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PART I 

Motivation 
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Many-Core Growth Rates 

Slide 3 
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What will we do 

with 1+ Exaflops 

and 1M+ cores? 
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Programming Model Issues 

• Multicore/Manycore processors 

• Massive task parallelism 

• Massive data parallelism 

• Integrating black box applications 

• Complex task dependencies (task graphs) 

• Failure, and other execution management issues 

• Dynamic task graphs 

• Documenting provenance of data products  

• Data management: input, intermediate, output 

• Dynamic data access over large amounts of data 
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Problem Types 
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An Incomplete and Simplistic View of 

Programming Models and Tools 
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MTC: Many Task Computing 

• Bridge the gap between HPC and HTC 

• Loosely coupled applications with HPC orientations 

• HPC comprising of multiple distinct activities, coupled 

via file system operations or message passing 

• Emphasis on many resources over short time periods 

• Tasks can be: 

– small or large, independent and dependent, uniprocessor or 

multiprocessor, compute-intensive or data-intensive, static or 

dynamic, homogeneous or heterogeneous, loosely or tightly 

coupled, large number of tasks, large quantity of computing, 

and large volumes of data… 8 



Growing Interest on enabling 

HTC/MTC on Supercomputers 

• Project Kittyhawk 

– IBM Research 

• HTC-mode in Cobalt/BG 

– IBM 

• Condor on BG 

– University of Wisconsin at Madison, IBM 

• Grid Enabling the BG 

– University of Colorado, National Center for Atmospheric Research 

• Plan 9 

– Bell Labs, IBM Research, Sandia National Labs 

• Falkon/Swift on BG/P and Sun Constellation 

– University of Chicago, Argonne National Laboratory 
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Many Large Systems available 

for Open Science Research 

• Jaguar (#2) [to be announced in 90 minutes] 

– DOE, Oak Ridge National Laboratory 

• Intrepid (#5) 

– DOE, Argonne National Laboratory 

• Ranger (#6) 

– University of Texas / NFS TeraGrid 
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Why Petascale Systems for 

MTC Applications? 

1. The I/O subsystem of petascale systems offers 

unique capabilities needed by MTC 

applications 

2. The cost to manage and run on petascale 

systems is less than that of conventional 

clusters or Grids 

3. Large-scale systems that favor large jobs have 

utilization issues 

4. Some problems are intractable without 

petascale systems 
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PART II 

Some context on 

systems we used as 

building blocks 
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Obstacles running MTC apps  

in Clusters/Grids 

System Comments
Throughput 

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22
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Solutions 

• Falkon: A Fast and Light-weight tasK executiON framework 
– Goal: enable the rapid and efficient execution of many independent 

jobs on large compute clusters 

– Combines three components: 

• A streamlined task dispatcher 

• Resource provisioning through multi-level scheduling techniques 

• Data diffusion and data-aware scheduling to leverage the co-located 
computational and storage resources 

• Swift: A parallel programming system for loosely coupled 
applications 
– Applications cover many domains: Astronomy, astro-physics, medicine, 

chemistry, economics, climate modeling, data analytics 
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Falkon Overview 
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Dispatch Throughput 
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Executor Implementation and Various Systems

System Comments
Throughput 

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22
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Efficiency 
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Falkon Endurance Test 
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PART III 

Contributions: 

Proposed Changes & Results 
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Scaling from 1K to 100K CPUs 

• At 1K CPUs: 

– 1 Server to manage all 1K CPUs 

– Use shared file system extensively 

• Invoke application from shared file system 

• Read/write data from/to shared file system 

• At 100K CPUs: 

– N Servers to manage 100K CPUs (1:256 ratio) 

– Don’t trust the application I/O access patterns to behave optimally 

• Copy applications and input data to RAM 

• Read input data from RAM, compute, and write results to RAM 

• Archive all results in a single file in RAM 

• Copy 1 result file from RAM back to GPFS 

– Use collective I/O primitives to make app logic simpler  

– Leverage all networks (Ethernet, Tree, and Torus) for high aggregate 

bandwidth 
22 



Distributed Falkon Architecture 
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Managing 160K CPUs 

High-speed local disk 

Falkon 
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Slower shared storage 
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Falkon Bootstrapping 



Toward Loosely Coupled Programming on Petascale Systems 26 

Falkon Monitoring 

• Workload 

• 160K CPUs 

• 1M tasks 

• 60 sec per task 

• 17.5K CPU hours in 7.5 min 

• Throughput: 2312 tasks/sec 

• 85% efficiency 
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Dispatch Throughput 
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Efficiency 
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MARS Economic Modeling  

on IBM BG/P 

• CPU Cores: 2048 

• Tasks: 49152 

• Micro-tasks: 7077888 

• Elapsed time: 1601 secs 

• CPU Hours: 894 

• Speedup: 1993X (ideal 2048) 

