
Intro to GeMTC and Swift
+

GeMTC and Swift/T
Tutorial
Scott Krieder

About Me
● 3rd year PhD Student
● Research Assistant DataSys Laboratory
● Teaching Assistant, Dept. Computer Science

○ CS350, CS351, CS450 (involved w/ CS550, CS554)
● IIT Starr/Fieldhouse Research Fellow

○ In collaboration w/ Argonne National Laboratory and
Computation Institute (UChicago)

● Guest Graduate Student, Argonne National Lab
● Research

○ Many-Task Computing
○ Hardware Accelerators
○ HPC, HTC, Distributed Systems

Lecture Outline
Lecture: (11:25pm-12:40pm)
● GeMTC (:55)

○ Motivation
■ Distributed Systems, HPC, MTC GPGPU.

○ GeMTC
■ Architecture, Design
■ Apps

○ Future Work
■ MTACS
■ Xeon Phi

● Swift/T (:20)
○ Slides as paper was presented. (CCGrid’13)

Hands on Outline
Hands On: (12:45pm-1:45pm)
● CUDA

○ SDK Examples
■ DeviceQuery

○ Vector-Add
● GeMTC

○ Vector-Add
● Swift/T

○ Vector-Add

Acknowledgements
Thank you to:
Dr. Ioan Raicu - Advisor
Benjamin Grimmer - IIT Undergrad
Dustin Shahidehpour, Jeff Johnson-IIT Alumni(Orbitz, Microsoft)
Dr. Justin Wozniak - ANL Computer Scientist
Michael Wilde - ANL Software Architect &
 UChicago CI Fellow

● CCGrid'14 - [Preparing Submission]
● STARR/Fieldhouse Research Fellowship '12-'13
● Scott Krieder, Ioan Raicu, “Towards the Support for Many-Task Computing on

Many Core Computing Platforms” - IEEE/ACM Supercomputing 2012 (SC’12) -
Salt Lake City, UT (11/2012)

● Scott Krieder, Ioan Raicu - “Early Experiences in running Many-Task Computing
workloads on GPUs” - XSEDE 2012 - Chicago, IL (07/2012)

● Scott Krieder, Ioan Raicu - “An Overview of Current and Future Accelerator
Architectures” - Greater Chicago Area System Research Workshop - Chicago, IL
(05/2012)

Publications

Lecture Outline
Lecture: (11:25pm-12:40pm)
● GeMTC (:45)

○ Motivation
■ Distributed Systems, HPC, MTC GPGPU.

○ GeMTC
■ Architecture, Design
■ Apps

○ Future Work
■ MTACS
■ Xeon Phi

● Swift/T (:30)
○ Slides as paper was presented. (CCGrid’13)

Distributed Systems
● Many machines
● Network
● Common Goal

*image from Tannebaum - "Distributed Systems"

● Fault Tolerant
● Heterogeneous

Supercomputing Advantages
● "Tightly Coupled"
● Large Resources
● Short Time

○ hours/days/weeks
Growing Shortcomings:
● programmability
● fault tolerance

Key Characteristics:
● Evolving from

homogeneous to
increasingly hybrid

● High speed network / Fast
● High Performance

Computing (HPC)

High Throughput Computing (HTC)

Key Characteristics:
● Loosely coupled
● Robustness
● Reliability
● Jobs per month/year

Advantages:
● Programmability
● Fault tolerance

Shortcomings:
● Efficiency
● Large focus on

pleasingly
parallel

● Bag-of-tasks
pattern

Many-Task Computing (MTC)
MTC emphasizes:
● bridging HPC/HTC
● many resources

○ short period of time
● many computational tasks
● dependent/independent tasks
● tasks organized as DAGs
● primary metrics are seconds
Advantages:
● Improve fault tolerant
● Maintain efficiency
● Programmability & Portability
● support embarrassingly parallel and parallel applications

