Argon ne°

NATIONAL LABORATORY

High Performance Computing I/0 Systems:
Overview and Recent Developments

Rob Ross

Math and Computer Science Division
Argonne National Laboratory
rross@mcs.anl.gov

%“ U.S. DEPARTMENT OF
‘% ENERGY

Computational Science

Computational science is a major user of HPC
Use of computer simulation as a tool for
greater understanding of the real world

Complements experimentation and theory

Problems are increasingly computationally
expensive

Large parallel machines needed to perform
calculations
Critical to leverage parallelism in all phases

Data access is a huge challenge

Using parallelism to obtain performance
Finding usable, efficient, and portable
interfaces

Understanding and tuning I/O

IBM Blue Gene/Q system at Argonne
National Laboratory.

Visualization of entropy in Terascale
Supernova Initiative application. Image from
Kwan-Liu Ma’s visualization team at UC Davis.

Outline

Today we will discuss HPC 1/0 systems, talk about some
important concepts, look at some recent developments.

= Material derived from “HPC 1/O for Computational Scientists”
tutorial, presented earlier this year at ATPESC 2013
= Topics:
— Overview of HPC I/O systems
* Users
* Software layers

* Performance and optimization
— Replacing the File Storage Model
— Burst Buffers (maybe, depending on time)

" |nterrupt whenever, goal is to have a good discussion, not
necessarily get through every slide.

Argonn e° =

Thinking about HPC 1I/0 Systems

HPC I/0 Systems

HPC I/0 system is the hardware and software that assists in
accessing data during simulations and analysis and retaining
data between these activities.

= Hardware: disks, disk enclosures, servers, networks, etc.
= Software: parallel file system, libraries, parts of the OS

= Two “flavors” of 1/O from applications:
— Defensive: storing data to protect results from data loss due to system
faults (i.e., checkpoint and restart)
— Productive: storing/retrieving data as part of the scientific workflow
— Note: Sometimes these are combined (i.e., data stored both protects
from loss and is used in later analysis)

= “Flavor” influences priorities:
— Defensive I/0: Spend as little time as possible
— Productive I/O: Capture provenance, organize for analysis

Data Volumes in Computational Science

Science teams are routinely working with tens and hundreds of
terabytes (TBs) of data.

Data requirements for select 2012 INCITE applications at ALCF (BG/P)
On-line Data Off-line Data

P Project (TBytes) (TBytes)
Lamb Supernovae Astrophysics 100 400
Khokhlov Combustion in Reactive Gases 1 17
Lester CO2 Absorption 5 15
Jordan Seismic Hazard Analysis 600 100
Washington Climate Science 200 750
Voth Energy Storage Materials 10 10
Vashista Stress Corrosion Cracking 12 72
Vary Nuclear Structure and Reactions 6 30
Fischer Reactor Thermal Hydraulic Modeling 100 100
Hinkel Laser-Plasma Interactions 60 60

Elghobashi Vaporizing Droplets in a Turbulent Flow 2 4

Data Volumes in Computational Science

It’s not just checkpoints — scientists are reading large volumes
of data into HPC systems as part of their science.

1000 ¢
E Write
Read s
m 100 |
=
©
@
O
-
o
Z 10 3

Top 10 data producer/consumers instrumented with Darshan over the month of July, 2011.

Data Complexity in Computational Science

= Applications have data models

appropriate to domain
— Multidimensional typed arrays, images
composed of scan lines, ...
— Headers, attributes on data

= |/O systems have very simple data

models
— Tree-based hierarchy of containers
— Some containers have streams of bytes
(files)
— Others hold collections of other
containers (directories or folders)

= Mapping from one to the other is
increasingly complex.

Images from T. Tautges (ANL) (upper left), M. Smith
(ANL) (lower left), and K. Smith (MIT) (right).

Model complexity:

Spectral element mesh (top)
for thermal hydraulics
computation coupled with
finite element mesh (bottom)
for neutronics calculation.

Scale complexity:
Spatial range from
the reactor core in
meters to fuel pellets
in millimeters.

