
MATRIX:DJLSYS
EXPLORING RESOURCE
ALLOCATION TECHNIQUES
FOR DISTRIBUTED JOB
LAUNCH UNDER HIGH
SYSTEM UTILIZATION

XIAOBING ZHOU(xzhou40@hawk.iit.edu)
HAO CHEN (hchen71@hawk.iit.edu)

Contents

¨  Introduction
¨  ZHT Enhancement for SLURM++

¤ Compare and Swap
¤  Resource State Change Callback
¤  Thread Safe

n  Operation Level
n  Socket Level

¤  ZHT Client Lock Exception Safe

Contents

¨  Related Work
¨  Benchmark

¤  SLURM Baseline Benchmark
¤  SLURM vs. SLURM++

¨  Working-on
¤ Distributed Monitoring
¤ Cache
¤  Libnap standalone library

Proposal

¨  Resource State Change Callback
¨  Compare and Swap
¨  Socket Level Thread Safe
¨  Distributed Monitoring
¨  Cache and Buffer Management

Introduction

¨  SLURM++: A distributed job launch prototype for
extreme-scale ensemble computing (IPDPS14
submission)

Job Management Systems for Exascale
Computing

¨  Ensemble Computing
¨  Over-decomposition
¨  Many-Task Computing
¨  Jobs/Tasks are finer-grained
¨  Requirements

¤ high availability
¤ extreme high throughput (1M tasks/sec)
¤  low Latency

Current Job Management Systems

¨  Batch scheduled HPC workloads
¨  Lack the support of ensemble workloads
¨  Centralized Design

¤ Poor Scalability
¤ Single-point-of-failure

¨  SLURM maximum throughput of 500 jobs/sec
¨  Decentralized design is demanded

Goal

¨  Architect, and design job management systems for
exascale ensemble computing

¨  Identifies the challenges and solutions towards
supporting job management systems at extreme
scales

¨  Evaluate and compare different design choices at
large scale

Contributions

¨  Proposed a distributed architecture for job
management systems, and identified the challenges and
solutions towards supporting job management system at
extreme-scales

¨  Designed and developed a novel distributed resource
stealing algorithm for efficient HPC job launch

¨  Designed and implemented a distributed job launch
prototype SLURM++ for extreme scales by leveraging
SLURM and ZHT

¨  Evaluated SLURM and SLRUM++ up to 500-nodes with
various micro-benchmarks of different job sizes with
excellent results up to 10X higher throughput

SLURM Architecture

¨  Controllers are fully connected
¨  Ratio and Partition Size are configurable for HPC and MTC
¨  Data servers are also fully connected

cd cd cd

…

controller and data server controller and data server

cd cd cd

…

controller and data server

cd cd cd

…

…Fully-Connected

Job and Resource Metadata

Key Value Description

controller id
number of free
node, free node

list

The free (available) nodes in
a partition managed by the

corresponding controller

job id original
controller id

The original controller that is
responsible for a submitted

job

job id + original
controller id

involved
controller list

The controllers that
participate in launching a job

job id + original
controller id +

involved controller
id

participated
node list

The nodes in a partition that
are involved in launching a

job

SLURM++ Design and Implementation

¨  SLURM description
¨  Light-weight controller as ZHT client
¨  Job launching as a separate thread
¨  Implement the resource stealing algorithm
¨  Developed in C
¨  3K lines of code + SLURM 50K lines of code + ZHT

8K lines of code

Compare and Swap

¨  Use case
¤  When different controllers try to allocate the same resources
¤  Naive way to solve the problem is to add a global lock for each queried key in

the DKVS
¤  Atomic compare and swap operation in the DKVS that can tell the controllers

whether the resource allocation succeeds
¤  SLURM++ uses it to contend nodes resources

¨  Standard compare-and-swap:
¤  compare_swap(key, seen_val, new_val)

¨  Augument standard compare-and-swap
¤  compare_swap(key, seen_val, new_val, queried_val)
¤  queried_val saves one lookup

¨  Problem！
¤  Not atomic: lookup, compare, insert, lookup
¤  Need NOVOHT supports atomicity

Compare and Swap

lookup_1 lookup_2 cswap_1 cswap_2cswap_2

Data ServerClient 1 Client 2

lookup_1

return value

cswap_1

return true, value

lookup_2

return value

cswap_2

return false, value

cswap_2 again

return true, value

m
essage exchange flow

m
essage exchange flow

Data Server Operation Sequence

Compare and Swap Workflow

compare_swap API reference

¨  int c_zht_compare_swap(const char *key, const char
*seen_value, const char *new_value, char *value_queried),
in C

¨  int compare_swap(const string &key, const string &seen_val,
const string &new_val, string &result)
¤  Return 0(zero), if SEEN_VALUE equals to value lookuped by the

key, and set the value to NEW_VALUE returned
¤  Return non-zero, if the above doesn’t meet, and VALUE_QUERIED
¤  SEEN_VALUE: value expected to be equal to that lookuped by the

key
¤  NEW_VALUE: if equal, set value to NEW_VALUE
¤  VALUE_QUERIED: if equal or not equal, get new value queried

