MATRIX and Distributed Job
Launch Overview

Ke Wang
Data-Intensive Laboratory

lllinois Institute of Technology
Sept. 6", 2013, CS554 Teaching

QOuiline

Introduction & Motivation
Related Work

MATRIX

Distributed Job Launch (DJL)
Project Overview

Introduction & Motivation
Related Work

MATRIX

Distributed Job Launch (DJL)
Project Overview

MATRIX and Distributed Job Launch Overview

PERFORMANCE DEVELOPMENT PROJECTED

"1 Eflopls
7100 Pflop/s
10 Plop/s
1 Priop/s
7100 Triop/s.
10 THop/s.
T THiopls.
7100 Giop/s
10 Gliop/s

1 Gflop/s

L]
o °
SU‘M.
’. L]
.... N=1 . e ®
....0' e 0o 0 0 00 96.6 Trlop/s
L 3 L I
o ® ° °
Y
o ane § b iy Y S N ile &=
1.17 Thop/s . =500_ o
..‘.. ..
[.o..
59.7 ficp/s ..o.
e ©
0‘..
o
...
0.4 Gflop/s

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2m 2012 2013 20148 2015 2016 2017 2018

« Today (June, 2013): 34 Petaflop (10"15 ops/sec)
— O(100K) nodes
— O(1M) cores
* Near future (~2022): Exaflop Computing (10718 ops/sec)
— ~1M nodes
— ~1B processor-cores/threads

Top500 Performance Development,
http://s.top500.0rg/static/lists/2013/06/TOP500_201306_Poster.pdf

http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

Major Challenges of
Exascale Computing

Energy and Power
— 17.8MW (Top 1 Supercomputer)
— 20MW limitation

Memory and Storage

— Retain data at high enough capacities
— Access data at high enough rates

— Support the desired computational rate
— Fit within acceptable power envelope

Concurrency and Locality
— Accelerators, GPUs, MIC

— Programmability

— Minimizing data movement

Resiliency
— MTTF decreases, MPI suffers

MATRIX and Distributed Job Launch Overview

Input
Data
Size

» Bridge the gap between HPC and HTC

Many-Task Computin

-

Med

Low

MapReduce/MTC MTC
(Data Analysis, .
Mining) (Big Data and
ning Many Tasks)
HTC/MTC
(Many Loosely
Coupled Tasks)

(MTC)

Field Description Characteristics Status
Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex Experimental
dependencies
Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry*

Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using
custom serial codes

In development

Biochemistry* Protein structure prediction using iterative fixing | Hundreds to thousands of 1-to 1,000-core simulations | Operational
algorithm; exploring other biomolecular and data analysis
interactions

Biochemistry* Identification of drug targets via computational Up to 1 million 1-core docking operations Operational

docking/screening

Bioinformatics*

Metagenome modeling

Thousands of 1-core integer programming problems

In development

Business
economics

Mining of large text corpora to study media bias

Analysis and comparison of over 70 million text files of
news articles

In development

Climate science

Ensemble climate model runs and analysis of
output data

Tens to hundreds of 100- to 1,000-core simulations

Experimental

Economics* Generation of response surfaces for various eco- | 1,000 to 1 million 1-core runs (10,000 typical), then Operational
nomic models data analysis
Neuroscience”™ Analysis of functional MRI datasets Comparison of images; connectivity analysis with Operational

structural equation modeling, 100,000+ tasks

1K 1M
Number of Tasks

» Applications structured as DAGs

« Data dependencies will be files that are
written to and read from a file system

* Loosely

coupled apps with

orientations

Radiology Training of computer-aided diagnosis algorithms | Comparison of images; many tasks, much In development
communication
Radiology Image processing and brain mapping for neuro- Execution of MPI application in parallel In development

surgical planning research

Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid) and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).

