
Toward

Loosely Coupled Programming

on Petascale Systems

with Falkon

Ioan Raicu
Distributed Systems Laboratory

Computer Science Department

University of Chicago

Based on Slides given at IEEE/ACM Supercomputing 2008

October 16th, 2013

PART I

Motivation

Toward Loosely Coupled Programming on Petascale Systems 2

Many-Core Growth Rates

Slide 3

2004 2006 2008 2010 2012 2014 2016 2018

90

nm

65

nm

45

nm 32

nm
22

nm

16

nm 11

nm

8 nm 2

Cores

4

Cores

8

Cores

16

Cores 32

Cores

64

Cores

128

Cores

256

Cores

2004 2006 2008 2010 2012 2014 2016 2018

90

nm

65

nm

45

nm 32

nm
22

nm

16

nm 11

nm

8 nm 2

Cores

4

Cores

8

Cores

16

Cores 32

Cores

64

Cores

128

Cores

256

Cores

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable Objects, November 9th, 2007

What will we do

with 1+ Exaflops

and 1M+ cores?

Toward Loosely Coupled Programming on Petascale Systems 5

Programming Model Issues

• Multicore/Manycore processors

• Massive task parallelism

• Massive data parallelism

• Integrating black box applications

• Complex task dependencies (task graphs)

• Failure, and other execution management issues

• Dynamic task graphs

• Documenting provenance of data products

• Data management: input, intermediate, output

• Dynamic data access over large amounts of data

6

Problem Types

Number of Tasks

Input
Data
Size

Hi

Med

Low

1 1K 1M

Heroic
MPI

Tasks Many Loosely Coupled Apps

Data
Analysis,
Mining

Big Data and
Many Tasks

Toward Loosely Coupled Programming on Petascale Systems

7

An Incomplete and Simplistic View of

Programming Models and Tools

Single task, modest data
MPI, etc…

Many Tasks
DAGMan+Pegasus

Karajan+Swift+Falkon

Much Data
MapReduce/Hadoop

Dryad

Complex Tasks, Much Data
Dryad, Pig, Sawzall

Swift+Falkon (using data diffusion)

MTC: Many Task Computing

• Bridge the gap between HPC and HTC

• Loosely coupled applications with HPC orientations

• HPC comprising of multiple distinct activities, coupled

via file system operations or message passing

• Emphasis on many resources over short time periods

• Tasks can be:

– small or large, independent and dependent, uniprocessor or

multiprocessor, compute-intensive or data-intensive, static or

dynamic, homogeneous or heterogeneous, loosely or tightly

coupled, large number of tasks, large quantity of computing,

and large volumes of data… 8

Growing Interest on enabling

HTC/MTC on Supercomputers

• Project Kittyhawk

– IBM Research

• HTC-mode in Cobalt/BG

– IBM

• Condor on BG

– University of Wisconsin at Madison, IBM

• Grid Enabling the BG

– University of Colorado, National Center for Atmospheric Research

• Plan 9

– Bell Labs, IBM Research, Sandia National Labs

• Falkon/Swift on BG/P and Sun Constellation

– University of Chicago, Argonne National Laboratory
10

Many Large Systems available

for Open Science Research

• Jaguar (#2) [to be announced in 90 minutes]

– DOE, Oak Ridge National Laboratory

• Intrepid (#5)

– DOE, Argonne National Laboratory

• Ranger (#6)

– University of Texas / NFS TeraGrid

Toward Loosely Coupled Programming on Petascale Systems
11

Why Petascale Systems for

MTC Applications?

1. The I/O subsystem of petascale systems offers

unique capabilities needed by MTC

applications

2. The cost to manage and run on petascale

systems is less than that of conventional

clusters or Grids

3. Large-scale systems that favor large jobs have

utilization issues

4. Some problems are intractable without

petascale systems
Toward Loosely Coupled Programming on Petascale Systems 12

PART II

Some context on

systems we used as

building blocks

Toward Loosely Coupled Programming on Petascale Systems 13

Toward Loosely Coupled Programming on Petascale Systems 14

Obstacles running MTC apps

in Clusters/Grids

System Comments
Throughput

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

100

1000

10000

100000

1000000

1 10 100 1000

Number of Nodes
T

h
ro

u
g

h
p

u
t
(M

b
/s

)

GPFS R
LOCAL R
GPFS R+W
LOCAL R+W

Toward Loosely Coupled Programming on Petascale Systems 15

Solutions

• Falkon: A Fast and Light-weight tasK executiON framework
– Goal: enable the rapid and efficient execution of many independent

jobs on large compute clusters

– Combines three components:

• A streamlined task dispatcher

• Resource provisioning through multi-level scheduling techniques

• Data diffusion and data-aware scheduling to leverage the co-located
computational and storage resources