Views of Data Access in HPC Systems

Two useful ways of thinking about data access are the “logical”
view, considering data models in use, and the “physical” view,
the components that data resides on and passes through.

Application

Application Data Model

Transformations

Storage Data Model

I/O Hardware

Logical (data model)
view of data access.

t

Data
Movement

\ 4

Compute Node Memory

System Network

I/O Hardware

Physical (hardware) view
of data access.

Data Access in Past HPC Systems*

For many years, application teams wrote their own translations
from their data models into files, and hardware model was

relatively simple.

Application Compute Node Memory

Application Data Model

Hand-coded Formatting Data Ethernet Switch
Movement
Files (POSIX)
I/O Hardware Servers with RAID
Logical (data model) Physical (hardware) view
view of data access. of data access.

* We're simplifying the story here somewhat ...

10

Data Access in Current Large-scale Systems

Current systems have greater support on the logical side, more
complexity on the physical side.

Application Compute Node Memory
Data Model Library Internal System Network(s)

/O Gateways

/O Transform Layer(s) Data
Movement External Sys. Network(s)
Files (POSIX) /O Servers
I/O Hardware SAN and RAID Enclosures
Logical (data model) Physical (hardware) view

view of data access. of data access.

11

Thinking about HPC 1/0 Systems

= Two (intertwined) challenges when thinking about data
access:

— Mapping application data model onto storage
— Driving all the components so you don’t have to wait too long for I/O

= Often these two can be at odds
— “Richer” data models might require more I/O

— Transformations that make writing fast might make reading slow
(or vice versa)

= Lots of computer science R&D has gone into tackling these
two problems

= Next we will dive down into some of the details of HPC I/O

12

Argonn e°

ORATORY

How It Works: HPC I/0 Systems

How It Works

= HPC /O systems provide a
file system view of stored data

File (i.e., POSIX) model of access

— Shared view of data across the system
— Access to same data from the outside

(e.g., login nodes, data movers)

= Topics:

How is data stored and organized?
What support is there for application
data models?

How does data move from clients to
servers?

How is concurrent access managed?
What transformations are typically
applied?

Ipfs

[fusion /disc

ckpoint43.h5D\, | sky4325.img sky8792.img
B232 B089 B756
B443
B78I

File system view consists of directories
(a.k.a. folders) and files. Files are
broken up into regions called extents
or blocks.

Storing and Organizing Data: Storage Model

HPC I/0O systems are built around a parallel file system that
organizes storage and manages access.

= Parallel file systems (PFSes) are distributed systems that
provide a file data model (i.e., files and directories) to users

= Multiple PFS servers manage access to storage, while PFS
client systems run applications that access storage

= PFES clients can access storage resources in parallel!

15

Reading and Writing Data (etc.)

PFS client software @ ... e e
requests operations on behalf ! Application . Application : ! Application
of applications. Requests are
sent as messages (RPC-like),
often to multiple servers.

Parallel FS
Client

Parallel FS
Client

Parallel FS
Client

Requests pass over the

interconnect, thus each
request incurs some —_— Interconnection Network

N

Parallel FS Parallel FS Parallel FS Parallel FS
Server Server Server Server

PFS servers manage local
storage, services incoming
requests from clients.

disc || Ipfs : B443 [gys) ;
RAID enclosures protect . L L F— | l
against individual disk failures ' B089 L B756 L Husion : B232 :

and map regions of data onto
specific devices.

S 16

Leadership Systems have an additional HW layer

External Disk
network arrays

L I

- HENNNENENENN

| |
Compute nodes run 1/0 forwarding nodes Storage nodes run the
application processes. Data (or I/O gateways) shuffle data parallel file system.
model software also runs here, between compute nodes and
and some /O transformations external resources, including
are performed here. storage.

S 17

Request Size and I/0 Rate

Interconnect latency has a significant impact on effective rate
of 1/0. Typically 1/Os should be in the O(Mbytes) range.

