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Abstract—In today’s world, the scientific community is moving
towards distributed systems which plays an important role on
achieving good performance and scalability. Task scheduling and
execution over large scale, distributed systems plays an important
role on achieving good performance and high system utiliza-
tion[15]. Most of todays state-of-the-art job execution systems are
centralized architectures, which have inherent limitations, such as
scalability issues at extreme scales and single point of failures. On
the other hand distributed job management systems are complex,
and employ non-trivial load balancing algorithms to maintain
good utilization. Thus we propose a distributed task execution
framework which will provide the Load Balancing inherently
using a distributed message passing Interface which is essentially
a Distributed queue.

CloudKon+ is a distributed task execution framework that can
support distributed HPC[12] and MTC[15] scheduling, running
millions of tasks on multiple nodes. It is built on FaBRiQ[2]
which is a distributed message passing interface with high
system utilization and scalability. The goal in this project is to
enhance existing CloudKon[1] by replacing the Amazon SQS[18]
Queue and Amazon DynamoDB[19] with FaBRiQ[2] and ZHT[3]
which makes it possible to run on any public or private cloud
infrastructure, Supercomputers, Science Grids[7] etc. We also
propose an independent Monitoring framework which provides
us several ways of knowing what the workers are up to, helping
us to find potential bottlenecks in the process.

I. INTRODUCTION

The goal of a Distributed Task Scheduling System is to uti-
lize the computing power of supercomputers, workstations and
Distributed Systems present across the internet and maximize
the system utilization and performance of the system. Hence
it is predicted that exascale systems will come into being in
the next decade. With the dramatic increase of the scales of
today’s distributed systems, it is urgent to develop efficient
job schedulers. There are various distributed systems in the
current world such as Hadoop[29],sparrow[26], slurm[25],
condor[4],PBS[5], SGE[6]. Most schedulers have centralized
Master/Slaves architecture,where a centralized server is in
charge of the resource provisioning and job execution. Most
have poor scalability at the extreme scales of petascale sys-
tems[8] with fine-granular workloads. The solution to this
problem is to move to the decentralized architectures[5][4]
that avoid using a single component as a manager. Distributed
schedulers are normally implemented in either hierarchical or
fully distributed architectures to address the scalability issue.
The problem with centralized scheduler is that it will have low
performance and system utilization for petascale systems[8]

with fine granularity workloads.

Only limited systems support HPC[12] workload which
can be performed on supercomputers and Grid systems. Hence
we have rebuilt CloudKon[1] in C++ in order to integrate
with FaBRiQ[2] and ZHT[3] and also to support HPC[12]
workloads. Hence the Proposed system can also be built upon
both private or public Cloud infrastructure, supercomputers
and grids[7]. Task execution framework are not new in the
distributed computing area. They have been around for quite
a long time and have played a major role in distributing the
task. Currently MATRIX[30] has similar architecture as Cloud-
Kon[1] and CloudKon+, except that CloudKon[1] focuses on
the Cloud environment, and relies on the Cloud services,
SQS[18] to do distributed load balancing, and DynamoDB[19]
as the DKVS to keep task metadata while MATRIX focuses
on Many-Tasking Computing where it uses DAGs.

As Cloudkon[1] is platform dependent and can run only
on Amazon cloud infrastructure we have been restricted to use
Amazons services such as SQS[18] and DynamoDB[19]. Also,
Cloudkon[1] is implemented in Java making use of Amazon
APIs. In this paper, we design and implement a scalable task
execution framework that is platform independent and can be
used in both public and private cloud infrastructure, and aimed
at supporting both many-task computing and high-performance
workloads.

II. RELATED WORK

MATRIX[30] a distributed task execution fabric which
adopted the adaptive work stealing for distributed load bal-
ancing and a distributed key-value store for task metadata
management. The work stealing from neighbours could lead
to a bottleneck.

Falkon [9] have centralized master/slaves architecture where
a controller is handling all the activities, such as metadata
management, resource provisioning, and job submission. This
centralized architecture is not suited for the demands of
exascale computing, due to both poor scalability and single
point-of-failure.

Sparrow[26] is a distributed task scheduler with multiple
schedulers pushing tasks to workers. Each scheduler knows all
the workers. When dispatching a batch of tasks, a scheduler
probes multiple workers (based on the number of tasks), and
pushes tasks to the least overloaded ones. Once the tasks are
submitted to a worker, they cannot be migrated in case of load



imbalance.

