

• Introduction & Motivation

• Related Work

• MATRIX

• Distributed Job Launch (DJL)

• Project Overview

MATRIX and Distributed Job Launch Overview 2

• Introduction & Motivation

• Related Work

• MATRIX

• Distributed Job Launch (DJL)

• Project Overview

MATRIX and Distributed Job Launch Overview 3

Top500 Performance Development,

http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf
4

• Today (June, 2013): 34 Petaflop (10^15 ops/sec)

– O(100K) nodes

– O(1M) cores

• Near future (~2022): Exaflop Computing (10^18 ops/sec)

– ~1M nodes

– ~1B processor-cores/threads

http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

• Energy and Power
– 17.8MW (Top 1 Supercomputer)

– 20MW limitation

• Memory and Storage
– Retain data at high enough capacities

– Access data at high enough rates

– Support the desired computational rate

– Fit within acceptable power envelope

• Concurrency and Locality
– Accelerators, GPUs, MIC

– Programmability

– Minimizing data movement

• Resiliency
– MTTF decreases, MPI suffers

5 MATRIX and Distributed Job Launch Overview

• Bridge the gap between HPC and HTC

• Applications structured as DAGs

• Data dependencies will be files that are

written to and read from a file system

• Loosely coupled apps with HPC

orientations

 MATRIX and Distributed Job Launch Overview 1

Number of Tasks

Input
Data
Size

Hi

Med

Low

1 1K 1M

HPC
(Heroic

MPI
Tasks)

HTC/MTC
(Many Loosely
Coupled Tasks)

MapReduce/MTC
(Data Analysis,

Mining)

MTC
(Big Data and
Many Tasks)

• Falkon

 Fast and Lightweight Task Execution Framework

 http://datasys.cs.iit.edu/projects/Falkon/index.html

• Swift

 Parallel Programming System

 http://www.ci.uchicago.edu/swift/index.php

• Current
Centralized design with Master/Slaves architecture

Scalability issues at petascale and beyond

Single-point-of-failure

• Need to be
Fully distributed architecture with high concurrency

High throughput and system utilization

Reliability

• Problem
 Distributed Load Balancing

MATRIX and Distributed Job Launch Overview 7

• A distributed load balancing technique

• Triggered due to uneven distribution of load

(tasks in a workload) or presence of idle nodes

in the system

• Idle node tries to steal tasks from busy nodes

Where to steal tasks?

How much tasks to steal?

How often to steal tasks?

MATRIX and Distributed Job Launch Overview 8

• Introduction & Motivation

• Related Work

• MATRIX

• Distributed Job Launch (DJL)

• Project Overview

MATRIX and Distributed Job Launch Overview 9

• HPC resource manager

 SLURM: LLNL

 Condor: UW-Madison

 SGE: Sun Microsystems

 PBS: OpenPBS in NASA, TORQUE in Adaptive Computing Enterprises, and

PBS Pro in Altair Engineering

 Cobalt: ANL

• MTC task execution framework

 Falkon: UChicago and ANL

 Turbine: Apache

 Sparrow: UC Berkeley

 Charm++: UIUC

MATRIX and Distributed Job Launch Overview 10

• Introduction & Motivation

• Related Work

• MATRIX

• Distributed Job Launch (DJL)

• Project Overview

MATRIX and Distributed Job Launch Overview 11

• MAny-Task computing execution fabRIc at

eXascale

• Dynamic job scheduling system at the

granularity of node/core levels for extreme scale

applications

• Work stealing is applied to achieve distributed

load balancing

• Support of various workloads: HPC jobs, and

MTC task with/without dependency

MATRIX and Distributed Job Launch Overview 12

MATRIX and Distributed Job Launch Overview 13

ALGORITHM 1. Dynamic Multi-Random Neighbor Selection (DYN-MUL-SEL)

Input: Node id (node_id), number of neighbors (num_neigh), and number of nodes (num_node),

and the node array (nodes).

Output: A collection of neighbors (neigh).

selected[num_node];

for each i in 0 to num_node do

 if (i != node_id) then

 selected[i] = FALSE;

 else

 selected[i] = TRUE;

 end

end

neigh[num_neigh];

index = −1;

for each i in 0 to num_neigh−1 do

 repeat

 index = Random() % num_node;

 until !selected[index];

 selected[index] = TRUE;

 neigh[i] = nodes[index];

end

return neigh;

MATRIX and Distributed Job Launch Overview 14

ALGORITHM 2. Adaptive Work Stealing Algorithm (ADA-WORK-STEALING)

Input: Node id (node_id), number of neighbors (num_neigh), number of nodes (num_node), the

node array (nodes), and the initial poll interval (poll_interval).