Aggregate BW (MB/sec)

3500

3000
2500 }
2000 }
1500
1000 ¢

500 }

IOR shared file performance vs request size

write —w—v
read —=—

4 8 32 128 1024 4098
Request Blocksize (kilobytes)
Tests run on 2K processes of IBM Blue Gene/P at ANL.

18

Data Distribution in Parallel File Systems

Distribution across multiple servers allows concurrent access.

Logically a file is an

checkpoint32.nc

extendable sequence
of bytes that can be 4

HOl | HO02

I

03| HO

N

referenced by offset
into the sequence.

Metadata associated
with the file specifies
a mapping of this
sequence of bytes
into a set of objects
on PFS servers.

Extents in the byte sequence
are mapped into objects on
PFS servers.This mapping is
usually determined at file
creation time and is often a
round-robin distribution of a
fixed extent size over the
allocated objects.

-

PFS Server

HO|

HO02

1,
T

w

wn

@

<

(]

=S

PFS Server

Offset in File

| EOO [EOI [EO2 [EO3 | |E05|E06|E07|E08|EO9|EIO|EII’I

1
T
w

w

@

<

)

@

EOT [EO5 [E09

L
HO3| | [EO2[E06[EIO]
Ho4] | [EO3TEO7[EIT]

Space is allocated on demand, so
unwritten "holes" in the logical
file do not consume disk space.

A static mapping from logical file
to objects allows clients to easily
calculate server(s) to contact for
specific regions, eliminating need
to interact with a metadata
server on each I/O operation.

19

Storing and Organizing Data: Application Model(s)

Application data models are supported via libraries that map
down to files (and sometimes directories).

Application Data Structures netCDF File "checkpoint07.nc"
Variable "temp" { netCDF header describes
Double temp type = NC_DOUBLE,
dims = {1024, 1024, 26}, the contents of the file:
Sta"tbOffset = 65536, ‘ — typed, multi-dimensional
tt . t = n 't " = n " . .
R attributes = {"Units i variables and attributes
] L Variable "surface_pressure" { on variables or the dataset
26 I type = NC_FLOAT, .
S dims = {512, 512}, itself.
start offset = 218103808,

attributes = {"Units" = "Pa"}}

o
N9
N
9l4 UlISSHO

Data for variables is stored

Float surface_pressure
in contiguous blocks,

< Data for "temp" >
512 -

— encoded in a portable binary
< Data for "surface_pressure" > format according to the
512 variable's type.

v |

v 20

HPC 1/0 Software Stack

The software used to provide data model support and to
transform 1/0 to better perform on today’s 1/O systems is often

referred to as the I/0 stack.

Data Model Libraries map
application abstractions onto
storage abstractions and provide
data portability.

HDFS5, Parallel netCDF, ADIOS

Parallel file system maintains
logical file model and provides
efficient access to data.

PVFS, PanFS, GPFS, Lustre

-

Application

Data Model Support

Transformations

Parallel File System

I/O Hardware

1/0 Middleware organizes
accesses from many processes,
especially those using collective
I/O.

MPI-IO, GLEAN, PLFS

1/0 Forwarding transforms |/O
from many clients into fewer, larger
request; reduces lock contention;
and bridges between the HPC
system and external storage.

IBM ciod, IOFSL, Cray DVS

21

How It Works: HPC 1I/0 Performance

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are
used to manage concurrent access:

= Files are broken up into lock units

= (Clients obtain locks on units that they will access before
|/O occurs

" Enables caching on clients as well (as long as client has a lock,
it knows its cached data is valid)

= |ocks are reclaimed from clients when others desire access

If an access touches any

Offset in File
data in a lock unit, the >
lock for that region must | | | | | | |'----------' | |
, & A — |
be obtained before access Lock Lock File Access
OCCUrs. Boundary Unit

S 23

Implications of Locking in Concurrent Access

The left diagram shows a row-
block distribution of data for
three processes. On the right
we see how these accesses
map onto locking units in the
file.

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access
pattern (e.g.accessing a
subarray). This results in many

interleaved accesses in the file.

