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Top500 Performance Development,  

http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 
4 

• Today (June, 2013): 34 Petaflop (10^15 ops/sec) 

– O(100K) nodes  

– O(1M) cores 

• Near future (~2022): Exaflop Computing (10^18 ops/sec) 

– ~1M nodes 

– ~1B processor-cores/threads 

 

http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf


• Energy and Power 
– 17.8MW (Top 1 Supercomputer) 

– 20MW limitation 

• Memory and Storage 
– Retain data at high enough capacities  

– Access data at high enough rates 

– Support the desired computational rate  

– Fit within acceptable power envelope 

• Concurrency and Locality 
– Accelerators, GPUs, MIC 

– Programmability 

– Minimizing data movement 

• Resiliency 
– MTTF decreases, MPI suffers 
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• Bridge the gap between HPC and HTC 

• Applications structured as DAGs 

• Data dependencies will be files that are 

written to and read from a file system  

• Loosely coupled apps with HPC 

orientations 
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• Falkon 

 Fast and Lightweight Task Execution Framework 

 http://datasys.cs.iit.edu/projects/Falkon/index.html  

• Swift 

 Parallel Programming System 

 http://www.ci.uchicago.edu/swift/index.php 

 

 



• Current 
Centralized design with Master/Slaves architecture 

Scalability issues at petascale and beyond 

Single-point-of-failure 

• Need to be 
Fully distributed architecture with high concurrency 

High throughput and system utilization 

Reliability 

• Problem 
  Distributed Load Balancing 
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• A distributed load balancing technique 

• Triggered due to uneven distribution of load 

(tasks in a workload) or presence of idle nodes 

in the system 

• Idle node tries to steal tasks from busy nodes  

Where to steal tasks? 

How much tasks to steal? 

How often to steal tasks? 

MATRIX and Distributed Job Launch Overview 8 



• Introduction & Motivation   

• Related Work 

• MATRIX 

• Distributed Job Launch (DJL) 

• Project Overview 

 

MATRIX and Distributed Job Launch Overview 9 



• HPC resource manager 

 SLURM: LLNL 

 Condor: UW-Madison 

 SGE: Sun Microsystems 

 PBS: OpenPBS in NASA, TORQUE in Adaptive Computing Enterprises, and 

PBS Pro in Altair Engineering 

 Cobalt: ANL  

• MTC task execution framework 

 Falkon: UChicago and ANL  

 Turbine: Apache  

 Sparrow: UC Berkeley 

 Charm++: UIUC 
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• MAny-Task computing execution fabRIc at 

eXascale 

• Dynamic job scheduling system at the 

granularity of node/core levels for extreme scale 

applications 

• Work stealing is applied to achieve distributed 

load balancing 

• Support of various workloads: HPC jobs, and 

MTC task with/without dependency  
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ALGORITHM 1. Dynamic Multi-Random Neighbor Selection (DYN-MUL-SEL) 

Input: Node id (node_id), number of neighbors (num_neigh), and number of nodes (num_node), 

and the node array (nodes).  

Output: A collection of neighbors (neigh).  

selected[num_node]; 

for each i in 0 to num_node do 

        if (i != node_id) then 

                selected[i] = FALSE; 

        else 

                selected[i] = TRUE; 

        end 

end  

neigh[num_neigh]; 

index = −1; 

for each i in 0 to num_neigh−1 do 

        repeat 

                index = Random( ) % num_node; 

        until !selected[index]; 

        selected[index] = TRUE; 

        neigh[i] = nodes[index]; 

end 

return neigh;  
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ALGORITHM 2. Adaptive Work Stealing Algorithm (ADA-WORK-STEALING) 

Input: Node id (node_id), number of neighbors (num_neigh), number of nodes (num_node), the 

node array (nodes), and the initial poll interval (poll_interval).  