CloudKon[1] is a compact and lightweight distributed
task execution framework that runs on the Amazon Elastic
Compute Cloud (EC2) [17] by leveraging complex distributed
building blocks such as the Amazon Simple Queuing Service
(SQS) [18] and the Amazon distributed NoSQL key/value store
(DynamoDB) [19].Condor [4] was implemented to harness the
unused CPU cycles on workstations for long-running batch
jobs.

Slurm [25] is a resource manager designed for Linux
clusters of all sizes. It allocates exclusive and/or non-exclusive
access to resources to users for some duration of time so
they can perform work, and provides a framework for starting,
executing, and monitoring work on a set of allocated nodes.

Portable Batch System (PBS) [5] was originally developed
at NASA Ames to address the needs of HPC[11], which is a
highly configurable product that manages batch and interactive
jobs, and adds the ability to signal, rerun and alter jobs. LSF
Batch [20] is the load-sharing and batch-queuing component
of a set of workload management tools.

All these systems target as the HPC[12] or HTC
applications, and lack the granularity of scheduling jobs at
finer levels making them hard to be applied to the MTC[15]
applications. Whats more, the centralized dispatcher in these
systems suffers scalability and reliability issues. Hence we can
conclude that Distributed Systems are more scalable with the
ability to handle low granularity tasks at high Frequency. Thus
Distributed systems like Matrix and sparrow can run at a higher
scale and give significantly high throughput. But the Task
Execution Framework systems like Cloudkon and Cloudkon+
can give a better performance than Distributed schedulers as
the load balancing is done inherently.

III. SYSTEM ARCHITECTURE

A. CloudKon+

Build on top of FaBRiQ[2] a distributed MTC[15] sched-
uler (called CloudKon+), similar to that of CloudKon[1] (with
the exception that it will be platform independent of any
cloud). In cloudkon[1], the distributed message queue used
is SQS[18] (Simple Queuing Service ) which is provided by
Amazon. Since SQS[18] only assures at least once delivery
of the message, this leads to duplicate messages being sent
to more than one worker at the same time. This problem
was overcome in Cloudkon[1] by using DynamoDB[19] to
map each message retrieved by the workers and since Dy-
namoDB[19] was atomic in nature it prevent duplicate mes-
sages. Hence we propose a solution called cloudkon+ ,which
replaces the SQS[18] and DynamoDB[19] setup in cloud-
kon[1] with FaBRiQ[2] which is also a distributed message
queue which assures exactly once delivery. In order to achieve
the best performance, and for your system to run in most dis-
tributed systems environments, CloudKon+ needs to be written
in C++, since FaBRiQ[2] is in C++.The main components of
the CloudKon+ for running MTC[15] jobs are Client, Worker,
Global Request Queue implemented on FaBRiQ[2] and the
Client Response Queues which are implemented using TCP
sockets.

The underlying structure of FaBRiQ[2] queue,is that

Fig. 1. CloudKon+ architecture overview.

each message is presented as a key value pairs in ZHT[3].
The ZHT[3] maintains a global Hash Table which stores
the values under the key. ZHT[3] uses metadata table which
is synchronized across the other nodes in a ring fashion.
The ZHT[3] nodes communicate with each other using TCP
connection and google protocol buffer to serialize the data
send it across the network. Hence the message inserted will
be placed on a random node and this location can be mapped
using the metadata table. Message hopping is done by using an
algorithm which selects the messages from that node first and
if not present then selects a random node to retrieve from using
the metadata table till it gets a message. The algorithm finds
an message based on randomized search which gives a average
hop count of 3 for few messages.Our system architecture will
contain a client which pushes messages on the FaBRiQ[2]
global request queue. The messages would contain the details
of the client along with the work to be executed and the worker
would parse the data that was popped from FaBRiQ[2]. The
worker would process the data and send a message back to
the client identifying it with client ip and using a socket TCP
connection. The client will run a background thread which
keeps listening in the socket port for the messages from the
worker to get the status of the task done. Hence the client will
map the number of tasks sent to the messages received.



B. Monitoring System

An independent monitoring system which will monitor the
states of each worker node and the entire system as a whole.
Each worker through an instance has the ability to send its
own stream of data. Because we wanted encapsulation as
much as we could get, we abstracted our client api. When
a worker calls our client api to send its data, we create a
separate thread to execute this process. This is done so we
dont block the worker node from doing what it was made to
do. Our underlying monitoring system uses Apache Kafka[32],
a distributed messaging system. With a Connector (Consumer
process), we can consume and process data from Apache
Kafka[32]. Connectors are written by those who need them.
We are working towards making the monitoring system as
independent as possible by allowing owners of workers define
whatever data they need and writing Connector services to
consume and process the data. Since we know that we would
eventually run out of memory because of the many writes,
Apache Kafka[32] includes a policy where owners define how
long they want their data to remain in memory before pushing
them to some form of external storage.