2D View of Data

H

Offset in File

Y

| |

When accesses are to large contiguous

regions, and aligned with lock boundaries,
locking overhead is minimal.

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

24

/0 Transformations

Software between the application and the PFS performs
transformations, primarily to improve performance.

= Goals of transformations:
— Reduce number of operations to
PFS (avoiding latency)
— Avoid lock contention
(increasing level of concurrency)
— Hide number of clients (more on
this later)

= With “transparent”
transformations, data ends
up in the same locations in

the file

— i.e., the file system is still aware
of the actual data organization

Process 0 Process | Process 2

AN \\\’ * R,/// /

When we think about I/O
transformations, we consider
the mapping of data between
application processes and
locations in file.

25

Reducing Number of Operations

Since most operations go over the network, 1/0 to a PFS incurs

more latency than with a local FS. Data sieving is a technique to

address I/O latency by combining operations:

= When reading, application process reads a large region
holding all needed data and pulls out what is needed

= When writing, three steps required (below)

Application Process
Memory
| y v Y Y
Buffer ‘ »
e -
<LW' I

File) | | | N
Step |:Data in region to be Step 2: Elements to be Step 3: Entire region is
modified are read into written to file are replaced in written back to storage with
intermediate buffer (| read). intermediate buffer. a single write operation.

Avoiding Lock Contention

To avoid lock contention when writing to a shared file, we can
reorganize data between processes. Two-phase 1/0 splits 1/0
into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

= Data exchanged between processes to match file layout

= 0% phase determines exchange schedule (not shown)

Process 0 Process | Process 2

Process 0 Process | Process 2

Memory

Buffer \i[j':

= = L L] —

L B]

e
‘Server 0 | Server | ‘Server 2 ‘Sérver| |
. . Yy r.Y
File [] [] [] []
Phase |:Data are exchanged between Phase 2: Data are written to file (storage
processes based on organization of data servers) with large writes, no contention.

in file.

Two-Phase 1/0 Algorithms

(or, You don’t want to do this yourself...)

Imagine a collective I/O access Offset in File .
using four aggregators to a file [T 7 O [[[N [[[DO [[| e
striped over four file servers A A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly © Aggregator | | Aggregator2 | Aggregator3 | Aggregator4 !
divide the region accessed [T T DO] | | s | [[DO [[[

o e

across aggregators. T T

Aligning regions with lock —> —>
. . . =" "- = --scc==- s e e e e e e e eSS —--———-— [ittt A
Egﬁ::natri.fr? eliminates lock “ + Aggregator | + Aggregator 2 E Aggregator 3 E Aggregator 4 '
(o e o o o o 0 o o 0 o o o D D D M D S R S D G D S G S e lecccesccasncaan=l

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful
when locks are handed out on
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and A. Choudhary,“Dynamically Adapting File Domain Partitioning Methods for Collective
I/O Based on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

S3D Turbulent Combustion Code

= S3Dis a turbulent combustion
application using a direct numerical
simulation solver from Sandia National
Laboratory
= Checkpoints consist of four global
arrays
— 2 3-dimensional
— 2 4-dimensional

— 50x50x50 fixed
subarrays
L2
X
Y
48 48 / 50 / 51
/32 /733 /7 34 / 35
/ 16,/ 17 / 18 7/ 19 / p
Thanks to Jackie Chen (SNL), Ray Grout Pl plplp | ks
. . 0 1 2 3
(SNL), and Wei-Keng Liao (NWU) for 1%v4
providing the S3D I/O benchmark, Wei- P B B P /4/35‘-"
Keng Liao for providing this diagram, C. ' | 3
. P! Fo| Rol Ry)
Wang, H.Yu, and K.-L. Ma of UC Davis for By
image. R2 33‘ Ra| Bs

v

4D subarray in
process F

n=1

local-to—global

/\\/z mapping

n=m-1

m: length of the 4th dimension
n=0 n: index of the 4th dimension

29

Impact of Transformations on S3D 1/0

= Testing with PnetCDF output to single file, three configurations,
16 processes
— All MPI-IO optimizations (collective buffering and data sieving) disabled
— Independent I/O optimization (data sieving) enabled
— Collective 1/0 optimization (collective buffering, a.k.a. two-phase |/0) enabled