Output: NULL  

neigh = DYN-MUL-SEL(node_id, num_neigh, num_node, nodes); 

most_load_node = neigh[0]; 

for each i in 1 to num_node−1 do 

        if (most_load_node < neigh[i].load) then 

                most_load_node = neigh[i]; 

        end 

end  

if (most_load_node.load == 0) then 

        Sleep(poll_interval); 

        poll_interval = poll_interval × 2; 

        ADA-WORK-STEALING(node_id, num_neigh, num_node, nodes, poll_interval); 

else 

        num_task_steal = number of tasks stolen from most_load_node; 

        if (num_task_steal == 0) then 

                Sleep(poll_interval); 

                poll_interval = poll_interval × 2; 

                ADA-WORK-STEALING(node_id, num_neigh, num_node, nodes, poll_interval); 

        else 

                 poll_interval = 1; 

        end 

end  
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• Client/Benchmarking tool 

 has a task dispatcher generating a workload of tasks 

 assigns the tasks to the system  

• Compute Nodes 

 each one has an execution unit that is responsible for 

executing the tasks, and for load balancing through work 

stealing 

 each one has a ZHT server for metadata management 

 at booting time, each one pushes identity and location info 

(ip addr + port no.) to a shared file system for allowing N-N 

communication 
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• ZHT Insert: write the metadata of tasks  

• ZHT Lookup: retrieve the existing information from ZHT, 

e.g. task dependency 

• ZHT Update: modify the information based on state 

change 

• MATRIX Insert: submit jobs to compute nodes 

• Load Information: idle nodes query the load information   

• Work Stealing: steal tasks from the most heavy loaded 

neighbor 

• Client Monitoring: periodically monitor system 

utilization and progress 
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• Best case scenario 

tasks are evenly distributed to compute nodes 

work stealing happens at the end  

one dispatcher does round-robin 

multiple dispatchers through ZHT hashing  

• Worst case scenario 

all tasks are submitted to one arbitrary 

compute nodes 

work stealing happens at the beginning 
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T1 to T4 
• Wait Queue – Hold tasks that are 

waiting for other tasks to complete 

• Ready Queue – Hold tasks that are 

ready to execute but waiting for CPU 

• Complete Queue – Hold tasks that 

have completed execution 

• T1-T4 – Four execution threads 

• P2 – Sends notifications for every 

completed task 

• P1 – Receives notification and moves 

tasks from wait queue to ready queue 
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• Load Balancing 

Background thread keeps checking the state of 

queues and performs work stealing 

Tunable number of neighbors and tasks to steal 

Regulating network traffic - Exponential back-off, 

number of consecutive failed attempts 

• Client Monitoring 

One task dispatcher periodically monitors the status 

of every compute node and submitted workload 
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• launching jobs (usually HPC ones that require 

multiple nodes) to available resources as fast as 

possible for execution 

• a core system service of resource managers  

• traditional centralized paradigm with one 

controller managing all the compute daemons 

(e.g. SLURM job launch)  

• need distributed controllers with each one 

managing a partition of compute daemons 
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• How the controllers maintains the job and resource 

information? 

• How the controllers communicate with each other, and 

resolve resource contention to get free resources for jobs 

when the jobs could not be satisfied locally? 

• A distributed key-value store (e. g. ZHT) can be used to 

 store job and resource metadata in a distributed way  

 resolve resource contention by the atomic “compare and swap” 

operation 

 hide the complexities of controllers communicating with each other for 

replication, failure and recovery, and consistency features    

• Develop a distributed job launch based on SLURM and ZHT  
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• SLURM  

 

 

 

 

 

 

 

• ZHT 

 ZHT project overview and tutorial 
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Key Value Description 

controller id number of free node, free node list 
The free (available) nodes in a partition managed by the 

corresponding controller 

job id original controller id The original controller that is responsible for a submitted job 

job id + original 
controller id 

involved controller list The controllers that participate in launching a job 

job id + original 
controller id + 

involved controller 
id 

participated node list The nodes in a partition that are involved in launching a job   
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• When a partition cannot satisfy a job, the controller is 

stealing resources from other partitions 
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ALGORITHM 1. Compare and Swap 

