'-' ”—-'..-' E.‘ . -.'I:'-”‘uu -~ T‘ : -‘;‘ ’ ::J ;J"d --"\ -l. - . 5 — b
. [N \ (Al \ 5 N 0 ‘ y 1 » o J &I X A e h
1 } e AVIT UV L T AL TUWWJULE VT VUVI VU ViITVvVY. e T N
v e . N - - : 4 - : v o W L - e o e N - -2 ¥

Major Distributed Queue
Services

1. Amazon SQS (Commercial State of the art)
2. Apache Kafka

3. Apache Hedwig

e - - P -) " i et LA P
o A% - b (3 TRy e > _ Pt} v : () > & S . - e LI h - \ 4 - -
P e Ol L " A BN -—.\ fada " ﬁl _ A e G B s 1 L .
g g SR ” A A . e i B h A Ay = 1 -
NSRS Sas i TIEENa N EN AWV 1T \\{) APN— T PRI . = =) Sl !

......

Amazon SQS(Simple Queue
Service)

- Amazon SQS is a distributed, message delivery service, which is highly reliable,
scalable, simple and secure.

- SQS is Distributed over multiple data center. No Single point of Failure

- Guarantees extremely high availability.

. Deliver Unlimited number of messages at any time.

- Size of the message <= 256 KB.

Apache Kafka

- Highly Scalable as it is designed to allow single cluster to serve as the central
backbone.
. Each Kafka fiber maintains a partitioned log.

- Relies heavily on the file system for storing cache messages.

=i d

ncl

Rl Ty
~

. Kafka nodes perform load balancing.
N e e S e SR e '-:_,__;2.,1, R el =t S i ns Sl e D Al

Couch-RQS

- Based on database system, which is called Couch DB.
.- Couch DB is a fast light weigh NOSQL DB.

. Uses database File to store its information which gives bad

performance.

Apache Hedwig

- Publish-subscribe system designed to carry large amount of
data.
It is designed with the goal to give guaranteed delivery.

- Topic based publisher and subscriber.

- Incremental Scalability and high availability.

. Client publish message associated with a topic, and they

3 L bog S) . 11 A e P - po* et LTS e AR an ol sy
- A — 8 0T — e)l R e s e IR TN] AL) e g PO
- y W o a p / . |
W | 1,'. 20 Y T .:‘_.;\ 1 = Y 4 4:‘-' A 1YY N S INNC Y]

i’y | —
- | &
(& aue sl ==

Active MQ

- Message Oriented Library, which ensures reliability between
distributed process.

. Optimized to avoid overhead with a P2P or Server Client Model for
pushing message to the receiver.

. Uses Its own communication Protocol to ensure speed and reliability.

- Communication between server is using simple message.

it :
o .'_l—o —~

a K -
é - - v
e Bl . = | =k

th each no ”‘ € lal LG Noae launcnes the server to listen to ahy
; ; ,,— e nl__z?.-l 7,"' L ey = - A W=y ;» =P ATn

N oy e

Rabbit MQ

. Robust messaging system, open platform and supported a large number
of client developer platform.

. It uses asynchronous messaging for application to connect and scale.

- Options to tradeoff between performance, reliability, including
persistence, delivery acknowledgements, publisher confirms and high
availability.

. Uses mirroring for handling hardware failure.

¢ - b - B $o : . : : “ - . p
‘ i . R) . A - & A
» s ==l Bl a ay) g ed ﬂ e 9 a = a ’ IR — i £ _- 2 o 3 N e — /
. -~ e ey | | | R s 1 1 3 x‘“ :i_ ﬂ-. | 1L s | 1 A |) | (A AN g B\ : \/ v 1 u \ 1\. & i _-_\ i v by
ot Y » » B 3w ' A g T — L ~ o L — — S Y - ¢ =
" vJ_ A=l . =l mts B e Ve Rl e AT r:!.‘ i N ek e e 1 R i £ ot P A A =l bbb & wSS SEPE Y W ey

Design of HDMQ

....:r...g

Il,Il_H_.llWI_H_

Detalls for Design

. Storage Nodes: All the storage In two hierarchical regions,
where a sub region consists of ~10 nodes and a router node, the
main region consists of multiple sub regions. All the main
regions together make up the storage node system.