Coll. Buffering and | Data Sieving Coll. Buffering
Data Sieving Enabled Enabled (incl.
Disabled Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time 1426.47 4.82 0.60

per proc (sec)

30

Transformations in the 1/0 Forwarding Step

External Disk
network arrays

_ :

\\‘

IIIITIT T

_|

|
Compute nodes 1/0 forwarding nodes Storage nodes
(or I/O gateways) shuffle data
between compute nodes and
external resources, including
storage.

31

Transformations in the 1I/0 Forwarding Step

Another way of transforming data access by clients is by
introducing new hardware: I/0 forwarding nodes.

= |/O forwarding nodes serve a number of functions:
— Bridge between internal and external networks
— Run PFS client software, allowing lighter-weight solutions internally
— Perform |I/O operations on behalf of multiple clients

" Transformations can take many forms:
— Performing one file open on behalf of many processes
— Combining small accesses into larger ones
— Caching of data (sometimes between |/O forwarding nodes)
Note: Current vendor implementations don’t aggressively aggregate.

= Compute nodes can be allocated to provide a similar service

32

“Not So Transparent” Transformations

Some transformations result in file(s) with different data
organizations than the user requested.

" |f processes are writing to different files, then
they will not have lock conflicts
= What if we convert writes to the same file into writes to

different files?
— Need a way to group these files together
— Need a way to track what we put where
— Need a way to reconstruct on reads

= Parallel Log-Structured File System software does this

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.
33

Parallel Log Structured File System

Process 0 Process | Process 2 Process 0 Process | Process 2

S FeR 222 RRRImER A

File data. |

File data.0 File data.2

' Fileindex0 File index.| File index.2

Folder foo/

Application intends to interleave data regions
into single file. |

PLFS remaps 1/0 into separate log files
Transparent transformations such as data per process, with indices capturing locations
sieving and two-phase I/O preserve data of data in these files.

order on the file system.
PLFS software needed when reading

to reconstruct the file view.

See J. Bent et al. PLFS: a checkpoint filesystem for parallel applications. SC2009. Nov. 2009.

A 3

Why not just write a file per process?

File per process vs. shared file access as function
of job size on Intrepid Blue Gene/P system

TOO Yo [
Used at least 1 file per process

Used MPI-IO =

L N

60 %

40 %

20 %

Percentage of core-hours in job size category

0 %

Small jobs Medium jobs Large jobs
(up to 4K procs) (up to 16K procs) (up to 160K procs)

35

I/0 Transformations and the Storage Data Model

Historically, the storage data model has been the POSIX file
model, and the PFS has been responsible for managing it.

" Transparent transformations work within these limitations
= When data model libraries are used:
— Transforms can take advantage of more knowledge

* e.g., dimensions of multidimensional datasets
— Doesn’t matter so much whether there is a single file underneath
— Orin what order the data is stored
— As long as portability is maintained

= Single stream of bytes in a file is inconvenient for parallel

dCcesSsS
— Later will discuss efforts to provide a different underlying model

36

Argon ne°

NATIONAL LABORATORY

Replacing the File Storage Model

Many thanks to:

Dave Goodell Mahmut Kandemir
Cisco Systems Penn State University
Shawn Kim

Penn State University

}i@ U.S. DEPARTMENT OF
“%s ENERGY

The Problem with the File Storage Model

= The POSIX file model gives us a single stream to work with
= HPC applications create complex output that is naturally
multi-stream

— Structured datasets (e.g., PnetCDF, HDF5)
— Log-based datasets (e.g., PLFS, ADIOS BP)

= Dilemma

— Do | create lots of files to hold all these streams?
— Do I map all the streams into a single file?

38

Recall: Data Distribution in Parallel File Systems

Modern parallel file systems internally manage multiple data
streams; they just aren’t exposed to the user.

Logically a file is an

of bytes that can be

extendable sequence 4

referenced by offset
into the sequence.