Output: NULL

neigh = DYN-MUL-SEL(node_id, num_neigh, num_node, nodes);

most_load_node = neigh[0];

for each i in 1 to num_node−1 do

 if (most_load_node < neigh[i].load) then

 most_load_node = neigh[i];

 end

end

if (most_load_node.load == 0) then

 Sleep(poll_interval);

 poll_interval = poll_interval × 2;

 ADA-WORK-STEALING(node_id, num_neigh, num_node, nodes, poll_interval);

else

 num_task_steal = number of tasks stolen from most_load_node;

 if (num_task_steal == 0) then

 Sleep(poll_interval);

 poll_interval = poll_interval × 2;

 ADA-WORK-STEALING(node_id, num_neigh, num_node, nodes, poll_interval);

 else

 poll_interval = 1;

 end

end

MATRIX and Distributed Job Launch Overview 15

Client

Compute node
Compute node

Compute node

submit tasks (1)

lookup task status (2)

send task status (3)

request load (4)

request load (4)

se
nd

 lo
ad

 (
5)

send load (5)

request tasks (6)

send tasks (7)

Network Layer

ZHT

MATRIX

• Client/Benchmarking tool

 has a task dispatcher generating a workload of tasks

 assigns the tasks to the system

• Compute Nodes

 each one has an execution unit that is responsible for

executing the tasks, and for load balancing through work

stealing

 each one has a ZHT server for metadata management

 at booting time, each one pushes identity and location info

(ip addr + port no.) to a shared file system for allowing N-N

communication

MATRIX and Distributed Job Launch Overview 16

• ZHT Insert: write the metadata of tasks

• ZHT Lookup: retrieve the existing information from ZHT,

e.g. task dependency

• ZHT Update: modify the information based on state

change

• MATRIX Insert: submit jobs to compute nodes

• Load Information: idle nodes query the load information

• Work Stealing: steal tasks from the most heavy loaded

neighbor

• Client Monitoring: periodically monitor system

utilization and progress

MATRIX and Distributed Job Launch Overview 17

• Best case scenario

tasks are evenly distributed to compute nodes

work stealing happens at the end

one dispatcher does round-robin

multiple dispatchers through ZHT hashing

• Worst case scenario

all tasks are submitted to one arbitrary

compute nodes

work stealing happens at the beginning

MATRIX and Distributed Job Launch Overview 18

Task

List of Parent tasks

List of Child tasks

Wait Queue

Task 1

Task 2

Task 3

Ready Queue

Task 1

Task 2

Task 3

Complete
Queue

Task 1

Task 2

Task 3

P1 P2

T1 to T4
• Wait Queue – Hold tasks that are

waiting for other tasks to complete

• Ready Queue – Hold tasks that are

ready to execute but waiting for CPU

• Complete Queue – Hold tasks that

have completed execution

• T1-T4 – Four execution threads

• P2 – Sends notifications for every

completed task

• P1 – Receives notification and moves

tasks from wait queue to ready queue

MATRIX and Distributed Job Launch Overview

• Load Balancing

Background thread keeps checking the state of

queues and performs work stealing

Tunable number of neighbors and tasks to steal

Regulating network traffic - Exponential back-off,

number of consecutive failed attempts

• Client Monitoring

One task dispatcher periodically monitors the status

of every compute node and submitted workload

MATRIX and Distributed Job Launch Overview

• Introduction & Motivation

• Related Work

• MATRIX

• Distributed Job Launch (DJL)

• Project Overview

MATRIX and Distributed Job Launch Overview 21

• launching jobs (usually HPC ones that require

multiple nodes) to available resources as fast as

possible for execution

• a core system service of resource managers

• traditional centralized paradigm with one

controller managing all the compute daemons

(e.g. SLURM job launch)

• need distributed controllers with each one

managing a partition of compute daemons

MATRIX and Distributed Job Launch Overview 22

• How the controllers maintains the job and resource

information?

• How the controllers communicate with each other, and

resolve resource contention to get free resources for jobs

when the jobs could not be satisfied locally?