GPGPU
Motivation

● Host CPU offload work to GPU
● Relieves CPU
● 52 in June 2012, 62 in November 2012

http://blogs.nvidia.com/2012/07/new-top500-list-4x-more-gpu-supercomputers/

Accelerator Architecture
GPU
● Streaming

Multiprocessors
(15 SMXs on Kepler K20)

● Warps
○ 32 threads in a warp
○ 192 warps

i. hardware available
ii. ind. compute

Coprocessors
● Intel Xeon Phi

○ 60 cores * 4 threads per core
= 240 hardware threads

GPU Block Diagram - Highlighting SMX

Highlighting SMX and Warps

Concept Overview
● Several works combine GPUs
● Split single GPU into many pieces

○ tiny cluster for compute
● 2 ideas

○ Framework managing the GPU = GeMTC (GPU
enabled Many Task Computing)

○ Virtualization = Palacios + GEMTC

GPUGPU
GPU GPU

GPU GPU

Lecture Outline
Lecture: (11:25pm-12:40pm)
● GeMTC (:45)

○ Motivation
■ Distributed Systems, HPC, MTC GPGPU.

○ GeMTC
■ Intro
■ Swift/T + Apps
■ Architecture, Design
■ Features: Memory, API

○ Future Work
■ MTACS
■ Xeon Phi

● Swift/T (:30)
○ Slides as paper was presented. (CCGrid’13)

Proposed Work

Motivation: No support for Many-Task Computing
(MTC) on Accelerators!
Goals:
1) MTC support
2) programmability
3) efficiency
4) MIMD on SIMD
5) Increase
concurrency 16 to
192 (12x)

Approach:
Design, implement
middleware:
1) manages GPU
2) spread host/device
3) Workflow system
support (Swift/T)

"GEMTC: GPU Enabled
Many-Task Computing"

User Runtime

How do you program GPUs?

C / C++ Fortran Swift/T

CUDA/OpenCL/OACC GPU Code

Operating System / Device Driver

NVIDIA Graphics Processing Unit

Swift/T and Applications

Images from Swift Case Studies - http://www.ci.uchicago.edu/swift/case_studies/

● Swift/T
○ Active research project (CI UChicago & ANL)
○ Parallel Programming Framework
○ Throughput ~25k tasks/sec per process
○ Shown to scale to 128k cores

● Application Domains Supported
○ Astronomy, Biochemistry, Bioinformatics,

Economics, Climate Science, Medical Imaging

https://sites.google.com/site/exmcomputing/
https://sites.google.com/site/exmcomputing/

Swift/T Fine Grain, 80 W= 20 Nodes*4PPN

GEMTC Applications
● Performance Benchmarks

○ sleep
○ sleep-data-move
○ matrix-multiply
○ vector-add

● Proxy Applications
○ MDProxy, Molecular Dynamics

● Scientific Applications (under development)
○ OOPS, Protein Folding
○ SciColSim, Collaboration graph analysis

GEMTC Task Flow
● Task submitted

○ description, (taskID, taskType, parameters)
● SuperKernel runs as daemon on device

○ incoming work queue
○ outgoing results queue
○ warp picks up task, executes task, return result

● Host checks results, returns to Swift/T

Warps and Incoming Queue

Mirror image for outgoing results queue

Sub Allocator - Motivation
● Malloc without free, terrible performance
● Malloc + Free ~= 110 usec
● Grab all GPU memory at the start

○ Manage memory on our own
● Memory

operations
○ gemtcMalloc()
○ gemtcFree()

Sub Allocator - Theory
● cudaMalloc() called each task
● Communication times much lower!!

