ZHT: Const - Eventual
Consistency Support
For ZHT

Group Member: Shukun Xie
Ran Xin

Outline

Problem Description
Project Overview

Solution
® Maintains Replica List for Each Server
® QOperation without Primary Server Failure

Working-on
® QOperation with Primary Server Failure

Performance Evaluation

Outline

Problem Description
Project Overview

Solution
® Maintains Replica List for Each Server
® QOperation without Primary Server Failure

Working-on
® QOperation with Primary Server Failure

Performance Evaluation

Problem Description

e /HT aims to provide High Availability, Good Fault
Tolerance, High Throughput, and Low Latency

e /HT applies Replication-based Fault Tolerance

® Consistency issue exists among data copies

Outline

Problem Description
Project Overview

Solution
® Maintains Replica List for Each Server
® QOperation without Primary Server Failure

Working-on
® QOperation with Primary Server Failure

Performance Evaluation

Project Overview

* Replication-based Fault Tolerance

®* Consistency

- Eventual Consistency Strong Consistency

Design Write Ack return to Client after Write Ack return to Client
Primary updates first Replica after Primary updates all
Version Replica servers

Benefits Low latency on write tasks Consistency Guaranteed

Low latency for requests to Primary

Drawbacks Latency on Lookup may increase High Latency on write tasks

* Both of Primary and Replica servers can serve Lookup .
uests.

Outline

Problem Description
Project Overview

Solution
® Maintains Replica List for Each Server
® QOperation without Primary Server Failure

Working-on
® QOperation with Primary Server Failure

Performance Evaluation

Outline

® Problem Description
® Project Overview

® Solution
® Maintains Replica List for Each Server
® QOperation without Primary Server Failure

®* Working-on
® QOperation with Primary Server Failure

- ® Performance Evaluation

Lookup - To Primary

Replica List:
Primary Server
Replica Serverl
Replica Server2

2 Primary Server
Client
1
=
=
o1y
_/

Replica List:
. Primary Server
Hash Function g Replica Serverl

Replica Server2

Replica Serverl

A |
Neighbor List:
Primary Server
Replica Serverl
Replica Server2

Replica List:
Primary Server
Replica Serverl

Replica Server2

Replica Server2

1. Client sends Lookup request to Primary Server
2. Primary sends Lookup result to Client

1

Lookup - To Replica

Primary Server

Replica List:
Primary Server
Replica Serverl

Replica Server2

Client

_\z\ ' Rephca Llst:
Hash Function \D&Fmd e Replca Soer

Replica Serverl
Replica Serverl

Replica Server2

|
Neighbor List:
Primary Server
Replica Serverl
Replica Server2

Replica List:
Primary Server
Replica Serverl

Replica Server2

Replica Server2

Client sends Lookup request to Replica Server

Replica sends Version Compare request to Primary Server
Primary sends Version Compare result to Replica Server
Replica server sends Lookup result to Client

Version Compare - On Replica

Received Lookup
Request from Cllent

Execute local Iookup and get
local version

Send Version Compare
request to the working
Primary Server in Replica List

Check the received
Version Compare
result from Primary

Data Removed Same Iersion Version C%t

Execute local Remove and The request key-value pair
return is updated on Replica.
"ZSC_REC_NONEXISTKEY" Return this key-value pair to

Execute local Insert/Append
and then return the updated

to Client Client key-value pair to Client

R

Insert, Append, Remove

Replica List:
Primary Server
Replica Serverl
Replica Server2

Find first Replica

Primary Server
Client T
}) /1

Hash Function &Find next Replica

Replica Serverl

Replica List:
Primary Server
Replica Serverl
Replica Server2

|
Neighbor List:
Primary Server

Replica Serverl z
Replica Server2 l

Replica List:
Primary Server
Replica Serverl

Replica Server2

Replica Server2

Client sends Insert/Append/Remove request to Primary Server

Primary Server synchronizes |/A/R request to first Replica

First Replica sends |/A/R acknowledgement to Primary

Primary Server sends Insert/Append/Remove acknowledgement to Client

Outline

Problem Description
Project Overview

Solution
® Maintains Replica List for Each Server
® QOperation without Primary Server Failure

