
FusionFS: Enabling Distributed Indexing And Text Search
Kevin Brandstatter

Illinois Institute of Technology
kbrandst@hawk.iit.edu

ABSTRACT
This project will focus on extending the functionality of
FusionFS[1] to enable file-system wide text indexing and
searching capabilities. It will build on existing indexing
libraries, and utilizes the distributed architecture in order
to enable fast distributed text searching across a distributed
file-system

1. INTRODUCTION
Scientific applications and other High
Performance applications tend to focus on the
generation of large amounts of data for analytic
purposes. This is the nature of data science. The
big challenge in this field of science is being able
to efficiently process results and to locate the
items of interest in the results. Since much of the
output data of some applications is primarily text
based, being able to search the text for certain
strings or patterns in order to locate the
information relevant to the interest of the
analyzer, it is necessary to build an index of the
output. As data becomes large, the index also
becomes large. Much the same as we must
distribute the data across multiple systems
because of space requirements, the index must
also be able to be distributed and still efficiently
maintained and queryable. Thus we present this
project to enable transparent built in indexing
capabilities to FusionFS. This will allow FusionFS
to maintain an up to date distributed index that
can be queried through a standard apiby user
applications.

2. RELATED WORK
Indexing text based files for searching is a very
common practice, and there are many utilities for
the function of building and creating and index of
singular files on a single machine. However, there
are very few distributed indexing
implementations. One common example of
distributed indexing systems is search engines
such as Google[2]. However, these search engines
are primarily web based which means their index
is build using link crawling and aggregation, and
requires enormous processing power to build and

keep up to date. With this project, we have more
modest goals of simply indexing the files that are
stored in FusionFS. Thus we looked for projects
that implemented text and file based distributed
indexing mechanisms. This lead us to the Apache
Solr project[3]. Solr operates as a standalone
distributed index, in which clients send it
documents to index, and then allows queries to
the system for text strings and returns a resulting
list of documents. Being a standalone system, it is
better deployable for enterprise operations, but
not for big data operations that often accompany
data science, and the other use cases of FusionFS.
Finally, being written in Java, it would not be
supported by most supercomputer and cluster
environments, and thus would need to be external.
As an external platform, it introduces significant
overhead of additional storage and resources, as
well as failing to take advantage of the low
latency networks that the applications are running
on.

3. Implementation
3.1 File Indexing
Since text based indexing and search is not a new
concept, there is no need to create our own
indexing library. Rather, we would like to make
use of the Apache Lucene[4] project, which is the
basis for Solr. Since the Lucene core is written in
java, it isn't feasible to use it directly. Through
some searching, we located a C++ implementation
of the Lucene library called Clucene[5]. Being
written in C++ has two main advantages. First, it
can be easily integrated into FusionFS, since
FusionFS is written in C++ as well, so the library
routines can be used directly. Secondly, this makes
it faster than a java implementation as it does not
have the overhead of the JVM.
The Clucene API provides all the necessary
function for creating indexes of documents. The
main functions we will be using are the functions
to add and remove documents to the index, and
the functions to search for keys in the index. One
difficulty will be understanding the library, as the

mailto:kbrandst@hawk.iit.edu

amount of documentation is lacking. We hope that
we will be able to compliment it with the
documentation of Apache's Lucene, as Clucene
claims to be an implementation.
3.2 Library Abstraction
In order to make integration into the filesystem
pieces very simple, we built a core library set of
functions such as index_document and
delete_document. This also keeps the method of
indexing separate from the filesystem. The
benefits of this are that if at any point we want to
change how to index documents, we only need to
modify the library routines, and the filesystem
needs not be aware of the changes. This is
necessary because the Clucene library is very
flexible and require the program to determine
what and how to index and organize data.
Currently the index operation only indexes the
raw contents of the file, but it could be modified
in the future to also index metadata about file
size, creation time, or any other data that may be
useful to users for querying files.
3.3 FFSNET Extension
At first we attempted to build the indexing
functionality directly into the fuse module. This
worked well for local file operations, as all the
data is local and it only required additional
function calls. However, this proved difficult to
scale to multiple node deployments as the module
had no easy way to operate on remote files. This
wasn't a problem for indexing, since all indexing
happens locally, but removing a file from a remote
node's index proved unfeasible. Thus to address
this issue, we decided to extend the file transfer
service, ffsnet, to also handle requests for index
and de-index operations. We were able to use
much of the same logic as file operations, since
the interface is very similar. Since index
operations can take a long time to complete if the
input file is large, we don't want the index
operations to prevent a file operation from
occurring. Therefore, the index operations are
received by a separate server process than the file
operations. Thus file operations can still be
processed while an index is occurring.
Furthermore, since all indexing happens on a
single process, it alleviates the issue of contention
over the index and maintains the order of
operations.

