MATRIX:DJLSYS

EXPLORING RESOURCE
ALLOCATION TECHNIQUES
FOR DISTRIBUTED JOB
LAUNCH UNDER HIGH
SYSTEM UTILIZATION

Contents

Intfroduction
ZHT Enhancement for SLURM++

Compare and Swap

Resource State Change Callback
Thread Safe

Operation Level

Socket Level

ZHT Client Lock Exception Safe

Contents

Related Work

Benchmark
SLURM Baseline Benchmark
SLURM vs. SLURM++

Working-on
Distributed Monitoring
Cache

Libnap standalone library

Proposal

Resource State Change Callback
Compare and Swap

Socket Level Thread Safe
Distributed Monitoring

Cache and Buffer Management

Introduction

SLURM++: A distributed job launch prototype for
extreme-scale ensemble computing (IPDPS14
submission)

Job Management Systems for Exascale
Computing

Ensemble Computing
Over-decomposition
Many-Task Computing
Jobs/Tasks are finer-grained

Requirements
high availability
extreme high throughput (1M tasks/sec)

low Latency

Current Job Management Systems

Batch scheduled HPC workloads

Lack the support of ensemble workloads

Centralized Design
Poor Scalability
Single-point-of-failure

SLURM maximum throughput of 500 jobs/sec

Decentralized design is demanded

Goal

Architect, and design job management systems for
exascale ensemble computing

|dentifies the challenges and solutions towards
supporting job management systems at extreme
scales

Evaluate and compare different design choices at
large scale

Contributions

Proposed a distributed architecture for job
management systems, and identified the challenges and
solutions towards supporting job management system at
extreme-scales

Designed and developed a novel distributed resource
stealing algorithm for efficient HPC job launch

Designed and implemented a distributed job launch
prototype SLURM++ for extreme scales by leveraging
SLURM and ZHT

Evaluated SLURM and SLRUM++ up to 500-nodes with
various micro-benchmarks of different job sizes with
excellent results up to 10X higher throughput

SLURM Architecture

Fully-Connected

controller and data server controller and data server controller and data server

cd cd cd cd cd cd cd cd cd

Controllers are fully connected
Ratio and Partition Size are configurable for HPC and MTC
Data servers are also fully connected

Job and Resource Metadata

Key Value Description

number of free | The free (available) nodes in
controller id node, free node | a partition managed by the
list corresponding controller

The original controller that is

.y . original . .
job id 9) responsible for a submitted
controller id .
job
job id + original involved The controllers that
controller id controller list | participate in launching a job

job id + original
controller id + participated
involved controller node list

id

The nodes in a partition that
are involved in launching a
job

SLURM++ Design and Implementation

SLURM description

Light-weight controller as ZHT client

Job launching as a separate thread
Implement the resource stealing algorithm

Developed in C

3K lines of code + SLURM 50K lines of code + ZHT
8K lines of code

Compare and Swap

Use case
When different controllers try to allocate the same resources

Naive way to solve the problem is to add a global lock for each queried key in
the DKVS

Atomic compare and swap operation in the DKVS that can tell the controllers
whether the resource allocation succeeds

SLURM++ uses it to contend nodes resources

Standard compare-and-swap:
compare_swap(key, seen_val, new_val)

Augument standard compare-and-swap
compare_swap(key, seen_val, new_val, queried_val)
queried_val saves one lookup

Problem!

Not atomic: lookup, compare, insert, lookup
Need NOVOHT supports atomicity

Compare and Swap

Moy} abueyoxe abessaw

Data Server Operation Sequence

Client 1

<+—|ookup_2

lookup_1——»
return value

return value
<«——cswap 2
cswap 1 Data Server P
P_ ’ e—return false, value==—p»
return true, value <«——cswap_2 again

return true, value

Compare and Swap Workflow

Client 2

moj} abueyoxs abessaw

|

compare_swap APl reference

int c_zht_compare_swap(const char *key, const char
*seen_value, const char *new_value, char *value_queried),

in C

int compare_swap(const string &key, const string &seen_val,
const string &new_val, string &result)

Return O(zero), if SEEN_VALUE equals to value lookuped by the
key, and set the value to NEW_VALUE returned

