
OHT: Hierarchical 
Distributed Hash Tables

Kun Feng, Tianyang Che



Outline
● Introduction
● Contribution
● Motivation
● Hierarchy Design
● Fault Tolerance Design
● Evaluation
● Summary
● Future Work



Introduction

● ZHT
○ Zero-Hop Distributed Hash Table
○ Light-weight, high performance, fault tolerant



Contribution

● Implement a hierarchical ZHT
● Server failure handling: verified
● Proxy failure handling: verified
● Dedicated listening thread for client
● Strong consistency in proxy replica group
● Demo Benchmark 
● 1800+ lines of C++ code



Motivation

● Scalability of ZHT
○ n-to-n connection between clients and servers
○ Currently around 8000

● Hierarchical design
○ Add proxy to manage server groups



Hierarchy Design

● Add proxy layer between servers and clients
● Number of proxies is much smaller
● Each proxy manages several servers
● n-to-n connection among proxies
● 1-to-n connection between proxy and 

servers
 



Design
Client:
● Send requests to 

corresponding proxy 
● Wait for ack from proxy

(main thread)
● Dedicated listening thread 

to receive result from 
servers



Design
Proxy:
● Receive request from 

client
● Send client an ack
● Add client ip and port to 

request
● Forward the request to 

corresponding server
● Wait for ack from server



Design
Server:
● Wait for requests 

forwarded from proxy
● Process operation 

(lookup, insert ...)
● Send back the result 

directly to client



Fault Tolerance Design

Failure
● Server failure
● Proxy failure



Fault Tolerance Design

Server failure handling
● Detected by proxy
● Faulty server marked to be down (proxy)
● Randomly pick replica instead (proxy)
● Standby server (replicas, do nothing)



Fault Tolerance Design

Proxy failure handling
● Detected by client
● Faulty proxy marked to be down (client)
● Proxy broadcast this change to other 

proxies (strong consistent)
● Randomly pick replica instead (client)
● Standby proxy (replicas, do nothing)



Evaluation

● Setup
○ HEC cluster in SCS lab
○ 2 proxies, 4 servers, 1 to 16 clients
○ Replicas: 2 for proxies, 2 for servers
○ Use zht_ben as benchmark



Evaluation



Verifying Server Failure Handling



Verifying Proxy Failure Handling



Summary

● Implement a hierarchical ZHT
● Server failure handling
● Proxy failure handling
● Strong consistency in proxy replica group



Future Work

● Large scale test
● Merge eventual consistency code to server 

layer



Q & A


