
ZHT: Const – Eventual
Consistency Support

For ZHT

Group Member: Shukun Xie

 Ran Xin

Outline

�  Problem Description

�  Project Overview

�  Solution
�  Maintains Replica List for Each Server
�  Operation without Primary Server Failure

�  Working-on
�  Operation with Primary Server Failure

�  Performance Evaluation

2

Outline

�  Problem Description

�  Project Overview

�  Solution
�  Maintains Replica List for Each Server
�  Operation without Primary Server Failure

�  Working-on
�  Operation with Primary Server Failure

�  Performance Evaluation

3

Problem Description

�  ZHT aims to provide High Availability, Good Fault
Tolerance, High Throughput, and Low Latency

�  ZHT applies Replication-based Fault Tolerance

�  Consistency issue exists among data copies

4

Outline

�  Problem Description

�  Project Overview

�  Solution
�  Maintains Replica List for Each Server
�  Operation without Primary Server Failure

�  Working-on
�  Operation with Primary Server Failure

�  Performance Evaluation

5

Project Overview

�  Replication-based Fault Tolerance

�  Consistency

�  Both of Primary and Replica servers can serve Lookup
requests.

Eventual Consistency Strong Consistency

Design •  Write Ack return to Client after
Primary updates first Replica

•  Version

Write Ack return to Client
after Primary updates all
Replica servers

Benefits Low latency on write tasks
Low latency for requests to Primary

Consistency Guaranteed

Drawbacks Latency on Lookup may increase High Latency on write tasks

6

Outline

�  Problem Description

�  Project Overview

�  Solution
�  Maintains Replica List for Each Server
�  Operation without Primary Server Failure

�  Working-on
�  Operation with Primary Server Failure

�  Performance Evaluation

7

Outline

�  Problem Description

�  Project Overview

�  Solution
�  Maintains Replica List for Each Server
�  Operation without Primary Server Failure

�  Working-on
�  Operation with Primary Server Failure

�  Performance Evaluation

8

Lookup – To Primary

1.  Client sends Lookup request to Primary Server
2.  Primary sends Lookup result to Client

9

Lookup – To Replica

1.  Client sends Lookup request to Replica Server
2.  Replica sends Version Compare request to Primary Server
3.  Primary sends Version Compare result to Replica Server
4.  Replica server sends Lookup result to Client 10

Version Compare – On Replica

11

Insert, Append, Remove

12

1.  Client sends Insert/Append/Remove request to Primary Server
2.  Primary Server synchronizes I/A/R request to first Replica
3.  First Replica sends I/A/R acknowledgement to Primary
4.  Primary Server sends Insert/Append/Remove acknowledgement to Client

Outline

�  Problem Description

�  Project Overview

�  Solution
�  Maintains Replica List for Each Server
�  Operation without Primary Server Failure

�  Working-on
�  Operation with Primary Server Failure

�  Performance Evaluation

13

Lookup with Primary Server Failure

1.  Client sends Lookup request to Primary Server
2.  Client sends Lookup request to random Replica Server (Replica 2)
3.  Replica 2 sends Version Compare request to Primary Server
4.  Replica 2 sends Version Compare request to Replica Server 1
5.  Replica 1 sends Version Compare result to Replica Server 2
6.  Replica 2 sends Lookup result to Client 14

Insert/Append/Remove with Primary
Server Failure

1.  Client sends I/A/R request to Primary Server
2.  Client sends I/A/R request to next reachable Replica (Replica 1)
3.  Replica 1 synchronizes I/A/R request to next reachable Replica (Replica 2)
4.  Replica 2 sends I/A/R acknowledgement to Replica 1
5.  Replica 1 sends I/A/R acknowledgement to Client 15

Outline

�  Problem Description

�  Project Overview

�  Solution
�  Maintains Replica List for Each Server
�  Operation without Primary Server Failure

�  Working-on
�  Operation with Primary Server Failure

�  Performance Evaluation

16

Experiment Environment

�  Testbeds
�  HEC Cluster

�  Workload
�  Same number of Clients and Server nodes (4, 6, 8)

�  1000 key-value pairs for each operation

�  Metrics
�  Latency

�  Throughput

17

Performance – Latency

18

Performance – Throughput

19

Conclusion

�  Compare with Strong Consistency

�  Achieve lower latency on write tasks

�  Compare with Laziness Eventual Consistency
�  Achieve lower latency on Lookup
�  More reliable due to active inconsistency repair

between Primary and Replica servers

20