• A distributed key-value store (e. g. ZHT) can be used to

 store job and resource metadata in a distributed way

 resolve resource contention by the atomic “compare and swap”

operation

 hide the complexities of controllers communicating with each other for

replication, failure and recovery, and consistency features

• Develop a distributed job launch based on SLURM and ZHT

MATRIX and Distributed Job Launch Overview 23

• SLURM

• ZHT

 ZHT project overview and tutorial

MATRIX and Distributed Job Launch Overview 24

Key Value Description

controller id number of free node, free node list
The free (available) nodes in a partition managed by the

corresponding controller

job id original controller id The original controller that is responsible for a submitted job

job id + original
controller id

involved controller list The controllers that participate in launching a job

job id + original
controller id +

involved controller
id

participated node list The nodes in a partition that are involved in launching a job

MATRIX and Distributed Job Launch Overview 25

slurmd slurmd slurmd

…

ZHT Server

and Controller

ZHT Server

and Controller

slurmd slurmd slurmd

…

ZHT Server

and Controller

slurmd slurmd slurmd

…

…Fully-Connected

Data stored in ZHT

• When a partition cannot satisfy a job, the controller is

stealing resources from other partitions

MATRIX and Distributed Job Launch Overview 26

ALGORITHM 1. Compare and Swap

Input: key (key), value seen before (seen_value), new value intended to insert (new_value), and the storage hash map (map).
Output: A Boolean value indicates success (TRUE) or failure (FALSE).
current_value = map.get(key);
if (!strcmp(current_value, seen_value)) then
 map.put(key, new_value);
 return TRUE;
else
 return FALSE;
end

Compare and Swap operation

MATRIX and Distributed Job Launch Overview 27

ALGORITHM 2. Resource Stealing

Input: number of nodes required (num_node_req), number of controllers (num_ctl), controller membership list (ctl_id[num_ctl]).
Output: involved controller ids (ctl_id_inv), participated nodes (par_node[]).
num_node_allocated = 0; num_try = 0; num_ctl_inv = 0;
ctl_id_inv = calloc(20 * 100, sizeof(char));
for each i in 0 to 19; do
 par_node[i] = calloc(100 * 100, sizeof(char));
end
while num_node_allocated < num_node_req do

 remote_ctl_idx = Random(num_ctl);
 remote_ctl_id = ctl_id[remote_ctl_idx];
 again:
 remote_free_resource = c_zht_lookup(remote_ctl_id);
 if (remote_free_reource == NULL) then
 continue;
 else
 remote_num_free_node = strtok(remote_free_source);
 if (remote_num_free_node > 0) then
 num_try = 0;
 remote_num_node_allocated =
 remote_num_free_node > (num_node_req –
 num_node_allocated) ? (num_node_req –
 num_node_allocated) : remote_num_free_node;
 if (allocate nodes succeeds) then //compare and swap
 num_node_allocated +=
 remote_num_node_allocated;
 par_node[num_ctl_inv++] = allocated node list
 strcat(ctl_id_inv, remote_ctl_id);
 else

 goto again;
 end

 else
 usleep(100000);
 num_try++;
 if (num_try > 2) do
 release all the allocated nodes;
 Resource Stealing again;
 end
 end
 end

end
return ctl_id_inv, par_node;

Important Parameters:

sleep length after a resource stealing failure

Number of tries before de-allocate resources

• 1. MATRIX: BenchJMS

 benchmarking different HPC Job management systems

(SLURM, Condor, SGE, PBS, Cobalt)

 1 student

 no need to write code

• 2. MATRIX: BenchTEF

 benchmarking different MTC task execution frameworks (Falkon,

Sparrow, Turbine, CloudKon, MATRIX)

 1 student

 no need to write code

MATRIX and Distributed Job Launch Overview 28

• 3. MATRIX: DJLSys (3 students)

working directly with our distributed job launch code

study different resource stealing algorithms under

high system utilization

need to read/write C/C++ programs

• 4. MATRIX: DJLSim (2 students)

simulating distributed job launch system

Study different resource stealing algorithms under

high system utilization up to exascale

discrete event simulation, Java

MATRIX and Distributed Job Launch Overview 29

• 5. MATRIX: Swift/M (3 students)

 using Swift to run large-scale scientific applications to generate

workloads used by MATRIX

 working directly with MATRIX and Swift scripting language

 need to read/write C/C++, and Swift programs

• 6. MATRIX: Mon/Sim (2 students)

 simulating distributed monitoring systems with hierarchical tree

based aggregation and reduction

 Study optimal fan out, tree height to build the communication

tree up to exascale

 Study techniques to rebuild the tree after failure happens

 discrete event simulation, Java

MATRIX and Distributed Job Launch Overview 30

• More information:
– http://datasys.cs.iit.edu/~kewang/

• Contact:
– kwang22@hawk.iit.edu

• Questions?

MATRIX and Distributed Job Launch Overview 31

http://datasys.cs.iit.edu/~kewang/
http://datasys.cs.iit.edu/~kewang/
mailto:iraicu@cs.iit.edu
mailto:kwang22@hawk.iit.edu