3.4 Local File Indexing
Since the files are distributed among the nodes
that comprise FusionFS, we decided it would be
easiest for each node to maintain the index of the
files that reside on it. This is possible because
FusionFS is designed to give applications local
read and writes. Therefore, each node has a
scratch locations of all files that are stored on it.
To build the index, we use FusionFS to translate
the absolute path of each file in this directory to
the FusionFS relative path as the index key. Then
using the Clucene library, we add each file to the
local index. We can do this because each file
resides in whole on a particular node, and is not
segmented into blocks or chunks as it is on some
other distributed storage systems.
3.5 File De-Indexing
File de-indexing occurs in two cases. The first
case is the case of a file being removed from the
system. The second case is of a file being
relocated to a local node for writing. In either
case the same process can be taken. Since the file
will be removed by a message to the remote nodes
ffsnet daemon, we simply add another message to
be sent prior to that nodes de-index ffsnet
daemon. Thus the file is removed from the remote
nodes index, and then removed from the
filesystem. Finally, in the case of a relocation, the
file that now resides in the local node will be
added to the local node's index upon completion
of the write.

3.6 Update On Close
The final piece to effective indexing for searching
is to keep the index up to date. In order to do
this, we need only modify the index when a file
changes. Since this is integrated into the file-
system, we can issue a index update whenever a
file is closed. Clucene does not provide an update
function, so the document must be deleted and re-
added. The other case to consider is that a file
may be moved from one node to another. In this
case, we can have triggers that wrap the file send
and receive functions that delete the document
from the sending node's index, and add it to the
receiving node's index upon completion of
transfer. Finally, since FusionFS keeps track of
whether or not a file is written to (for file transfer
purposes), we utilize the same information to

prevent indexing a file that has not been modified.
Thus reading a file will not trigger an index and
will prevent the additional overhead from being
incurred.

3.7 Distributed Search
Currently we have functionality to query a local
nodes index for a specific key word or phrase. In
order to search the entire system we plan to add a
query server. The query server will receive
requests from a client, then run the query on the
node's local index. It will then return a top subset
of the results to the client, who will aggregate and
present the results. This work is currently in
progress.

4. EVALUATION
4.1 Test Bed
For our initial evaluation runs we deployed our
solution on an amazon EC2 small instance. This
deployment limited the scale of our tests, however
we did not have sufficient time to deploy and
evaluate on larger instances.
4.2 Experiment Setup
To evaluate the solution, we were primarily
interested in understanding how much overhead
adding this live indexing support to the file system
incurred. As such, we sought to provide different
workloads using differnet sized files and the
number of them. As such, we gathered a text data
set of 1 GB in sized for our initial testing. We then
did tests of indexing the dataset with varying file
sizes from 10MB to 1GB. Smaller file sizes
proved difficult to test in this configuration
because of limitations on directory size in
FusionFS.

4.3 Results

Figure 1: Throughput of write operations

As is shown in figure one, the throughput of write
operations is only minimally affected by the
addition of the index operation. This minor
performance penalty is due to the need to send an
additional message to the server. Additionally, this
is dependent on the number of files, more than the
total amount of data. Thus indexing fewer but
larger files sees less performance impact, up until
the files create a bottleneck on memory usage.
Similarly, this is the same of remove operations.
Because the index and de-index requests are
asynchronous, the only additional work needed is
a single network communication.

5. FUTURE WORK
5.1 Distributed Search
The primary future development is to implement
the program to search the system wide index and
return results. The approach has been so far
outlined, but due to time constraints,
implementation has yet to be completed.