Input: key (key), value seen before (seen_value), new value intended to insert (new_value), and the storage hash map (map).  
Output: A Boolean value indicates success (TRUE) or failure (FALSE).  
current_value = map.get(key); 
if (!strcmp(current_value, seen_value)) then 
        map.put(key, new_value); 
        return TRUE; 
else  
        return FALSE;  
end  

Compare and Swap operation 
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ALGORITHM 2. Resource Stealing 

Input: number of nodes required (num_node_req), number of controllers (num_ctl), controller membership list (ctl_id[num_ctl]).  
Output: involved controller ids (ctl_id_inv), participated nodes (par_node[]).   
num_node_allocated = 0; num_try = 0; num_ctl_inv = 0; 
ctl_id_inv = calloc(20 * 100, sizeof(char)); 
for each i in 0 to 19; do 
        par_node[i] = calloc(100 * 100, sizeof(char)); 
end 
while num_node_allocated < num_node_req do 

    remote_ctl_idx = Random(num_ctl); 
    remote_ctl_id = ctl_id[remote_ctl_idx]; 
    again:  
    remote_free_resource = c_zht_lookup(remote_ctl_id); 
    if (remote_free_reource == NULL) then 
            continue; 
    else  
            remote_num_free_node = strtok(remote_free_source); 
            if (remote_num_free_node > 0) then 
                    num_try = 0; 
                    remote_num_node_allocated =    
                            remote_num_free_node > (num_node_req –   
                            num_node_allocated) ? (num_node_req –    
                            num_node_allocated) : remote_num_free_node; 
                    if (allocate nodes succeeds)  then //compare and swap 
                            num_node_allocated +=  
                                    remote_num_node_allocated; 
                            par_node[num_ctl_inv++] = allocated node list        
                            strcat(ctl_id_inv, remote_ctl_id);  
           else  

               goto again; 
        end 

            else    
                    usleep(100000); 
                    num_try++; 
                    if (num_try > 2) do 
                            release all the allocated nodes; 
                            Resource Stealing again;  
                    end 
            end    
    end 

end    
return ctl_id_inv, par_node;  

Important Parameters: 

sleep length after a resource stealing failure 

Number of tries before de-allocate resources 



• 1. MATRIX: BenchJMS 

 benchmarking different HPC Job management systems 

(SLURM, Condor, SGE, PBS, Cobalt) 

  1 student 

 no need to write code 

• 2. MATRIX: BenchTEF 

 benchmarking different MTC task execution frameworks (Falkon, 

Sparrow, Turbine, CloudKon, MATRIX) 

  1 student 

 no need to write code 
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• 3. MATRIX: DJLSys (3 students) 

working directly with our distributed job launch code 

study different resource stealing algorithms under 

high system utilization 

need to read/write C/C++ programs 

• 4. MATRIX: DJLSim (2 students) 

simulating distributed job launch system 

Study different resource stealing algorithms under 

high system utilization up to exascale 

discrete event simulation, Java  
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• 5. MATRIX: Swift/M (3 students) 

 using Swift to run large-scale scientific applications to generate 

workloads used by MATRIX 

 working directly with MATRIX and Swift scripting language 

 need to read/write C/C++, and Swift programs 

• 6. MATRIX: Mon/Sim (2 students) 

 simulating distributed monitoring systems with hierarchical tree 

based aggregation and reduction 

 Study optimal fan out, tree height to build the communication 

tree up to exascale 

 Study techniques to rebuild the tree after failure happens 

 discrete event simulation, Java  
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• More information: 
– http://datasys.cs.iit.edu/~kewang/  

• Contact: 
– kwang22@hawk.iit.edu  

• Questions? 
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