* Falkon
U Fast and Lightweight Task Execution Framework
O http://datasys.cs.iit.edu/projects/Falkon/index.html
« Swift
U Parallel Programming System

O http://www.ci.uchicago.edu/swift/index.php

MATRIX and Distributed Job Launch Overview

Job Management/Scheduling
Sysiems

e Current

» Centralized design with Master/Slaves architecture
» Scalability issues at petascale and beyond
» Single-point-of-failure

* Need to be

» Fully distributed architecture with high concurrency
» High throughput and system utilization
» Reliability

* Problem
» Distributed Load Balancing

MATRIX and Distributed Job Launch Overview

Work Stealing

A distributed load balancing technique

« Triggered due to uneven distribution of load

(tasks in a workload) or presence of idle nodes
In the system

 |dle node tries to steal tasks from busy nodes
» Where to steal tasks?
» How much tasks to steal?
» How often to steal tasks?

MATRIX and Distributed Job Launch Overview 8

Introduction & Motivation
Related Work

MATRIX

Distributed Job Launch (DJL)
Project Overview

MATRIX and Distributed Job Launch Overview

HPC resource manager
» SLURM: LLNL

Condor: UW-Madison

SGE: Sun Microsystems

PBS: OpenPBS in NASA, TORQUE in Adaptive Computing Enterprises, and
PBS Pro in Altair Engineering

» Cobalt: ANL

MTC task execution framework
» Falkon: UChicago and ANL
» Turbine: Apache
» Sparrow: UC Berkeley
» Charm++: UIUC

YV V V

MATRIX and Distributed Job Launch Overview

10

Introduction & Motivation
Related Work

MATRIX

Distributed Job Launch (DJL)
Project Overview

MATRIX and Distributed Job Launch Overview

MATRIX

MAnNny-Task computing execution fabRIc at
eXascale

Dynamic job scheduling system at the
granularity of node/core levels for extreme scale
applications

Work stealing is applied to achieve distributed
load balancing

Support of various workloads: HPC jobs, and
MTC task with/without dependency

MATRIX and Distributed Job Launch Overview 12

ALGORITHM 1. Dynamic Multi-Random Neighbor Selection (DYN-MUL-SEL)

Input: Node id (node_id), number of neighbors (num_neigh), and number of nodes (num_node),
and the node array (nodes).
Output: A collection of neighbors (neigh).
selected[num_node];
for each i in 0 to num_node do
if (i != node_id) then
selected[i] = FALSE;
else
selected[i] = TRUE;
end
end
neigh[num_neigh];
index = —1;
for each i in 0 to num_neigh—1 do
repeat
index = Random() % num_node;
until !selected[index];
selected[index] = TRUE;
neighli] = nodes[index];
end
return neigh;

MATRIX and Distributed Job Launch Overview

13

ALGORITHM 2. Adaptive Work Stealing Algorithm (ADA-WORK-STEALING)

Input: Node id (node_id), number of neighbors (num_neigh), number of nodes (num_node), the
node array (nodes), and the initial poll interval (poll_interval).
Output: NULL
neigh = DYN-MUL-SEL(node_id, num_neigh, num_node, nodes);
most_load_node = neigh|[0];
for each i in 1 to num_node—1 do
if (most_load_node < neighl[i].load) then
most_load_node = neigh[i];
end
end
if (most_load_node.load == 0) then
Sleep(poll_interval);
poll_interval = poll_interval X 2;
ADA-WORK-STEALING (node_id, num_neigh, num_node, nodes, poll_interval);
else
num_task_steal = number of tasks stolen from most_load_node;
if (num_task_steal == 0) then
Sleep(poll_interval);
poll_interval = poll_interval X 2;
ADA-WORK-STEALING(node_id, num_neigh, num_node, nodes, poll_interval);
else
poll_interval = 1,
end
end

MATRIX and Distributed Job Launch Overview

14

—>
s% \
\ \\
Client
Network Layer send task status (3)

- -~

/ request load (4)