Resource State Change Callback

¨  Use case
¤ A controller needs to wait on specific state change

before moving on
¤  Inefficient when client keeps polling from the server
¤ The server has a blocking state change callback

operation
¤ SLURM++ uses it to monitor if job's finished when job's

stolen and run by other controller since there are no
direct communication between controllers

¨  Idea: if key's value changed, notify change of client

Resource State Change Callback

¨  Implementation
¤ For every call, launch worker thread in server
¤ Block client
¤ Notify client when states changed
¤ Lease-based approach to deal with states-never-

changed
¤ User-defined interval to poll states

n SCCB_POLL_INTERVAL

state_change_callback API reference

¨  int c_state_change_callback(const char *key, const
char *expeded_val, int lease), in C

¨  int state_change_callback(const string &key, const
string &expected_val,int lease), in C++
¤ monitor the value change of the key, block or unblock

ZHT client
¤ EXPECDED_VAL: the value expected to be equal to

what is lookuped by the key, if equal, return 0(zero), or
keep polling in server-side and block ZHT client

¤ LEASE: the lease in milliseconds after which ZHT client
will be unblocked.

Thread Safe

¨  Operation Level
¤ Insert, lookup, append, remove, compare_swap,

state_change_callback, all shared a single mutex
¤ Performance killer

¨  Socket Level
¤ Distinct mutex attached to every socket connection
¤ Network related concurrency issues come from

shared socket over which send/receive overlapped

ZHT Client Lock Exception Safe

¨  lock_guard class
¤ Constructor lock_guard(pthread_mutex_t

*mutex) { lock(mutex); }
¤ Destructor ~lock_guard() { unlock(mutex); }
¤ Even if ZHT client crashed, Destructor will

always be called, and release the lock

SLURM Baseline Benchmark

0

10

20

30

40

50

60

50 100 150 200 250 300 350

Th
ro

ug
hp

ut
 (

jo
bs

/s
ec

)

Scale (no. of nodes)

Small-Job

Small-Job Workload

¨  For N nodes, submit N jobs, e.g., 50 jobs submitted for 50 nodes
scale

¨  Each job requiring just 1 node, MTC job

¨  Each job runs 1 task (sleep 0)

SLURM Baseline Benchmark

0

1

2

3

4

5

6

7

8

50 100 150 200 250 300 350

Th
ro

ug
hp

ut
 (

jo
bs

/s
ec

)

Scale (no. of nodes)

Medium-Job

Medium-Job Workload

¨  For N nodes, submit N jobs, e.g., 50 jobs submitted for 50 nodes scale

¨  Each job requiring a random (1~50) number of nodes, HPC job

¨  Each job runs 1 task (sleep 0)

SLURM Baseline Benchmark

0

0.5

1

1.5

2

2.5

3

3.5

4

100 150 200 250 300 350

Th
ro

ug
hp

ut
 (

jo
bs

/s
ec

)

Scale (no. of nodes)

Large-Job

Large-Job Workload

¨  For every scale (100, 150, 200, 250, 300, 350), submit (#scale * 20)
jobs, e.g., 20 jobs submitted for 100 nodes scale; 40 jobs submitted for
150 nodes scale; 60 jobs submitted for 200 nodes scale;

¨  Each job requiring a random (25~75) number of nodes, HPC job

¨  Each job runs 1 task (sleep 0)

SLURM vs. SLURM++

Small-Job Workload

Each controller manages 50 nodes
Each controller launches 50 jobs,
MTC job
Each job requiring 1 node
Each job runs 1 task (sleep 0)

#nodes/50 = #controllers

SLURM vs. SLURM++

Medium-Job Workload

Each controller manages 50 nodes
Each controller launches 50 jobs,
HPC job
Each job requiring a random
(1~50) number of nodes
Each job runs 1 task (sleep 0)

#nodes/50 = #controller

SLURM vs. SLURM++

Large-Job Workload

Each controller manages 50 nodes
Each controller launches 20 jobs,
HPC job
Each job requiring a random
(25~75) number of nodes
Each job runs 1 task (sleep 0)

#nodes/50 = #controller

SLURM vs. SLURM++

Small-Job; ZHT message count of SLURM++

SLURM vs. SLURM++

Medium-Job; ZHT message count of SLURM++

SLURM vs. SLURM++

Large-Job; ZHT message count of SLURM++

SLURM vs. SLURM++

Throughput comparison with different workloads

Distributed Monitoring – ZHT Approach

Distributed Monitoring – AMQP
Approach

Distributed Monitoring – AMQP
Approach

¨  Federation is used to provide geographical
distribution of brokers. A number of individual
brokers, or clusters of brokers, can be federated
together. This allows client machines to see and
interact with the federation as though it were a
single broker. Federation can also be used where
client machines need to remain on a local network,
even though their messages have to be routed out.

Cache

Libnap Standalone Library

¨  Libnap: Library for Network Abstracted Protocols
¨  For new version MATRIX development

Thank you!

Q&A