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

10MB 100MB 1024MB
0

5

10

15

20

25

30

35

40

45

Writing File to FusionFS

No-Index

Index

File Size

T
h
ro

u
g
h
p
u
t (

M
B
/s

)

Figure 2: Throughput of remove operations

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

10MB 100MB 1024MB
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Deleting File from FusionFS

 No-Index

 Index

File Size

T
h
ro

u
g
h
p
u
t (

M
B

/s
)

5.2 Further Benchmarking
We also plan to expand our benchmarking and
evaluation. First, we would like to experiment
with smaller files, and lots of files in order to fully
understand the impact of the additional network
communication. In addition to this, we still need
to evaluate at scale. This requires us to redeploy
over multiple nodes, and create a workload using
multiple writers and removers in order to evaluate
any issues with performance or reliability in a
multi user, multi access system. Finally, after the
distributed search is completed, we will need to
evaluate its performance and accuracy, as well as
it's improvement over other methods of searching.
5.3 Comparisons
In order to better evaluate our solution, we aim to
compare it to existing ones. First, we want to
show that an indexed approach to searching is a
worthwhile improvement to existing methods.
The primary existing method is to issue a
recursive grep through the filesystem. We expect
that this will be very slow, and seek to show that a
distributed index based approach makes this
search fast enough to be more practical and a
worthwhile trade-off in performance. Finally, we
want to evaluate it in comparison to existing
distributed search platforms such as Solr, in order
to effectively judge our ability to scale and search
with reasonable performance.
6. CONCLUSION
We present a solution to adding functionality for a
distributed up to date index of a distributed file-

system. While it faces many challenges, we hope
to show that it introduces little overhead in order
to be a reasonable addition, while providing a
very fast and scalable method to searching the
contents of the file-system. This work will be
useful for searching for specific result files from
many output files for the use cases of finding the
data needed without need for complex
hierarchical storage patterns,, as well as providing
the baseline for an extensible system that scientists
could use to index their results at creation time
for faster processing and querying.

7. REFERENCES
[1] FusionFS

http://datasys.cs.iit.edu/projects/FusionFS/
[2] “Crawling and Indexing”

http://www.google.com/insidesearch/howsear
chworks/crawling-indexing.html

[3] Apache Solr http://lucene.apache.org/solr/
[4] Apache Lucene http://lucene.apache.org/core/
[5] Clucene http://clucene.sourceforge.net/
[6] Zhao, Dongfang; Zhao Zhang, Xiaobing

Zhou, Tonglin Li, Dries Kimpe, Phil Carns,
Robert Ross, and Ioan Raicu; FusionFS:
Towards Supporting Data-Intensive Scientific
Applications on Extreme-Scale High-
Performance Computing Systems

[7] Dean, Jeffery;Sanjay Ghemawat; MapReduce:
Simplified Data Processing on Large Clusters.
OSDI 2004

http://clucene.sourceforge.net/
http://lucene.apache.org/core/
http://lucene.apache.org/solr/
http://www.google.com/insidesearch/howsearchworks/crawling-indexing.html
http://www.google.com/insidesearch/howsearchworks/crawling-indexing.html
http://datasys.cs.iit.edu/projects/FusionFS/

	1. INTRODUCTION
	2. RELATED WORK
	3. Implementation
	3.1 File Indexing
	3.2 Library Abstraction
	3.3 FFSNET Extension
	3.4 Local File Indexing
	3.5 File De-Indexing
	3.6 Update On Close
	3.7 Distributed Search

	4. EVALUATION
	4.1 Test Bed
	4.2 Experiment Setup
	4.3 Results

	5. FUTURE WORK
	5.1 Distributed Search
	5.2 Further Benchmarking
	5.3 Comparisons
	In order to better evaluate our solution, we aim to compare it to existing ones. First, we want to show that an indexed approach to searching is a worthwhile improvement to existing methods. The primary existing method is to issue a recursive grep through the filesystem. We expect that this will be very slow, and seek to show that a distributed index based approach makes this search fast enough to be more practical and a worthwhile trade-off in performance. Finally, we want to evaluate it in comparison to existing distributed search platforms such as Solr, in order to effectively judge our ability to scale and search with reasonable performance.

	6. CONCLUSION
	7. REFERENCES

