

• GFS: Google File System

– Google

– C/C++

• HDFS: Hadoop Distributed File System

– Yahoo

– Java, Open Source

• Others

– Sector: Distributed Storage System

• University of Illinois at Chicago

• C++, Open Source

– CloudStore

• C++
2

http://kosmosfs.sourceforge.net/about.html

• System that permanently stores data

• Usually layered on top of a lower-level
physical storage medium

• Divided into logical units called “files”

– Addressable by a filename (“foo.txt”)

– Usually supports hierarchical nesting
(directories)

• A file path joins file & directory names into
a relative or absolute address to identify
a file (“/home/aaron/foo.txt”)

• Support access to files on remote servers

• Must support concurrency

– Make varying guarantees about locking, who
“wins” with concurrent writes, etc...

– Must gracefully handle dropped connections

• Can offer support for replication and local
caching

• Different implementations sit in different
places on complexity/feature scale

• Google needed a good distributed file system
– Redundant storage of massive amounts of data on

cheap and unreliable computers

• Why not use an existing file system?
– Google’s problems are different from anyone else’s

• Different workload and design priorities

– GFS is designed for Google apps and workloads

– Google apps are designed for GFS

• High component failure rates

– Inexpensive commodity components fail all the
time

• “Modest” number of HUGE files

– Just a few million

– Each is 100MB or larger; multi-GB files typical

• Files are write-once, mostly appended to

– Perhaps concurrently

• Large streaming reads

• High sustained throughput favored over low latency

• Most files are mutated by appending new data – large sequential

writes

• Random writes are very uncommon

• Files are written once, then they are only read

• Reads are sequential

• Large streaming reads and small random reads

• High bandwidth is more important than low latency

• Google applications:

– Data analysis programs that scan through data repositories

– Data streaming applications

– Archiving

– Applications producing (intermediate) search results

7

• Files stored as chunks

– Fixed size (64MB)

• Reliability through replication

– Each chunk replicated across 3+ chunkservers

• Single master to coordinate access, keep metadata

– Simple centralized management

• No data caching

– Little benefit due to large data sets, streaming reads

• Familiar interface, but customize the API

– Simplify the problem; focus on Google apps

9

• Single master

• Multiple chunk servers

• Multiple clients

• Each is a commodity Linux machine, a server is a user-level process

• Files are divided into chunks

• Each chunk has a handle (an ID assigned by the master)

• Each chunk is replicated (on three machines by default)

• Master stores metadata, manages chunks, does garbage collection,

etc.

• Clients communicate with master for metadata operations, but with

chunkservers for data operations

• No additional caching (besides the Linux in-memory buffer caching)

10

• Client/GFS Interaction

• Master

• Metadata

• Why keep metadata in memory?

• Why not keep chunk locations persistent?

• Level of replication, why 3 is default?

• Operation log

• Data consistency

• Garbage collection

• Load balancing

• Fault tolerance

• Support atomic record append 11

17

