The Quest for Scalable Support of Data-Intensive Workloads in Distributed Systems

Ioan Raicu
Distributed Systems Laboratory
Computational Institute
University of Chicago

Slides based on ACM HPDC 2009 Slides

October 21st, 2013
State of the Art: Storage Systems

• Segregated storage and compute
 – NFS, GPFS, PVFS, Lustre
 – Batch-scheduled systems: Clusters, Grids, and Supercomputers
 – Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute
 – HDFS, GFS
 – Data centers at Google, Yahoo, and others
 – Programming paradigm: MapReduce
 – Others from academia: Sector, MosaStore, Chirp
• Segregated storage and compute
 – NFS, GPFS, PVFS, Lustre
 – Batch-scheduled systems: Clusters, Grids, and Supercomputers
 – Programming paradigm: HPC, MTC, and HTC

• Colocated storage and compute
 – HDFS, GFS
 – Data centers at Google, Yahoo, and others
 – Programming paradigm: MapReduce
 – Others from academia: Sector, MosaStore, Chirp

State of the Art: Storage Systems
State of the Art: Storage Systems

• Segregated storage and compute
 – NFS, GPFS, PVFS, Lustre
 – Batch-scheduled systems: Clusters, Grids, and Supercomputers
 – Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute
 – HDFS, GFS
 – Data centers at Google, Yahoo, and others
 – Programming paradigm: MapReduce
 – Others from academia: Sector, MosaStore, Chirp
State of the Art: Storage Systems

- Segregated storage and compute
 - NFS, GPFS, PVFS, Lustre
 - Batch-scheduled systems: Clusters, Grids, and Supercomputers
 - Programming paradigm: HPC, MTC, and HTC

- Co-located storage
 - HDFS, GFS
 - Data centers at Google, Yahoo, and others
 - Programming paradigm: MapReduce
 - Others from academia: Sector, MosaStore, Chirp
• Local Disk:
 – 2002-2004: ANL/UC TG Site (70GB SCSI)
 – Today: PADS (RAID-0, 6 drives 750GB SATA)

• Cluster:
 – 2002-2004: ANL/UC TG Site (GPFS, 8 servers, 1Gb/s each)
 – Today: PADS (GPFS, SAN)

• Supercomputer:
 – 2002-2004: IBM Blue Gene/L (GPFS)
 – Today: IBM Blue Gene/P (GPFS)
What if we could combine the scientific community’s existing programming paradigms, but yet still exploit the data locality that naturally occurs in scientific workloads?
Combine State of the Art Systems

NAS

Network Link(s)

Network Fabric

Compute & Storage Resources
Problem Space

Input Data Size

Hi
Med
Low

Number of Tasks

1
1K
1M

MapReduce/MTC
(Data Analysis, Mining)

MTC
(Big Data and Many Tasks)

HPC
(Heroic MPI Tasks)

HTC/MTC
(Many Loosely Coupled Tasks)

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
“Significant performance improvements can be obtained in the analysis of large dataset by leveraging information about data analysis workloads rather than individual data analysis tasks.”

- **Important concepts related to the hypothesis**
 - **Workload**: a complex query (or set of queries) decomposable into simpler tasks to answer broader analysis questions
 - **Data locality** is crucial to the efficient use of large scale distributed systems for scientific and data-intensive applications
 - Allocate computational and caching storage resources, **co-scheduled** to optimize workload performance
Proposed Solution: Data Diffusion

- Resource acquired in response to demand
- Data diffuse from archival storage to newly acquired transient resources
- Resource “caching” allows faster responses to subsequent requests
- Resources are released when demand drops
- Optimizes performance by co-scheduling data and computations
- Decrease dependency of a shared/parallel file systems
- Critical to support data intensive MTC

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
Data diffusion in Practice

- What would data diffusion look like in practice?
- Extend the Falkon framework

[SC07] “Falkon: a Fast and Light-weight task execution framework”
Scheduling Policies