• Swift: A parallel programming system for loosely coupled
applications
– Applications cover many domains: Astronomy, astro-physics, medicine,

chemistry, economics, climate modeling, data analytics

Toward Loosely Coupled Programming on Petascale Systems 16

Falkon Overview

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Available Resources

(GRAM4)

Provisioned Resources

text

Executor

1

Wait Queue

Executor

i

Executor

n

Dynamic

Resource

Provisioning

User

17

Dispatch Throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C 5760
CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

604

2534

3186

1758

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s

/s
e

c
)

Executor Implementation and Various Systems

System Comments
Throughput

(tasks/sec)

Condor (v6.7.2) - Production Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) - Production Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) - Production Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) - Production 0.42

Condor (v6.9.3) - Development 11

Condor-J2 - Experimental Quad Xeon 3 GHz, 4GB 22

18

Efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
ff

ic
ie

n
c
y

Number of Processors

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

Toward Loosely Coupled Programming on Petascale Systems 19

Falkon Endurance Test

Virtual Node(s)

SwiftScript

Abstract

computation

Virtual Data

Catalog

SwiftScript

Compiler

Specification Execution

Virtual Node(s)

Provenance

data

Provenance

data Provenance

collector

launcher

launcher

file1

file2

file3

App

F1

App

F2

Scheduling

Execution Engine

(Karajan w/

Swift Runtime)

Swift runtime

callouts

C

C C C

Status reporting

Swift Architecture

Provisioning

Falkon

Resource

Provisioner

Amazon

EC2

20

Toward Loosely Coupled Programming on Petascale Systems

PART III

Contributions:

Proposed Changes & Results

Toward Loosely Coupled Programming on Petascale Systems 21

Scaling from 1K to 100K CPUs

• At 1K CPUs:

– 1 Server to manage all 1K CPUs

– Use shared file system extensively

• Invoke application from shared file system

• Read/write data from/to shared file system

• At 100K CPUs:

– N Servers to manage 100K CPUs (1:256 ratio)

– Don’t trust the application I/O access patterns to behave optimally

• Copy applications and input data to RAM

• Read input data from RAM, compute, and write results to RAM

• Archive all results in a single file in RAM

• Copy 1 result file from RAM back to GPFS

– Use collective I/O primitives to make app logic simpler

– Leverage all networks (Ethernet, Tree, and Torus) for high aggregate

bandwidth
22

Distributed Falkon Architecture

23

Provisioner

Dispatcher

1

Executor

1

Cobalt

Client
Executor

256

Dispatcher

N

Executor

1

Executor

256

Login Nodes

(x10)

I/O Nodes

(x640)

Compute Nodes

(x40K)

Managing 160K CPUs

High-speed local disk

Falkon

24 Toward Loosely Coupled Programming on Petascale Systems

Slower shared storage

Toward Loosely Coupled Programming on Petascale Systems 25

Falkon Bootstrapping

Toward Loosely Coupled Programming on Petascale Systems 26

Falkon Monitoring

• Workload

• 160K CPUs

• 1M tasks

• 60 sec per task

• 17.5K CPU hours in 7.5 min

• Throughput: 2312 tasks/sec

• 85% efficiency

27

Dispatch Throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

2534

3186

1758

3071

T
h

ro
u

g
h

p
u

t
(t

a
s
k
s

/s
e
c
)

Executor Implementation and Various Systems

28

Efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 1024 4096 16384 65536 163840

E
ff

ic
ie

n
c
y

Number of Processors

256 seconds
128 seconds
64 seconds
32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

Toward Loosely Coupled Programming on Petascale Systems 29

MARS Economic Modeling

on IBM BG/P

• CPU Cores: 2048

• Tasks: 49152

• Micro-tasks: 7077888

• Elapsed time: 1601 secs

• CPU Hours: 894

• Speedup: 1993X (ideal 2048)

• Efficiency: 97.3%

Toward Loosely Coupled Programming on Petascale Systems 30

MARS Economic Modeling

on IBM BG/P (128K CPUs)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

200000

400000

600000

800000

1000000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s
/s

e
c

)

T
a

s
k

s
 C

o
m

p
le

te
d

N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

Time (sec)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

• CPU Cores: 130816

• Tasks: 1048576

• Elapsed time: 2483 secs

• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Efficiency: 88%

Many Many Tasks:

Identifying Potential Drug Targets

 2M+ ligands Protein x

target(s)

(Mike Kubal, Benoit Roux, and others)
32

start

report

DOCK6

Receptor

(1 per protein:

defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script

parameters

(defines flexible

residues,

#MDsteps)

Amber Score:

1. AmberizeLigand

3. AmberizeComplex

5. RunNABScript

end

BuildNABScript

NAB

Script

NAB

Script

Template

Amber prep:

2. AmberizeReceptor

4. perl: gen nabscript

FRED

Receptor

(1 per protein:

defines pocket

to bind to)

Manually prep

DOCK6 rec file

Manually prep

FRED rec file

1
protein
(1MB)

6
GB
2M

structures
(6 GB)

