CS554: Data-Intensive Computing

Syllabus

Ioan Raicu
Computer Science Department
Illinois Institute of Technology

CS554: Data-Intensive Computing
August 19th, 2013
CS554: Data-Intensive Computing

- **Semester:** Fall 2013
- **Lecture Time:** Monday/Wednesday, 11:25AM - 12:40PM
- **Location:** Stuart Building 238
- **Professor:** Dr. Ioan Raicu (irai cu@cs.iit.edu, 1-312-567-5704)
 - **Office Hours Time:** Wednesday, 12:45PM - 1:45PM
 - **Office Hours Location:** Stuart Building 237D
- **Teaching Assistant:** Ke Wang
 - **Office Hours Time:** Monday/Tuesday 12:45PM – 1:45PM
 - **Office Hours Location:** Stuart Building 002
- **Teaching Assistant:** Tonglin Li
 - **Office Hours Time:** Thursday 10AM-11AM, Friday 12:45PM – 1:45PM
 - **Office Hours Location:** Stuart Building 002
- **URL:** http://www.cs.iit.edu/~irai cu/teaching/CS554-F13/
Who am I?

- **Current position:**
 - Assistant Professor at Illinois Institute of Technology (CS)
 - Director of the Data-Intensive Distributed Systems Laboratory (DataSys)
 - Guest Research Faculty, Argonne National Laboratory (MCS)
- **Education:** PhD, University of Chicago, March 2009
- **Funding/Awards:**
 - NSF CAREER, 2011 – 2015 ($450K)
 - DOE LANL, 2013 ($75K)
 - DOE FNAL, 2011-2013 ($70K)
 - NSF/CRA CIFellows, 2009 – 2010 ($140K)
 - NASA GSRP, 2006 – 2009 ($84K)
- **Over 70+ Collaborators:**
 - Ian Foster (UC/ANL), Rick Stevens (UC/ANL), Rob Ross (ANL), Marc Snir (UIUC),
 Arthur Barney Maccabe (ORNL), Alex Szalay (JHU), Pete Beckman (ANL), Kamil Iskra
 (ANL), Mike Wilde (UC/ANL), Douglas Thain (ND), Yong Zhao (UEST), Matei Ripeanu
 (UBC), Alok Choudhary (NU), Tevfik Kosar (SUNY), Yogesh Simhan (USC), Ewa
 Deelman (USC), and many more…

- **More info:**
• Research Focus
 – Emphasize designing, implementing, and evaluating systems, protocols, and middleware with the goal of supporting data-intensive applications on extreme scale distributed systems, from many-core systems, clusters, grids, clouds, and supercomputers

• People
 – Dr. Ioan Raicu (Director)
 – 6 PhD Students
 – 2 MS Students
 – 4 UG Students

• Contact
 – http://datasys.cs.iit.edu/
 – iraicu@cs.iit.edu
Who are you?

• Background?
 – Math/CS/ECE?
 – UG/MS/PhD?

• What do you want to get out of this course?
Course Overview

- Data Intensive Computing is critical to advancing modern science
 - Applies to cluster computing, grid computing, supercomputing, and cloud computing
- Increasing gap between compute capacity and storage bandwidth
- Need for advanced techniques to manipulate, visualize and interpret large datasets
- Building large-scale distributed systems is hard
 - network (e.g., transport, routing)
 - algorithmic (e.g., data distribution, resource management)
 - social (e.g., incentives)
• Understand methods and approaches to:
 – Design, implement, and evaluate distributed systems

• Topics include:
 – Resource management (e.g. discovery, allocation, compute models, data models, data locality, virtualization, monitoring, provenance), programming models, application models, and system characterization

• Course involves:
 – Lectures, outside invited speakers, discussions of research papers, homework, and a major project
Prerequisites

• Coursework
 – Required: CS450
 – Recommended: CS542, CS546, CS451, CS550, CS551, CS552, CS553, and CS570

• Topics
 – Programming (C, C++, or Java)
 – Networking
 – Operating systems
 – Architecture
 – Distributed systems
Course Topics

• Paradigms
• Parallel Programming Systems
• Job Management Systems
• Storage Systems
Course Topics

• Paradigms
 – Supercomputing (e.g. IBM BlueGene/P/Q, Cray XT6)
 – Grid Computing (e.g. XSEDE, OSG)
 – Cloud Computing (e.g. Amazon AWS, Google App Engine, Windows Azure)
 – Many-core Computing (e.g. NVIDIA GPUs, Xeon Phi)
Course Topics

- Parallel Programming Systems
 - MapReduce (e.g. Hadoop)
 - Workflows (e.g. Swift)
 - MPI (e.g. MPICH)
 - OpenMP
 - Multi-Threading (e.g. PThreads)
Course Topics