Fig. 2. CloudKon+ architecture overview.

Our currently design architecture due to time constrain,
collocates the web server and Apache Kafka on the same node.
This however doesnt show any form of lag on our system as
can be seen from our latency evaluation. We went for a web
server approach to receiving data mainly because our Workers
are written in the c/c++ language. We also didnt want to tie
down our workers to be dependent on Apache Kafka, in case
the api for Kafka changes. Instead we choose to go with a
schema. Owners define a schema using Apache Avro, they then
collect data that meets this schema requirements and send it
over the network to our web server. Our worker client API
does exactly this. When a worker takes a task to process, we
mark the state as 1, when are worker task is completed, we
mark the worker state as 0. We have explained how we have
used this state changed. On the other hand our Connectors run
on different node.

C. Kafka Architecture

We needed to use a stream based processing
approach[17,18]. Using a stream based approach required that
our data had to be immutable and as a result had to come in
order. We decided to use Apache Kafka[32]. Apache Kafka[32]

Fig. 3. Throughput.

is a distributed system designed to handle streams. It is built
to be fault-tolerant, high-throughput, horizontally scalable, and
allows geographically distributing data streams and processing.
Kafka[32] is a structured commit log, which solves the need
for ordered messages

IV. SYSTEM DEPLOYMENT

The System can be deployed by downloading the
source code from . Use the CloudKon+ Installation. The
README.md file included with in the file and step wise
instruction as to install and run the files are given. First we
need to start up the ZHT[3] which is the base process for
both FaBRiQ[2] and FusionFS, which in turn will also be
started. Then if the monitoring of the nodes is required, we
start it up next as a seperate cluster of Kafka[32] and tomcat
server. We then start up the monitoring node which observe
the whole system. Finally we start up the workers and clients
of the CloudKon+ to send and receive the messages.

V. EVALUATION

A. Testbed

We deployed and ran CloudKon+ on Amazon EC2[17]
instances. We have used t2.medium instances on Amazon
EC2[17] as the virtual machine contains 4 hardware threads
and it is the most balanced instance. We have run all of
our experiments on us.west.2 datacenter of Amazon. We have
scaled the experiments from 1 up to 16 nodes. In order to make
the experiments efficient, client and worker nodes both run on
same node. All of the instances had Ubuntu 14.04 Operating
Systems. Our framework works on any OS that has a JRE
1.7,Openssh,Amazon AWS console,G++,GCC,Protobuf- 2.4.1
and protobuf-c-0.15,. We have used Bash scripting language
for parallel ssh to start ,stop and execute the servers in each
node simultaneously, file transfer from EC2[17] instances,
Parallel-SSH for parallel execution of client and server code
on EC2[17] instances , get EC2[17] IP address, etc.,

B. Throughput

In order to measure the throughput of our system we run
sleep 0 tasks. There are 1 worker threads running on each in-
stance. The client submits about 10000 tasks to the FaBRiQ[2]
queue.Figure (number) provides the throughput of CloudKon+
on different scales. Each instance will run a worker process

https://github.com/arihant15/CloudKonPlus


and a FaBRiQ[2] process. Thus there will be a overhead of
the FaBRiQ[2], ZHT[3], monitoring process,Cloudkon+ client
and worker on each node. Also as the no of task remaining
in the FaBRiQ[2] is decreasing, the pop of a message finds it
hard to retrieve a message as only a few remain in the system
and those can be found using only multiple hops causing a
delay for each pop.

Fig. 4. Throughput-Diff workload range

As we can see from the figure 4 that cloudkon+ performs
in the same scale as the cloudkon. They both are parallel lines
and the difference in their throughput is due a few differences.
Cloudkon was tested using c3.large instances as test nodes
while we used t2.medium as the test nodes. Also cloudkon
was given a scaling workload of tasks which went from 16000
to 1.38 million tasks. But cloudkon+ on the other hand was
tested with a fixed workload of tasks. We can see that the
throughput difference is also due to the fact that there is a
high overload in cloudkon+ as FaBRiQ,ZHT,Cloudkon+ client
and Monitoring system are running on the same system hence
using up cpu cycles while compared to cloudkon’s SQS and
dynamoDB which are seperate from the system.