Metadata associated
with the file specifies
a mapping of this
sequence of bytes
into a set of objects
on PFS servers.

Extents in the byte sequence
are mapped into objects on
PFS servers.This mapping is
usually determined at file
creation time and is often a
round-robin distribution of a
fixed extent size over the
allocated objects.

-

checkpoint32.nc Offset in File -
HOI | HO02| HO3 | HO4 | EOO [EOI | EO2 [EO3 | | EO5 | EO6 [EO7 | EO8 [EQ9 | EIO [EIT |
Space is allocated on demand, so
PFS Server , " " .
e unwritten "holes" in the logical
file do not consume disk space.
S
PFS Server
EOI | EOS5 | EO9
e L A static mapping from logical file
PFS Server to objects allows clients to easily
calculate server(s) to contact for
HO3 "E02 [E06[ET0’ specific regions, eliminating need
to interact with a metadata
PES Server server on each I/O operation.
HO4 EO3 | EO7 | EI|

39

An Alternative Storage Model

= Expose individual object streams for use by users and 1/0O
libraries
— Users/libraries become responsible for mapping of data to objects

= Keep the name space as it is
— Directories, file names, permissions

= General approach is being pursued by the Intel Fast Forward
team (Intel, EMC, HDF5 Group) and also by ANL/Penn State

40

PnetCDF Mapping to POSIX Files

PnetCDF organizes data into byte stream. Record variables
interleaved at end of file. Minimal awareness of FS properties.

...

Metadata "\t
- hame i
- date :
- seed

var 1 —

| Logical pNetCDF Dataset

C FlatF ile : ' Parallel FS — |
5 . Flat File i / 5 Parallel FS 5

Header

: : server Al |
- date :] .

- seed » \ Y

server B| !

)

. distribution

. function
i - single stripe size
. - fixed # servers

41

PnetCDF Mapping to Alternative Storage Model

Variables mapped into distinct objects. Resizing of one variable
has no impact on others.

...

Metadata Nt
- name H
- date :
- seed

H var 1 I I I

. Logical pNetCDF Dataset var2

per-variable
distribution functions

42

PLFS Mapping to POSIX Files

Data from a process lands in a unique file.

Per-process State

hostA hostB
Global Application State R* - -
N AN pLFS Layer
foo

foo/ Parallel Filesystem

hostdA/ =< ™ hostB/
. data.O /\ data.l data.2 /\ data.3
i index.0 index.1 index.2 index.3

43

PLFS Mapping to Alternative Storage Model

Data from a process lands in a unique object; overhead to
create objects much lower than overhead to create files.

Per-process State
hostA hostB

. R | | D .

""""""""""""" AR SLFS Laver”

foo

Global Application State

fo0 Object Store

//

indices dat objects

44

Other Interesting Ideas

= Lots of alternatives being kicked around in various contexts:
— Record-oriented storage
— Forks
— Search / alternative name spaces
— Versioning storage

= Qur hope is that we see a standard replacement emerge for
shared block storage and the file system model

45

Argonn e°

ORATORY

Wrapping Up

Wrapping Up

= HPC storage is a complex hardware/software system

" Principles used in optimization are applicable outside HPC
— Aggregation
— Transformation to match requirements of devices
— Avoidance of contention

= New storage models are being developed
— EXxposing concurrency in storage system

= Generally HPC storage evolution has been slow, needs to
catch up with data intensive storage systems!

47

Argonne°

NATIONAL LABORATORY

In-System Storage

Many thanks to:

Ning Liu Jason Cope

lllinois Institute of Technology DataDirect Networks
Chris Carothers

Rensselear Polytechnic Institute

) U.S. DEPARTMENT OF
“%s ENERGY

Adding In System Storage to the Storage Model

The inclusion of NVRAM storage in future systems is a compelling way to deal with
the burstiness of 1/0 in HPC systems, reducing the peak 1/0 requirements for
external storage. In this case the NVRAM is called a “burst buffer”.