• FA: first-available
 – simple load balancing
• MCH: max-cache-hit
 – maximize cache hits
• MCU: max-compute-util
 – maximize processor utilization
• GCC: good-cache-compute
 – maximize both cache hit and processor utilization at the same time

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
3GHz dual CPUs

ANL/UC TG with 128 processors

Scheduling window: 2500 tasks

Dataset
 • 100K files
 • 1 byte each

Tasks
 • Read 1 file
 • Write 1 file

Workloads

- Monotonically Increasing Workload
 - Emphasizes increasing loads

- Sine-Wave Workload
 - Emphasizes varying loads

- All-Pairs Workload
 - Compare to best case model of active storage

- Image Stacking Workload (Astronomy)
 - Evaluate data diffusion on a real large-scale data-intensive application from astronomy domain

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
• 250K tasks
 – 10MB reads
 – 10ms compute
• Vary arrival rate:
 – Min: 1 task/sec
 – Increment function: CEILING(*1.3)
 – Max: 1000 tasks/sec
• 128 processors
• Ideal case:
 – 1415 sec
 – 80Gb/s peak throughput
Monotonically Increasing Workload First-available (GPFS)

- **GPFS vs. ideal**: 5011 sec vs. 1415 sec
Monotonically Increasing Workload
Max-compute-util & Max-cache-hit

Max-compute-util

Max-cache-hit

- Cache Miss %
- Cache Hit Global %
- Cache Hit Local %
- Throughput (Gb/s)
- Demand (Gb/s)
- Wait Queue Length
- Number of Nodes

- Cache Miss %
- Cache Hit Global %
- Cache Hit Local %
- Throughput (Gb/s)
- Demand (Gb/s)
- Wait Queue Length
- Number of Nodes
- CPU Utilization
• **Data Diffusion vs. ideal:** 1436 sec vs 1415 sec
Throughput:
- Average: 14Gb/s vs 4Gb/s
- Peak: 81Gb/s vs. 6Gb/s

Response Time ➔
- 3 sec vs 1569 sec ➔ 506X
• Performance Index:
 – 34X higher
• Speedup
 – 3.5X faster than GPFS
Sine-Wave Workload

- 2M tasks
 - 10MB reads
 - 10ms compute
- Vary arrival rate:
 - Min: 1 task/sec
 - Arrival rate function:
 - Max: 1000 tasks/sec
- 200 processors
- Ideal case:
 - 6505 sec
 - 80Gb/s peak throughput
Sine-Wave Workload
First-available (GPFS)

- GPFS ➔ 5.7 hrs, ~8Gb/s, 1138 CPU hrs
Sine-Wave Workload

Good-cache-compute and SRP

- GPFS ➔ 5.7 hrs, ~8Gb/s, 1138 CPU hrs
- GCC+SRP ➔ 1.8 hrs, ~25Gb/s, 361 CPU hrs
Sine-Wave Workload
Good-cache-compute and DRP

- GPFS ➔ 5.7 hrs, ~8Gb/s, 1138 CPU hrs
- GCC+SRP ➔ 1.8 hrs, ~25Gb/s, 361 CPU hrs
- GCC+DRP ➔ 1.86 hrs, ~24Gb/s, 253 CPU hrs
All-Pairs Workload

- 500x500
 - 250K tasks
 - 24MB reads
 - 100ms compute
 - 200 CPUs

- 1000x1000
 - 1M tasks
 - 24MB reads
 - 4sec compute
 - 4096 CPUs

- Ideal case:
 - 6505 sec
 - 80Gb/s peak throughput

All-Pairs(set A, set B, function F) returns matrix M:

Compare all elements of set A to all elements of set B via function F, yielding matrix M, such that

\[M[i,j] = F(A[i], B[j]) \]

```plaintext
1 foreach $i in A
2   foreach $j in B
3     submit_job F $i $j
4 end
5 end
```