• Job Management Systems
 – Batch scheduling (e.g. Condor, Slurm, SGE, PBS)
 – Light-weight Task Scheduling (e.g. Falkon, Sparrow, MATRIX)
Course Topics

• Storage Systems
 – File Systems (e.g. EXT3)
 – Shared File Systems (e.g. NFS)
 – Distributed File Systems (e.g. HDFS, FusionFS)
 – Parallel File Systems (e.g. GPFS, PVFS, Lustre)
 – Distributed NoSQL Key/Value Stores (e.g. Cassandra, MongoDB, ZHT)
 – Relational Databases (e.g. MySQL)
Computer systems that can be used for development of projects (more information about access to these will be passed in the first several lectures):
 - 15-node (150-core) private cloud using virtualization and Linux
 - Amazon AWS - $100 credit per student

Other systems that could be used, on as needed basis:
 - IIT/CS SCS Linux Cluster (512-cores x64)
 - IIT/CS CUDA Linux Cluster (80-cores x64 with NVIDIA GPUs)
 - IBM BlueGene/P at Argonne National Laboratory (160K-cores PPC)
 - SiCortex at Argonne National Laboratory (5832-cores MIPS)
1~2 papers per lecture
- Each paper must be summarized in writing
- Serve as background to the lecture
- Serve as basis for discussion
Projects

• Major quarter long project
 – Topic of choice of the student (from a given list)
 – Can work in groups of 2 students
 – May require the following things:
 • Reading research papers
 • Using open source software
 • Implementation of a real/simulated system
 • Analysis of theoretical work
 • Performance evaluation of theoretical/real systems
 • Written report(s)
 • Oral presentation(s)
Project Ideas

- Distributed file systems
- Data aware scheduling algorithms
- Distributed operating systems
- Distributed job management systems
- Parallel programming languages
- Distributed workflow systems
- Distributed monitoring systems
- Scientific computing with GPUs
- Scientific computing with MapReduce
- Distributed caching strategies
- Distributed cache eviction policies
- Distributed hash tables
Useful Software for your Projects

- Operating systems: Linux
- Scripting: BASH
- Source control: SVN
- Programming languages: Java, C/C++
- Job submission systems: GRAM, PBS, Condor, Cobalt, SGE, Falkon
- Programming models: MapReduce (Hadoop), MPI (MPICH), Multi-Threading (PThreads), Workflows (Swift)
- File systems: FUSE
- Parallel file systems: GPFS, PVFS, Lustre
Useful Software for your Projects (cont)

- Distributed file systems: GPS, HDFS, FusionFS, Ceph, GlusterFS
- Data services: GridFTP
- Grid middleware: Globus
- Cloud middleware: Nimbus, Eucalyptus, OpenNebula, Open Stack
- Key/Value Stores: Chord, Tapestry, ZHT, Cassandra, MongoDB, MemCached
- Simulation environments: GridSim, SimGrid, OptorSim, GangSim, Bricks, SimMatrix, PeerSim
- Virtualization: Oracle Virtual Box, XEN, VMWare
• Homework: 20%
• Project Proposal: 10%
• Mid-Semester Progress Report: 10%
• Final Oral Presentation: 30%
• Final Project Report: 30%
Grade Scale

- **A**: 85% ~ 100%
- **B**: 70% ~ 89%
- **C**: 60% ~ 69%
- **E**: 0% ~ 59%
Late Policy

• Assignments will be due at 11:59PM on the day of the due date, through BlackBoard
• There will be a 15 minute grace period
• There will also be a 7-day late pass, where students can submit late assignments without penalty
 – the late pass can be used in 1-day increments spread out over multiple assignments
• Any late submissions beyond the grace period and beyond the 7-day late pass, will be penalized 10% every day it is late
Course Outcomes

• Understand the importance of data-intensive computing
• Understand the difference between cluster, grid, clouds, and supercomputing.
• Understand how to build large scale distributed systems
• Understand applications that require data-intensive computing
• Understand trends in many-core computing and challenges that will come with them
• Build distributed systems
• Be familiar with multiple programming models
• Read and understand systems research papers
• Make a formal presentation on a technical topic
• Write up a formal report on the project
Mr. B."s class policy:

- Required texts
 - None
 - Readings will be from online material
- We will be using BlackBoard minimally, mostly to post grades
- Mailing list
 - Sending email to cs554-f13@datasys.cs.iit.edu
Questions

• Write me:
 – iraicu@cs.iit.edu

• Skype me:
 – ioan.raicu

• Call me:
 – 1-312-567-5704

• Mailing list
 – cs554-f13@datasys.cs.iit.edu