Working-on
® QOperation with Primary Server Failure

Performance Evaluation

Lookup with Primary Server Failure

Replica List:
Primary Server
Replica Serverl
Replica Server2

Primary Server

Clent _/1
=

Replica Server2

‘ Replica List:
. Primary Server
Hash Function 1Host Reachable g Replica Serverl

Replica Serverl

Neighbor List: 6

Primary Server 5 I
Replica Serverl
Replica Server2 l
Replica List:
Primary Server
Find Reachable Primary Replica Serverl

y & update Host Reachable Replica Server2
Replica Server2

Client sends Lookup request to Primary Server

Client sends Lookup request to random Replica Server (Replica 2)
Replica 2 sends Version Compare request to Primary Server
Replica 2 sends Version Compare request to Replica Server 1
Replica 1 sends Version Compare result to Replica Server 2
Replica 2 sends Lookup result to Client

B O IO -

B>

Insert/Append/Remove with Primary
Server Failure

Replica List:
Primary Server
Replica Serverl
Replica Server2

»

Primary Server

) 1
Client _—/
—

5\» Replica List.
. Find next reachable Primary Server
Hash Function & Host Reachable Replica Replica Serverl

7 Replica Server2
Replica Serverl

 J
Neighbor List:
Primary Server 3
Replica Serverl l

Replica Server2
Replica List:
& PrimgryServer
Replica Serverl
Replica Server2 Replica Server2
Client sends I/A/R request to Primary Server
Client sends I/A/R request to next reachable Replica (Replica 1)
Replica 1 synchronizes |/A/R request to next reachable Replica (Replica 2)
Replica 2 sends |/A/R acknowledgement to Replica 1

Replica 1 sends [/A/R acknowledgement to Client

4

Outline

® Problem Description
® Project Overview

e Solution
® Maintains Replica List for Each Server
® QOperation without Primary Server Failure

®* Working-on
® QOperation with Primary Server Failure

- ® Performance Evaluation

Experiment Environment

® TJestbeds
o HEC Cluster

* Workload
e Same number of Clients and Server nodes (4, 6, 8)
® 1000 key-value pairs for each operation

® Metrics
e |atency
® Throughput

Performance - Latency

Insert Lookup
6 3.5
5 A 3
- & 25
g4 £
= > 2
g3 e
2 815
3 e R
1 # 05
0 0
4 6 8 4 6 8
Scale (# of nodes) Scale (# of nodes)
Append Remove
5 5
——'—
" e 4 ;
) m
£E3 E3
> >
2 =
22 % T2 #
5 5
! F— 1 e ———————
0 0
4 6 8 4 6 8
Scale (# of nodes) Scale (# of nodes)

SYFIRESE N

====tventual Consistency *=Strong Consistency “*“Laziness Enventual Consistency *No Replica

Performance - Throughput

Insert Lookup

1.5

.

4 6 8 4 6 8
Scale (# of nodes) Scale (# of nodes)

0.5 e

Throughput (tasks/sec)
Throughput (tasks/sec)

Append Remove

0.5 k

Throughput (tasks/sec)
[y
Throughput (tasks/sec)
[

4 6 8 4 6 8
Scale (# of nodes) Scales (# of nodes)

e S e it s P P

====tventual Consistency *=Strong Consistency “*“Laziness Enventual Consistency *No Replica

Conclusion

® Compare with Strong Consistency
® Achieve lower latency on write tasks

® Compare with Laziness Eventual Consistency
® Achieve lower latency on Lookup

® More reliable due to active inconsistency repair
between Primary and Replica servers

Questions?