. Front End Nodes: These are the nodes that clients Interact

with and make request to. Each front-end node maintains a
local hash-table for that contains updates for “Area” for each
queue ID. Currently we are using 10:1 ratio for number of
storage nodes vs. front-end nodes.

- Queue ID Manager Node: We use one queue ID node In the
system that determines the storage region for new gueues and
generate area (queue ID) for the new nodes

Example for Setup

For example assume we have 10,000 total storage nodes and x number of
front-end nodes. This system will break down the nodes in regions and
sub regions down to where each of lowest hierarchy region contain ~ 10
nodes. In this case we can divide 10,000 nodes in 10 regions of 1000
nodes (1 to 10), then each 1000 node In region of 100 nodes and this 100

node regions in set of 10 nodes. So for example node 2287 will have area

-2,2,8

[|
[
IR
u
1
[]
o
B x
(1]

.:-:I.:-.

=] =
EEEEEEEEEE Em

[
[

Operation Overview

.- Write Operation: This are the step for it.

1.Front end node will route the message to the given area.
2. The router In that area will determine which node will be next for insert.

3. This router will follow round robin strategy until all the 10 nodes in the

¥ L oy g= e LAty . T s S : =% - -

i - i a Fa Al kil o e P S —T - o ..uln = o ™ pL) ad
£ | [y~ e A et] e al my s i b
| PN AR S o o e il B W R ST L v

e

Read Operation

For Read Operation Following are the steps:-

1. Front end nodes use the area to determine the region where

message are stored for that queue.
2. They Initiate read request to the router for that region to read

messages.
he reading of message Is again done in round robin strategy.

3 [|
{1t bt o I - 1 — i :
e L) B3 5 " r, v - - L
3 e, S . I,' e = 4= L el J_L_’;.. S ' - 1

> i
- - =t — 4
- |:. X ‘(.‘.' aic ml e 1 il gy iy : e [T v e ~ el

-~y

»
=
-

-
A=llB TN o

Queue ID Manager Node

- We also have a queue 1d manager node that will maintain the
list of queue ID.

. Its job Is to generate new ID based on system load.

- It will also assign the Initial area to It.

Refinements

. Exactly One Delivery
- Ordering of Message
. Large Message Size

& e
""""
St L & a oot =y Wi

- - -
S e e ,?j-_-",' Vil S\E;) 1 N | AL AY o
Sl =2y B geeos ey 3 =y = o s e s =
= oy e ST, ey - ~ e el - A T P x

:i"

. T

Performance Evaluation

S5QS Duplicate Message vs COST FOR

400000
300000
200000
100000

0

w
an
w
Ly
o
o

=
::u-
e
™

=
=
=

]

EXECUTION(SECOND)

Message Size

8000
6000
4000
2000

0

20 client
M1.xlarge
1 Million Message

Cost of Execution(Second)

We found that on an average 23.73 % of total messages are found in SQS as repeated

MeSsSages

SQS VS HDMOQ

AMAZON 5QS SYSTEM

=] KB w2 KB 4 KB w===j KB ====106 KB 32 KB 64 KB 128 KB 256 KB

10004

90%

B0%

70%

60%

50% -

st 20 client M1.xlarge
2% 1 Million Message
10%,

0%

1 32

Latency(ms)

Percentage

HDMQ SYSTEM

] KB w——7 KB 4 KB =g KB w15 KB 32KB 64 KB 128 KB 256 KB
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

20 client m2.4xlarge

1 Million Message

10 Front-end nodes(m1.xlarge)
Elastic Load Balancer

20 M3 Double Extra Large Instance
m3.xlarge Load Balancer

Percentage

32

Latency(ms)

Latency

- 20 client m2.4xlarge
_ - 1 Million Message
. 20 client M1.xlarge .10 Front-end nodes

. 1 Million Message - 20 M3 Double Extra Large Instance
- m3.xlarge Load Balancer

Average Latency for Retrieving

Average Latency for Adding Messages
Messages

“Adding HDM() = Adding 5QS “Retrieving HDMQ & Retrieving SQS

5)