Sub Allocator - Results
● cudaMalloc() ~= 110 usec
● gemtcMalloc() ~= 14 usec

GeMTC API
● C API to interact with workflow systems (Swift/T)
● 8 functions including:

○ Initialization/Deconstruction
■ gemtcSetup() //starts our SuperKernel
■ gemtcCleanup() //kills SuperKernel

○ Enqueue/Dequeue Tasks
■ gemtcPush() // gemtcPush(1, 1000000)
■ gemtcPoll()

○ Memory Transfer
■ gemtcMemcpyHostToDevice()
■ gemtcMemcpyDeviceToHost()

○ Memory Management
■ gemtcGPUMalloc()
■ gemtcGPUFree()

GeMTC Throughput

MDProxy CPU vs. GPU

Hardware Comparison

Conclusions

● Integrated GeMTC + Swift/T
○ programmability
○ scalability (multi-node support)
○ application domain

● Evaluated Performance Benchmarks
● Framework with ~200 independent workers

per node
● MIMD on SIMD

○ MIMD collection of SIMD workers
○ unclear max efficiency for scientific applications
○ highly efficient for synthetic benchmarks

Lecture Outline
Lecture: (11:25pm-12:40pm)
● GeMTC (:45)

○ Motivation
■ Distributed Systems, HPC, MTC GPGPU.

○ GeMTC
■ Architecture, Design
■ Apps

○ Future Work
■ MTACS
■ Xeon Phi
■ GeMTC organization chart

● Swift/T (:30)
○ Slides as paper was presented. (CCGrid’13)

Future Work

● Develop Swift frameworks to evaluate
additional applications
○ MDProxy
○ Protein Structure Prediction
○ Modeling of scientific knowledge acquisition in

collaborative networks
● Abstract the Swift + GeMTC integration

process for fast application deployment
● Implement an MTC solution for Intel Xeon-Phi

and AMD GPUs.

Thanks! Questions?

Scott Krieder
skrieder@iit.edu
Dr. Ioan Raicu
iraicu@cs.iit.edu

Open Source:
https://github.com/skrieder-datasys/gemtc

https://github.com/skrieder-datasys/gemtc
https://github.com/skrieder-datasys/gemtc

NVIDIA CUDA Teaching & Research

● Expect to see more GPU projects in CS5XX
● Monthly CUDA Workshops

○ Starting September 3rd 1:50 - 2:40 LS 111
● IIT Free GPUs

Jarvis

● Rocks Cluster
Management
○ CentOS

● 10 GPU Nodes
○ 2 Kepler K20
○ 3 GTX 650
○ 5 GTX 480

● Node Types
○ Frontend
○ Compute

Rocks Cluster
Management

● Install to
○ frontend

● Compute nodes
○ PXE boot

● NFS
○ across nodes

● SGE
○ Batch scheduler
○ Interactive
○ Scheduled

Any Questions so far?

● Recap
○ HPC
○ GPGPU, CUDA
○ GeMTC
○ Jarvis

● Switch to Swift/T slides.

Hands on Outline
Hands On: (12:45pm-1:45pm)
● CUDA

○ Installing CUDA
○ SDK Examples

■ DeviceQuery
○ Vector-Add

● GeMTC
○ Vector-Add

● Swift/T
○ Vector-Add

How can I run CUDA?

● Getting started tips:
○ https://sites.google.com/site/iitcuda/cuda-quickstart

● Do you have an NVIDIA GPU on your
machine?
○ Is it CUDA compliant?

■ https://developer.nvidia.com/cuda-gpus
● Jarvis

○ pending accounts/projects

https://sites.google.com/site/iitcuda/cuda-quickstart
https://sites.google.com/site/iitcuda/cuda-quickstart
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus

Installing CUDA

● Download CUDA here:
○ https://developer.nvidia.com/cuda-downloads

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

CUDA Registered Developer

● Forum access
● Extra downloads
● Developer tools
● Register here:

○ https://developer.nvidia.com/programs/cuda/register

https://developer.nvidia.com/programs/cuda/register
https://developer.nvidia.com/programs/cuda/register

Hands on Outline
Hands On: (12:45pm-1:45pm)
● CUDA

○ Installing CUDA
○ SDK Examples

■ DeviceQuery
○ Vector-Add

● GeMTC
○ Cloning the git repo.
○ Code overview.
○ Vector-Add

● Swift/T
○ Vector-Add