Return non-zero, if the above doesn’t meet, and VALUE_QUERIED

SEEN_VALUE: value expected to be equal to that lookuped by the
key

NEW _VALUE: if equal, set value to NEW_VALUE
VALUE_QUERIED: if equal or not equal, get new value queried

Resource State Change Callback

Use case

A controller needs to wait on specific state change
before moving on

Inefficient when client keeps polling from the server

The server has a blocking state change callback
operation

SLURM++ uses it to monitor if job's finished when job's
stolen and run by other controller since there are no
direct communication between controllers

ldea: if key's value changed, notify change of client

Resource State Change Callback

01 Implementation
For every call, launch worker thread in server
Block client
Notify client when states changed

Lease-based approach to deal with states-never-
changed

User-defined interval to poll states
m SCCB_POLL_INTERVAL

state_change_callback APl reference

int c_state_change_callback(const char *key, const
char *expeded_val, int lease), in C

int state_change_callback(const string &key, const
string &expected_val,int lease), in C++

monitor the value change of the key, block or unblock
ZHT client

EXPECDED_VAL: the value expected to be equal to
what is lookuped by the key, if equal, return O(zero), or
keep polling in server-side and block ZHT client

LEASE: the lease in milliseconds after which ZHT client
will be unblocked.

Thread Safe

Operation Level

Insert, lookup, append, remove, compare_swap,
state_change_callback, all shared a single mutex

Performance killer

Socket Level
Distinct mutex attached to every socket connection

Network related concurrency issues come from
shared socket over which send/receive overlapped

ZHT Client Lock Exception Safe

lock_guard class

Constructor lock_guard(pthread_mutex_t
*mutex) { lock(mutex); }

Destructor ~lock_guard() { unlock(mutex); }

Even if ZHT client crashed, Destructor will
always be called, and release the lock

SLURM Baseline Benchmark

(6]
o

N
o

N
o

Throughput (jobs/sec)
w
o

o

o

Small-Job
V AL
s
gy N
N/
50 100 150 200 250 300 350

Scale (no. of nodes)

Small-Job Workload

O

For N nodes, submit N jobs, e.g., 50 jobs submitted for 50 nodes
scale

Each job requiring just 1 node, MTC job
Each job runs 1 task (sleep O)

SLURM Baseline Benchmark

Medium-Job
8
7 @ $
N/

56 -
g ¢
%
25
K2
5 4 <
[~}
=
23
8
=
=2 \/

1

o T T T T T

50 100 150 200 250 300 350

Scale (no. of nodes)

Medium-Job Workload

11 For N nodes, submit N jobs, e.g., 50 jobs submitted for 50 nodes scale
o Each job requiring a random (1~50) number of nodes, HPC job

1 Each job runs 1 task (sleep O)

SLURM Baseline Benchmark

Large-Job

2.5

1.5

Throughput (jobs/sec)
NS

0.5

100 150 200 250 300 350

Scale (no. of nodes)

Large-Job Workload

o1 For every scale (100, 150, 200, 250, 300, 350), submit (#scale * 20)
jobs, e.g., 20 jobs submitted for 100 nodes scale; 40 jobs submitted for
150 nodes scale; 60 jobs submitted for 200 nodes scale;

o Each job requiring a random (25~75) number of nodes, HPC job

1 Each job runs 1 task (sleep O)

SLURM vs. SLURM++

100
90
~+SLURM++ Each controller manages 50 nodes
80 Each controller launches 50 jobs,
= SLURM ,
70 MTC job
Each job requiring 1 node
60 Each job runs 1 task (sleep 0)
50

#nodes/50 = #controllers

Throughput (jobs / sec)
— N w =
o o o o

o

50 100 150 200 250 300 350 400 450 500
Scale (no. of nodes)

Small-Job Workload

SLURM vs. SLURM++

~
o

(o)
o

-+SLURM++

N
o

-=-SLURM

Throughput (jobs / sec)
8 &

N
o

-
o

Each controller manages 50 nodes
Each controller launches 50 jobs,
HPC job

Each job requiring a random
(1~50) number of nodes

Each job runs 1 task (sleep 0)

#nodes/50 = #controller

W—-

0
50 100 150 200 250 300 350 400 450

Scale (no. of nodes)