/ o

send load (5)
] <+——request tasks (6)
send tasks (7)

submit tasks (1) Compute node

[

\
\
\

—_—_— -

MATRIX and Distributed Job Launch Overview 15

MATRIX Componenis

« Client/Benchmarking tool
» has a task dispatcher generating a workload of tasks
» assigns the tasks to the system

« Compute Nodes

» each one has an execution unit that is responsible for
executing the tasks, and for load balancing through work

stealing
» each one has a ZHT server for metadata management

» at booting time, each one pushes identity and location info
(ip addr + port no.) to a shared file system for allowing N-N

communication

MATRIX and Distributed Job Launch Overview 16

Types oi Messages

ZHT Insert: write the metadata of tasks

ZHT Lookup: retrieve the existing information from ZHT,
e.g. task dependency

ZHT Update: modify the information based on state
change

MATRIX Insert: submit jobs to compute nodes
Load Information: idle nodes guery the load information

Work Stealing: steal tasks from the most heavy loaded
neighbor

Client Monitoring: periodically monitor system
utilization and progress

MATRIX and Distributed Job Launch Overview 17

Task Submission

« Best case scenario
»tasks are evenly distributed to compute nodes
»Wwork stealing happens at the end
»one dispatcher does round-robin
»multiple dispatchers through ZHT hashing

» \Worst case scenario

»all tasks are submitted to one arbitrary
compute nodes

»work stealing happens at the beginning

MATRIX and Distributed Job Launch Overview 18

Execuiion Unit

 Wait Queue — Hold tasks that are
waiting for other tasks to complete Tlto T4

 Ready Queue — Hold tasks that are
ready to execute but waiting for CPU

 Complete Queue — Hold tasks that

have completed execution Complete

Ready Queue Queue

 T1-T4 — Four execution threads

« P2 — Sends notifications for every
completed task

Task 1 Task 1

» P1 — Receives naotification and moves
tasks from wait queue to ready queue

a)

List of Parent tasks

Task

List of Child tasks

MATRIX and Distributed Job Launch Overview

Load Balancing and WMonitoring

« Load Balancing

» Background thread keeps checking the state of
gueues and performs work stealing

» Tunable number of neighbors and tasks to steal

» Regulating network traffic - Exponential back-off,
number of consecutive failed attempts

* Client Monitoring

» One task dispatcher periodically monitors the status
of every compute node and submitted workload

MATRIX and Distributed Job Launch Overview

Introduction & Motivation
Related Work

MATRIX

Distributed Job Launch (DJL)
Project Overview

MATRIX and Distributed Job Launch Overview

Distributed Job Launch

launching jobs (usually HPC ones that require
multiple nodes) to available resources as fast as
possible for execution

a core system service of resource Mmanagers

traditional centralized paradigm with one
controller managing all the compute daemons
(e.g. SLURM job launch)

need distributed controllers with each one
managing a partition of compute daemons

MATRIX and Distributed Job Launch Overview 22

Challenges and Solutions

How the controllers maintains the job and resource
iInformation?

How the controllers communicate with each other, and
resolve resource contention to get free resources for jobs
when the jobs could not be satisfied locally?

A distributed key-value store (e. g. ZHT) can be used to
» store job and resource metadata in a distributed way

» resolve resource contention by the atomic “compare and swap’
operation

» hide the complexities of controllers communicating with each other for
replication, failure and recovery, and consistency features

Develop a distributed job launch based on SLURM and ZHT

MATRIX and Distributed Job Launch Overview 23

slurmd | [slurmd |, ... | slormd
Compute node daemons

e /ZHT
» ZHT project overview and tutorial

MATRIX and Distributed Job Launch Overview 24

Architeciure

Fully-Connected

ZHT Server ZHT Server ZHT Server
and Controller and Controller and Controller

| &1 - & | £ - £ | &1 - &

slurmd slurmd slurmd slurmd slurmd slurmd slurmd slurmd slurmd

Data stored in ZHT

Value Description

job id + original
controller id

job id + original
controller id +
involved controller
id

MATRIX and Distributed Job Launch Overview 25

« When a partition cannot satisfy a job, the controller is
stealing resources from other partitions