- BG/P Tree Ethernet InfiniBand Serial ATA

e
o
o

— | |

Compute nodes IO nodes File servers Enterprise storage

I/O Forwarding

49

What’s a Burst?

= We quantified the I/O behavior by analyzing one month of

production |/O activity on Blue Gene/P from December 2011
— Application-level access pattern information with per process and per

file granularity

— Adequate to provide estimate of I/0 bursts

Project Procs Nodes Total Run Time Avg. Size and Subsequent Idle Time for Write Bursts>1 GiB
Written (hours) | Count Size Size/Node Size/ION Idle Time (sec)
PlasmaPhysics 131,072 32,768 67.0TiB 10.4 1 33.5TiB 1.0 GiB 67.0GiB 7554
1 33.5TiB 1.0GiB 67.0 GiB end of job
Turbulencel 131,072 32,768 8.9TiB 11.5 5 128.2 GiB 4.0 MiB 256.4 MiB 70
1 128.2 GiB 4.0 MiB 256.4 MiB end of job
421 19.6 GiB 627.2 KiB 39.2 MiB 70
AstroPhysics 32,768 8,096 8.8 TiB 17.7 1 |550.9GiB 68.9 MiB 4.3 GiB end of job
8 |423.4GiB 52.9 MiB 3.3 GiB 240
37 |131.5GiB 16.4 MiB 1.0GiB 322
140 1.6 GiB 204.8 KiB 12.8 MiB 318
Turbulence2 4,096 4,096 5.1TiB 11.6 21 235.8 GiB 59.0 MiB 3.7GiB 1.2
1 235.8 GiB 59.0 MiB 3.7GiB end of job

50

Studying Burst Buffers with Parallel Discrete Event

Simulation

CN

4 application kernel _

joblD = 1;
fileHandle = 13;
r = getrank joblD;
s = getsize joblD;
0=0;

open fileHandle;
o=(16M*r);

‘Mitutﬁeilﬂldh.moi

Oo=(I6M*r)+ (AM * I);
writeat fileHandle, 4M, o;
o=(I6M*r)+ (4M * 2);
writeat fileHandle, 4M, o;
0=(I16M*r)+ (4M * 3);
writeat fileHandle, 4M, o;

sync joblD;

.

close fileHandle;)

i ION | PFS
| |
handshake) |(handshake handshake) L ‘
send i arrive _ process E
| ‘ |
 handshake ' [handshake | |
. end | . ack |
¥ | e N |
4 | ™~ , 2
data send data arrive]~—f = | ©
_ | _ Pprocess | S
| | (o)
: | 2
' —
| burst buffer > ™%, g
i filled | 8
*
| |
! No ! @
! (reserve J'>
| ace |
| l (P J)
: el I :
(" data ack data ack release L.
\ i Pace J [T\

51

Burst Buffers Work for Multi-application Workloads

Burst buffers improve
application perceived
throughput under mixed 1/0
workloads.

Applications’ time to solution
decrease with burst buffers
enabled (from 5.5t0 4.4
hours)

Peak bandwidth of the
external I/O system may be
reduced by 50% without a
perceived change on the
application side

Tool for co-design

1000 =

aggregate bandwidth (GiB/s)

aggregate bandwidth (GiB/s)

100 =

M PlasmaPhysics ® Turbulence 1

AstroPhysics

10 =

13

0.1 -

0 1 2 3 B 5
time (hour)
1000 2 M PlasmaPhysics M Turbulence 1 1 AstroPhysics

100

10 %

1z

0.1

0 1 2 3 4 5
time (hour)

Application perceived I/O rates, with no
burst buffer (top), burst buffer (bottom).

52

Beyond Burst Buffers

= Obviously lots of other potential uses
— Checkpointing location
— OQOut-of-core computation
— Holding area for analysis data (e.g., temporal analysis, in situ)
— Code coupling
— Input data staging

" |mproves memory capacity of systems
— More data intensive applications?

= Placement of NVRAM will matter

— On 1I/0 forwarding nodes (as in our example)
— On some/all compute nodes?

53