Medium-Job Workload

500

SLURM vs. SLURM++

20
18
16 - SLURM#++ Each controller manages 50 nodes
5 = SLURM Each controller launches 20 jobs,
@ 14 HPC job
2 12 Each job requiring a random
=X 10 (25~75) number of nodes
é Each job runs 1 task (sleep O)
S 8
3
_g 6 #nodes/50 = #controller
-
4
2
0

100 150 200 250 300 350 400 450 500
Scale (no. of nodes)

Large-Job Workload

SLURM vs. SLURM++

7000 - 14
6000 A— " 12
R
c
« 5000 10 3
c o
3 -
O 4000 - 8 g
> »
> o
8 3000 -6 s
£
= g
® 2000 -4 o
-=-ZHT all message count ®
1000 + 2
-+-average per-job ZHT message count
0 0

50 100 150 200 250 300 350 400 450 500
Scale (no. of nodes)

Small-Job; ZHT message count of SLURM++

SLURM vs. SLURM++

10000
9000
8000
7000
6000
5000
4000

all message count

3000
-=-ZHT all message count
2000
-+-average per-job ZHT message count
1000

0
50 100 150 200 250 300 350 400 450

Scale (no. of nodes)

Medium-Job; ZHT message count of SLURM++

500

20
18
16
14
12

10

o N BB O o

average message count

SLURM vs. SLURM++

6000 36
5000
- =
S 4000 8
8 ©
© o
o @
& 3000 7
2 £
£)
= 2000 =
® o
--ZHT all message count =

1000 6
-«-average per-job ZHT message count

0 * ‘ 0
100 150 200 250 300 350 400 450 500

Scale (no. of nodes)

Large-Job; ZHT message count of SLURM++

SLURM vs. SLURM++

100 ~=-small-job (SLURM)
90 ~m-small-job (SLURM++) -
—+—medium-job (SLURM)
80 4 medium-job (SLURM++) -
—_ —e—large-job (SLURM)
§ 70 ~@-large-job (SLURM++) .)
8 60 — B
=)
S
E:
o
£
o
=)
e
IS
[

+ﬂ

50 100 150 200 250 300 350 400 450 500
Scale (no. of nodes)

Throughput comparison with different workloads

Distributed Monitoring — ZHT Approach
o

aintains

Bi-Directional
Sorted Workload Map

3. Query lightly = ®

loaded backends 1. Registration

7. Report workload

6, Run tasks
i, Pull tasks

. . 4. Push reservations
9. Subscribe resulis

| Response Queue h

Distributed Monitoring — AMQP

- Approach

Client

Receives
from queue

broker cluster INOKer

broker broker broker

broker

Federation Client

Sends to
queue

Distributed Monitoring — AMQP
Approach

Federation is used to provide geographical
distribution of brokers. A number of individual
brokers, or clusters of brokers, can be federated
together. This allows client machines to see and
interact with the federation as though it were a
single broker. Federation can also be used where
client machines need to remain on a local network,
even though their messages have to be routed out.

Cache

| Application
_fWManager
*
| PageManager
) # pinPage ()
markDirty () * IManager
3 unpinPage ()
PoolManager
= e L Strat_Interface
query_frame_from_pool () - strat_lntet%n—_
& pick_empty_frame_from_pool () evict_frame ()
peek_frame_by_strategy () * 0.1 # peek_frame ()
init # page_frame_attach () 4% accept_frame ()
2, read_page ()
- bM_BufferPool & ac;ept=frame ()
]
0.1 l - BVI_BufferPool []
FIFO LRU_Stra
1 BM_Bufferpool - FIFO_Strategy = | LRU_Strategy
1 |G pageFile
£ numPages - replacementStrategy
(5 ReplacementStrategy
*poolMem | iz mgmtData i 1 1J/
| Frame] ReplacementStrategy
(g fixCount g RS_FIFO
kg dirtyFlag i g RS_LRU
g pageHandle pageHandle g RS_CLOCK
* 11/ g RS_LFU
g RS_LRU_K
| BM_PageHandle
£ pageNum

G data

Libnap Standalone Library

0 Libnap: Library for Network Abstracted Protocols

1 For new version MATRIX development

Thank youl
Q&A