• Efficiency: 97.3% 
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MARS Economic Modeling  

on IBM BG/P (128K CPUs) 
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Many Many Tasks: 

Identifying Potential Drug Targets 

 2M+ ligands       Protein        x 

target(s)           

(Mike Kubal, Benoit Roux, and others) 
32 
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DOCK on SiCortex 

• CPU cores: 5760 

• Tasks: 92160 

• Elapsed time: 12821 sec 

• Compute time: 1.94 CPU years 

• Average task time: 660.3 sec 

• Speedup: 5650X (ideal 5760) 

• Efficiency: 98.2% 



35 

DOCK on the BG/P 

CPU cores: 118784 

Tasks: 934803 

Elapsed time: 2.01 hours 

Compute time: 21.43 CPU years 

Average task time: 667 sec 

Relative Efficiency: 99.7% 

(from 16 to 32 racks) 

Utilization:  

• Sustained: 99.6% 

• Overall: 78.3% 

Time (secs) 

Toward Loosely Coupled Programming on Petascale Systems 



Costs to interact with GPFS 
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LCP Collective IO Model 

Global FS 

Global FS 

Application Script 

ZOID on 

IO node 
ZOID IFS for 

staging 

<-- Torus & Tree Interconnects -->  

CN-striped IFS for Data 

Compute 

node 

(local datasets) 

LFS 
Compute 

node 

(local datasets) 

LFS . . . 

IFS 

Compute 

node 

IFS 

seg 

IFS 

Compute 

node 

IFS 

seg 

Large 

Input 

Dataset 



Read performance from IFS 



Write Performance 

CIO vs. GFS efficiency 
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Falkon Activity History  

(10 months) 



PART IV 

Conclusions and Future Work 
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Mythbusting 

• Embarrassingly Happily parallel apps are trivial to run 

– Logistical problems can be tremendous 

• Loosely coupled apps do not require “supercomputers” 

– Total computational requirements can be enormous 

– Individual tasks may be tightly coupled 

– Workloads frequently involve large amounts of I/O 

– Make use of idle resources from “supercomputers” via backfilling  

– Costs to run “supercomputers” per FLOP is among the best 
• BG/P: 0.35 gigaflops/watt (higher is better) 

• SiCortex: 0.32 gigaflops/watt 

• BG/L: 0.23 gigaflops/watt 

• x86-based HPC systems: an order of magnitude lower 

• Loosely coupled apps do not require specialized system software 

• Shared file systems are good for all applications 

– They don’t scale proportionally with the compute resources 

– Data intensive applications don’t perform and scale well 



43 

Conclusions & Contributions 

• Defined a new class of applications: MTC 

• Proved that MTC applications can be executed 
efficiently on supercomputers at full scale 

• Extended Falkon by distributing the 
dispatcher/scheduler 

• Falkon installed and configured on the BG/P for 
anyone to use 

Toward Loosely Coupled Programming on Petascale Systems 
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Future Work: 

Other Supercomputers 

• Ranger: Sun Constellation 
– Basic mechanisms in place, and have started testing 

• Jaguar: Cray 
– Plan to get accounts on machine as soon as its online 

• Future Blue Gene machines (Q?) 
– Discussions underway between IBM, ANL and UChicago 
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Future Work: 

Data Diffusion 

• Resource acquired in 
response to demand 

• Data and applications diffuse 
from archival storage to 
newly acquired resources 

• Resource “caching” allows 
faster responses to 
subsequent requests  
– Cache Eviction Strategies: 

RANDOM, FIFO, LRU, LFU 

• Resources are released 
when demand drops  

text

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Shared File System

Idle Resources

Provisioned Resources



All-Pairs Workload 

1000x1000 on 4K emulated CPUs 
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More Information 

• More information: http://people.cs.uchicago.edu/~iraicu/  

• Related Projects:  
– Falkon: http://dev.globus.org/wiki/Incubator/Falkon  

– Swift: http://www.ci.uchicago.edu/swift/index.php 

• Funding: 
– NASA: Ames Research Center, Graduate Student Research Program 

• Jerry C. Yan, NASA GSRP Research Advisor 

– DOE: Mathematical, Information, and Computational Sciences Division 
subprogram of the Office of Advanced Scientific Computing Research, 
Office of Science, U.S. Dept. of Energy 

– NSF: TeraGrid 

http://people.cs.uchicago.edu/~iraicu/
http://dev.globus.org/wiki/Incubator/Falkon
http://www.ci.uchicago.edu/swift/index.php