Hence we tried to compare again (figure 5) with other
systems like matrix having the same workload range and using
the same instance type. We found that the system performed
better at the same range. Hence the Cloudkon+ system scales
properly as the no of nodes increasely, thus it distributes evenly
and the overload also increases gradually but compared to
the overall system workload it is low. Hence cloudkon+ can
perform better than matrix and cloudkon at small scales of the
same workload. We used a simple cloudkon implementation
using just a push and pop system using SQS and dynamoDb
without any threading or batching. Matrix was implemented
in a similar manner.

C. Efficiency

We tested the system efficiency in case of both homo-
geneous tasks. The homogeneous tasks have a certain task
duration length. Therefore it is easier distribute them since
the scheduler assumes it takes the same time to run them.
This could give us a good feedback about the efficiency of the
system in case of running different task types with different
granularity. We can also assess the ability of the system to
run the very shot length tasks.In this section we evaluate
the efficiency of CloudKon+ second tasks. As shown in the

Fig. 5. Throughput-Same workload range

graph(figure 6) the Cloudkon+ system performs with high
efficiency for small no of worker as the system overhead
is small. But as the no of workers increases ,the efficiency
decreases as the overhead of maintaining FaBRiQ[2] and
ZHT[3] in the same systems as the worker increases drastically.
The no of TCP connections increases exponentially as the no
of nodes in server increase ,since the cost of maintaining a
distributed synchronous state across the system is high. Also
as the no of task remaining in the FaBRiQ[2] is decreasing,
the pop of a message finds it hard to retrieve a message as
only a few remain in the system and those can be found using
only multiple hops causing a delay for each pop.

Fig. 6. Efficiency

D. Monitoring System - Latency

The Monitoring System was setup to monitor the workers
in the wordcount implementation of CloudKon+, through this
we were also able to calculate the average latency from the
workers to the monitoring system and back for a scale of 1 to
2 workers with a file sizes from 5, 10, 15, 20 and 25 MB
respectively. The worker when it retrieves a task from the
FaBRiQ it sends a message to the monitoring system. The
monitoring system after processing the message sends back a
confirmation which is then timed by the worker. Hence we
have plotted a graph (figure 7) which maps the up and down
communication latency of the system.

VI. USE CASE IMPLEMENTATION

A. Wordcount

We have implemented the wordcount use case in a style
similar to swift using cloudkon+ with the help of FusionFS



Fig. 7. Latency

as a distributed storage system for varying input sizes of
1,5,10,15,20 and 25 MB. The client breaks the input into
chunks of 100 kb and stores it under fusion mount point
created by FusionFS. Then the client maps the split files
locations and sends it to the worker through the FaBRiQ[2],
which in turn reads the input and then does wordcount using
a Hashmap implementation outputting it to a intermediate
output file. Once the tasks are completed client is notified
which merges it and sorts the result. Hence we built a use
case implementation of our system by adding FusionFS as a
distributed storage and ran a Wordcount program on it and
benchmarked its Throughput (figure 8).

Fig. 8. Word-Count throughput

B. Worker State - Monitoring

As one of our use cases, we wanted to monitor the heart
rate (figure 9) of our workers. We implemented a Collector
service that consumes streams of data from Apache Kafka
which have have been provided by the workers. As stated
earlier, when a client API takes a task to process we send
the current state of the worker (a 1) to the monitoring system.
When the worker is done completing a task, we again send
the current state of the worker (a 0) to the monitoring system.
On the other end, the Collector takes the data computes on it
and sends it to file.

VII. FUTURE WORK

Implement scientific HPC[12] and MTC[15] use cases
using Cloudkon+ and then benchmark it to observe the per-
formance. Implement Cloudkon+ to use DAG to map the task
dependencies.

Fig. 9. Monitoring of Worker State

Implement the monitoring system to use RRDtools to
generate and print graphs automatically and thus create a
versatile system.

VIII. CONCLUSION

We learned a lot about distributed task scheduling sys-
tems. We understood the various bottlenecks and hurdles in
distributed systems and also built a new Cloudkon+ system
which implements a task execution framework. We have also
implemented a independent monitoring system which collect
the monitoring data needed to plot graphs which can be cou-
pled with any Distributed system. Hence we have learned the
working behind Cloudkon[1], FaBRiQ[2],Kafka[32],FusionFS
and ZHT[3]. We also became familiar with the Amazon Aws
console , problems in distributed system, multithreading in c++
and java,developing a scalable and efficient code suitable for
distributed system, debugging a highly distributed and multi-
threaded code, benchmarking at high scales, shell scripting
and shell commands for parallel ssh. With Cloudkon+, we
were able to build a system which can be deployed in both
HPC[12],MTC[15] and Cloud environments. With monitoring
system, we built a versatile system which can be integrated
with any existing distributed system.
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