All-Pairs Workload
500x500 on 200 CPUs

Efficiency: 75%
All-Pairs Workload
1000x1000 on 4K emulated CPUs

Efficiency: 86%

Cache Hit Local %
Cache Miss %
Throughput (Data Diffusion)

Cache Hit Global %
Max Throughput (GPFS)
Max Throughput (Local Memory)

All-Pairs Workload
Data Diffusion vs. Active Storage

• Pull vs. Push
 – Data Diffusion
 • Pulls **task** working set
 • Incremental spanning forest
 – Active Storage:
 • Pushes **workload** working set to all nodes
 • Static spanning tree

Christopher Moretti, Douglas Thain, University of Notre Dame
Best to use active storage if
- Slow data source
- Workload working set fits on local node storage

Best to use data diffusion if
- Medium to fast data source
- Task working set << workload working set
- Task working set fits on local node storage

If task working set does not fit on local node storage
- Use parallel file system (i.e. GPFS, Lustre, PVFS, etc)
• Purpose
 – On-demand “stacks” of random locations within ~10TB dataset

• Challenge
 – Processing Costs:
 • \(O(100\text{ms})\) per object
 – Data Intensive:
 • 40MB:1sec
 – Rapid access to 10-10K “random” files
 – Time-varying load

<table>
<thead>
<tr>
<th>Locality</th>
<th>Number of Objects</th>
<th>Number of Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111700</td>
<td>111700</td>
</tr>
<tr>
<td>1.38</td>
<td>154345</td>
<td>111699</td>
</tr>
<tr>
<td>2</td>
<td>97999</td>
<td>49000</td>
</tr>
<tr>
<td>3</td>
<td>88857</td>
<td>29620</td>
</tr>
<tr>
<td>4</td>
<td>76575</td>
<td>19145</td>
</tr>
<tr>
<td>5</td>
<td>60590</td>
<td>12120</td>
</tr>
<tr>
<td>10</td>
<td>46480</td>
<td>4650</td>
</tr>
<tr>
<td>20</td>
<td>40460</td>
<td>2025</td>
</tr>
<tr>
<td>30</td>
<td>23695</td>
<td>790</td>
</tr>
</tbody>
</table>

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”
Image Stacking Workload Profiling

Filesystem and Image Format

Time (ms)

open
radec2xy
readHDU+getTile+curl+convertArray
calibration+interpolation+doStacking
writeStacking

GPFS GZ LOCAL GZ GPFS FIT LOCAL FIT

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
Low data locality ➔
 – Similar (but better) performance to GPFS

High data locality ➞
 – Near perfect scalability

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
• **Aggregate throughput:**
 – 39Gb/s
 – 10X higher than GPFS
• **Reduced load on GPFS**
 – 0.49Gb/s
 – 1/10 of the original load

- *Big performance gains as locality increases*

[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”
Limitations of Data Diffusion

• Data access patterns: write once, read many
• Task definition must include input/output files metadata
• Per task working set must fit in local storage
• Needs IP connectivity between hosts
• Needs local storage (disk, memory, etc)
• Needs Java 1.4+
Data Diffusion vs. Others

- [Ghemawat03,Dean04]: MapReduce+GFS
- [Bialecki05]: Hadoop+HDFS
- [Gu06]: Sphere+Sector
- [Tatebe04]: Gfarm
- [Chervenak04]: RLS, DRS
- [Kosar06]: Stork

Conclusions

- None focused on the co-location of storage and generic black box computations with data-aware scheduling while operating in a dynamic elastic environment
- Swift + Falkon + Data Diffusion is arguably a more generic and powerful solution than MapReduce
Identified that data locality is crucial to the efficient use of large scale distributed systems for data-intensive applications ➔ Data Diffusion

- Integrated streamlined task dispatching with data aware scheduling policies
- Heuristics to maximize real world performance
- Suitable for varying, data-intensive workloads
- Proof of O(NM) Competitive Caching
More Information

- Falkon: http://dev.globus.org/wiki/Incubator/Falkon
- Swift: http://www.ci.uchicago.edu/swift/index.php