Compare and Swap operation

ALGORITHM 1. Compare and Swap

Input: key (key), value seen before (seen_value), new value intended to insert (new_value), and the storage hash map (map).
Output: A Boolean value indicates success (TRUE) or failure (FALSE).
current_value = map.get(key);
if ('strcmp(current_value, seen_value)) then
map.put(key, new_value);
return TRUE;
else
return FALSE;
end

MATRIX and Distributed Job Launch Overview 26

ALGORITHM 2. Resource Stealing

Input: number of nodes required (num_node_req), number of controllers (num_ctl), controller membership list (ctl_id[num_ctl]).
Output: involved controller ids (ctl_id_inv), participated nodes (par_node[]).
num_node_allocated = 0; num_try = 0; num_ctl_inv = 0;
ctl_id_inv = calloc(20 * 100, sizeof(char));
for each i in 0 to 19; do
par_node[i] = calloc(100 * 100, sizeof(char));
end
while num_node_allocated < num_node_req do
remote_ctl_idx = Random(num_ctl);
remote_ctl_id = ctl_id[remote_ctl_idx];
again:
remote_free_resource = c¢_zht_lookup(remote_ctl_id);
if (remote_free_reource == NULL) then
continue;
else
remote_num_free_node = strtok(remote_free_source);

if (remote_num_free_node > 0) then Im po rtant Parameters:

num_try = 0;

remote_num_node_allocated = sleep length after a resource stealing failure

remote_num_free_node > (num_node_req —
num_node_allocated) ? (num_node_req — i -
ot 2 (U oe 160 o Number of tries before de-allocate resources

if (allocate nodes succeeds) then //compare and swap
num_node_allocated +=

remote_num_node_allocated,;

par_node[num_ctl_inv++] = allocated node list
strcat(ctl_id_inv, remote_ctl_id);

else
goto again;

end

else

usleep(100000);

num_try++;

if (num_try > 2) do
release all the allocated nodes;
Resource Stealing again;

end

end
end
end
return ctl_id_inv, par_node;

MATRIX and Distributed Job Launch Overview 27

Project Overview

1. MATRIX: BenchJMS

» benchmarking different HPC Job management systems
(SLURM, Condor, SGE, PBS, Cobalt)

> 1 student
> Nno need to write code

2. MATRIX: BenchTEF

» benchmarking different MTC task execution frameworks (Falkon,
Sparrow, Turbine, CloudKon, MATRIX)

> 1 student
> No need to write code

MATRIX and Distributed Job Launch Overview 28

Project Overview

« 3. MATRIX: DJLSYys (3 students)

» working directly with our distributed job launch code

» study different resource stealing algorithms under
high system utilization

» need to read/write C/C++ programs

« 4. MATRIX: DJLSIm (2 students)

» simulating distributed job launch system

» Study different resource stealing algorithms under
high system utilization up to exascale

» discrete event simulation, Java

MATRIX and Distributed Job Launch Overview

29

Project Overview

« 5 MATRIX: Swift/M (3 students)

» using Swift to run large-scale scientific applications to generate
workloads used by MATRIX

» working directly with MATRIX and Swift scripting language
» need to read/write C/C++, and Swift programs

6. MATRIX: Mon/Sim (2 students)

» simulating distributed monitoring systems with hierarchical tree
based aggregation and reduction

» Study optimal fan out, tree height to build the communication
tree up to exascale

» Study techniques to rebuild the tree after failure happens
» discrete event simulation, Java

MATRIX and Distributed Job Launch Overview

30

* More information:
— http://datasys.cs.iit.edu/~kewang/

e Contact:
— kwang22@hawk.iit.edu

* Questions?

MATRIX and Distributed Job Launch Overview 31

http://datasys.cs.iit.edu/~kewang/
http://datasys.cs.iit.edu/~kewang/
mailto:iraicu@cs.iit.edu
mailto:kwang22@hawk.iit.edu