=
N
)
(=]
=
=t
'
1]
- |

Latency(m

Message Granularity Message Granulatrity

Message per Sec

Throughput

- 20 client m2.4xlarge
_ - 1 Million Message
. 20 client M1.xlarge .10 Front-end nodes

. 1 Million Message - 20 M3 Double Extra Large Instance
- m3.xlarge Load Balancer

Message Adding Throughput Message Retrieving Throughput
“Adding HDMQ = Adding 5Q5 “ Retrieving HDMQ ® Retrieving SQS

200

(]
=F]
W
b
=]
=
i
=
1]
]
]
=

Message Granularity
Message Granularity

Increasing number of Nodes

5QS VS HDMQ Throughput with
Increasing number of nodes

32 KB message

MSQS “HDMQ

= . 20 client M1.xlarge
S .1 Million Message
¥
=
[+
o
L
=1y
E
= Al "
1 4 16 37 y oTs - 20 client m2.4xlarge
1 Million Message
Number of Nodes . 10 Front-end nodes

20 M3 Double Extra Large Instance
m3.xlarge Load Balancer

Cost Per Request

Cost Per Message Request
“SQS =HDMQ

£0.000005
£0.000004
£0.000004
$0.000003
$0.000003
£0.000002
£0.000002

$0.000001
£0.000001 _I _I _I
£0.000000
] L L
—_ —_
o= ¥

Message Granularity

e
7]
=t
=
=
k)

=
i
&
s

"
w
=

-

Conclusion

- The HDMQ adding and retrieving latency is lower than the SQS latency.

- We also observed that Throughput for adding in HDMQ is little lower than the SQS system but if
we implement the router level load balancer then the throughput would be much higher than SQS.

- We also observed that the average receiving throughput of HDMQ is much more higher than the
average throughput of Amazon SQS.

- If we combine the average throughput of adding and receiving, HDMQ would be much more faster
than Amazon SQS.

- We also observed that the throughput of HDMQ with increasing number of nodes is also higher than
the Amazon SQS.

o
——b |
s

)
A &

i S ut We also conclude that the cost for implementing the system right now is little higher as we are
P o] VR g (o] T1Y o ‘. AR DI S5 "vig\.f::-') i ol g ‘-. e e ~ e =i i ' (_’._, e b DOy Sl < - .‘._.':;t-:' =

M =0

Future Work

- We will be implementing our own load balancer in future so that our framework
IS completely independent from Amazon Web Services.

- We will also implement queue-monitoring service. We will also try to increase
the Adding message throughput by implementing local router level load
balancer.

- We will also provide more throughputs still maintaining the reliability by
providing asynchronous replication.

.- We also want to design the framework message aware so that it can scale
according to the incoming message size. This will not only reduce the cost of
operating per request but will also help us to be aware about the right storage
node for the incoming messages size so that the system can scale itself.

- We will also try to configure the number of replicas for the message nodes. As
of right now its by default 1 if you start the system with replication.

References

[1] Dongfang Zhao and loan Raicu, Supporting Large Scale Data-Intensive Computing with the FusionFS
Distributed File System, 2013

[2] Amazon SQS, [online] 2013, http://aws.amazon.com/sqs/
[3] Hedwig, [online] 2013, http://wiki.apache.org/hadoop/HedWig

[4] RabbitMQ in action: distributed messaging for everyone, ; Williams, Jason J W, Shelter Island
NY : Manning, 2012. - 1288 p.

[5] Jay Kreps, Neha Narkhede and Jun Rao, Kafka: a Distributed Messaging System for Log Processing, 2011.

-V..-;-;_[6 Snyder Bruce DeJan Bosanac a,nd Rob Davies. "Intrg‘clu_gtlon to Ap,ache ActlveMQ 3 Actlve MQ |n Actlon

-=",f:'" : . . S=ries [P, % i Ris

i "‘.-“_j‘.

http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html

http://cds.cern.ch/search?f=author&p=Videla,%20Alvaro&ln=en
http://cds.cern.ch/search?f=author&p=Videla,%20Alvaro&ln=en
http://cds.cern.ch/search?f=author&p=Videla,%20Alvaro&ln=en
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html
http://zookeeper.apache.org/bookkeeper/docs/r4.0.0/hedwigUser.html