DOCK6 FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

Select best ~5K Select best ~5K

For 1 target:

4 million tasks

500,000 cpu-hrs

(50 cpu-years)

Many Many Tasks:

Identifying Potential Drug Targets

33

Toward Loosely Coupled Programming on Petascale Systems 34

DOCK on SiCortex

• CPU cores: 5760

• Tasks: 92160

• Elapsed time: 12821 sec

• Compute time: 1.94 CPU years

• Average task time: 660.3 sec

• Speedup: 5650X (ideal 5760)

• Efficiency: 98.2%

35

DOCK on the BG/P

CPU cores: 118784

Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec

Relative Efficiency: 99.7%

(from 16 to 32 racks)

Utilization:

• Sustained: 99.6%

• Overall: 78.3%

Time (secs)

Toward Loosely Coupled Programming on Petascale Systems

Costs to interact with GPFS

36

1

10

100

1000

10000

256 4096 8192 16384
Number of Processors

T
im

e
 p

e
r

O
p

e
ra

ti
o

n
 (

s
e

c
)

Directory Create (single dir)
File Create (single dir)
Directory Create (across many dirs)
File Create (across many dirs)
Script Invocation
Falkon Overhead (i.e. sleep 0)

LCP Collective IO Model

Global FS

Global FS

Application Script

ZOID on

IO node
ZOID IFS for

staging

<-- Torus & Tree Interconnects -->

CN-striped IFS for Data

Compute

node

(local datasets)

LFS
Compute

node

(local datasets)

LFS . . .

IFS

Compute

node

IFS

seg

IFS

Compute

node

IFS

seg

Large

Input

Dataset

Read performance from IFS

Write Performance

CIO vs. GFS efficiency

Toward Loosely Coupled Programming on Petascale Systems 40

Falkon Activity History

(10 months)

PART IV

Conclusions and Future Work

Toward Loosely Coupled Programming on Petascale Systems 41

Toward Loosely Coupled Programming on Petascale Systems 42

Mythbusting

• Embarrassingly Happily parallel apps are trivial to run

– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”

– Total computational requirements can be enormous

– Individual tasks may be tightly coupled

– Workloads frequently involve large amounts of I/O

– Make use of idle resources from “supercomputers” via backfilling

– Costs to run “supercomputers” per FLOP is among the best
• BG/P: 0.35 gigaflops/watt (higher is better)

• SiCortex: 0.32 gigaflops/watt

• BG/L: 0.23 gigaflops/watt

• x86-based HPC systems: an order of magnitude lower

• Loosely coupled apps do not require specialized system software

• Shared file systems are good for all applications

– They don’t scale proportionally with the compute resources

– Data intensive applications don’t perform and scale well

43

Conclusions & Contributions

• Defined a new class of applications: MTC

• Proved that MTC applications can be executed
efficiently on supercomputers at full scale

• Extended Falkon by distributing the
dispatcher/scheduler

• Falkon installed and configured on the BG/P for
anyone to use

Toward Loosely Coupled Programming on Petascale Systems

Toward Loosely Coupled Programming on Petascale Systems 44

Future Work:

Other Supercomputers

• Ranger: Sun Constellation
– Basic mechanisms in place, and have started testing

• Jaguar: Cray
– Plan to get accounts on machine as soon as its online

• Future Blue Gene machines (Q?)
– Discussions underway between IBM, ANL and UChicago

Toward Loosely Coupled Programming on Petascale Systems 45

Future Work:

Data Diffusion

• Resource acquired in
response to demand

• Data and applications diffuse
from archival storage to
newly acquired resources

• Resource “caching” allows
faster responses to
subsequent requests
– Cache Eviction Strategies:

RANDOM, FIFO, LRU, LFU

• Resources are released
when demand drops

text

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Shared File System

Idle Resources

Provisioned Resources

All-Pairs Workload

1000x1000 on 4K emulated CPUs

46

0

20

40

60

80

100

120

140

160

180

200

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80

Time (sec)

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
a
c
h
e
 H

it
/M

is
s

Cache Miss %
Cache Hit Global %
Cache Hit Local %
Throughput (Data Diffusion)
Maximum Throughput (GPFS)
Maximum Throughput (Local Memory)

Efficiency: 86%

Toward Loosely Coupled Programming on Petascale Systems 47

More Information

• More information: http://people.cs.uchicago.edu/~iraicu/

• Related Projects:
– Falkon: http://dev.globus.org/wiki/Incubator/Falkon

– Swift: http://www.ci.uchicago.edu/swift/index.php

• Funding:
– NASA: Ames Research Center, Graduate Student Research Program

• Jerry C. Yan, NASA GSRP Research Advisor

– DOE: Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy

– NSF: TeraGrid

http://people.cs.uchicago.edu/~iraicu/
http://dev.globus.org/wiki/Incubator/Falkon
http://www.ci.uchicago.edu/swift/index.php

