
 Hadoop Mapreduce OpenCL Plugin
 Vivek Viswanathan

Dept of Computer Science
Illinois Institute of Technology
Chennai, Tamil Nadu, India

+91-9500011466
vviswan2@hawk.iit.edu

ABSTRACT

Modern systems generates huge amounts of information

right from areas like finance, telematics, healthcare, IOT

devices to name a few, the modern day computing

frameworks like Mapreduce needs an ever increasing

amount of computing power to sort, arrange and generate

insights from the data.

This project is an attempt to harness the power of

heterogeneous computing, more specifically take benefit of

parallelism offered by modern day GPU‟s and accelerate

data processing of Mappers and Reducers in the Mapreduce

framework. In this regard, AMD‟s opensource APARAPI

library was used as the foundation to develop a simple to

use heterogeneous framework. The framework uses both the

CPU and GPU to perform processing by translating

sections of Mapreduce Java bytecodes to OpenCL and

executing the same in parallel in AMD GPU‟s.

Typical Mapreduce tasks were then run in this framework

with various types of workloads and while no perceptible

improvement in speedups were noticed the framework

shows excellent promise in computing complicated parallel

data in upcoming high performance computing workloads.

KEYWORDS

Hadoop,Mapreduce,OpenCL,CUDA,APARAPI,rootbear,

Apache, Storm, Spark, JNI.

1. INTRODUCTION
While the size and complexity of data processing keeps

including from financial analytics, healthcare data and

records, data from IOT devices the task of processing them

normally falls to the Hadoop platform using Mapreduce

framework. The speed of computing using Mapreduce is

limited by the amount of processor cores available in the

compute/data nodes and with raising thermals/die space

limitations makes increasing the compute power a costly

proposition. To mitigate the scenario this project aims to

investigate the feasibility to harness the growing and

inherent parallel processing power of GPU‟s by developing

a framework for current Big Data data systems namely

Mapreduce. The solution developed involves seamless

integration of Mapreduce with OpenCL GPU computing

framework running on AMD video cards in Linux

environment with Hadoop environment.

The framework was then tested with IO intensive, Compute

intensive and mixed workloads to measure the relative of

performance of the system when compared with native

implementation.

1.1 Background Information:

 In the current world of big data sciences where

hardware is becoming extremely affordable with distributed

systems especially the systems based on Hadoop storing all

the data generated be complex and varied and systems,

processing all the generated data still requires heavy

amount of CPU processing with multiple worker nodes and

high power consumption. In such a scenario this project

attempts to bridge the performance of Hadoop clusters by

leveraging the native parallelism of GPU‟s to increase the

speed up of the cluster as a whole by developing a plugin

for Hadoop and GPUGPU computing world.

 OpenCL is a popular computing framework for

HPC (High Performance Computing) which has the ability

to run on AMD, Intel and Nvidia (till Femi architecture)

platforms without the limitations of other for Vendor lock-

in for Nvidia GPU‟s like CUDA, platform lock-in like C++

AMP along with inability to run on CPU‟s coupled with

startup overheads which makes small tasks acceleration

time consuming and difficult and finally OpenACC

framework‟s lack of maturity and support by major players

makes the OpenCL framework an viable and interesting

framework for the project. OpenCL is primarly

programmed using the OpenCL „C‟ wrappers.

Mapreduce is the primary programming framework/model

of Hadoop clusters and developed using the Java

programming language.

1.2 Motivation:

There is an explosion of wearable devices and sensors in

the market with tiny pedometers to advanced ECG sensors

and body area networks which could be worn around the

human body which generates humongous amounts of data.

Example of such devices are American Megatrends

(AMI),Inc B.O.L.T. and Vitals Fit product lines. AMI‟s

healthcare group product is among the top 10 finalist team

in Tricorder X-Prize competition run by the X-Prize

foundation and the product named VitalsFit generates a

heavy amounts of data right from acting as activity tracker

to ECG, Blood Oxygen, Glucose, Urine analysis and host of

other sensor parameters from a single unit.

Conventional way of storage of this type of data would be

to use a Blade Server with SAN boxes and arrays of

JBOD‟s running any server OS with a RDBMS. Since the

amount of data generate and transmitted by these sensors is

huge conventions RDBMS running SAN based blade

solutions would prove to be prohibitively expensive to store

and then to perform any analytics on the data which runs to

the tune to hundreds of Terabytes of different type of

structures, semi-structured and un-structured data which

would keep growing.

Thus the storage and processing of this data falls to Hadoop

based clusters since conventional systems could not handle

such type of loads. Hadoop based cluster solution is

proposed with HDFS file system, HBase NoSql database

engine for datastore, Apache Storm for real time analytics

of the data and Apache Ambari manager for management of

the cluster.

Apache Hadoop is a software framework for processing of

huge volumes of data across cluster of machine with a

single programming model. Hadoop include HDFS or the

Hadoop Distributed file system which is a distributed file

system with inbuilt fault tolerance, replication and high

availability (from 2.0.0).

In such a system the amount of mathematical processing

required to computer each user‟s health-parameters, relating

the trends pulled from the body with their physical activities

and sleep patterns, designing mapping solution between

their EMR (Electronic Medical Records) and current health

status requires running of complicated computation

intensive algorithms.

While the current Big Data systems could handle such loads

it requires heavy amount of computation nodes in-terms of

data nodes and usage of alternate frameworks like Spark,

Storm with huge amounts of RAM to perform In-Memory

Processing to achieve with less latency and high

throughput.

The above approach is a financially costly proposition and

also draws high power consumption owning to addition

nodes added. Hence the reasoning to integrate the popular

Mapreduce framework with GPU‟s to offload the

processing to investigate the feasibility of such a system

while measuring improvements to such a system.

2. PROPOSED SOLUTION
In Mapreduce the Map phase is fully parallel and the

combiner phase is local to a machine and is semi-parallel

and in a typical computation anywhere from 60% to 80% of

the total time would be spent on these two phases of

Hadoop execution. The objective was to create a plugin for

which would be inhereited by Mappers and Reducers to

accelerate the parallelizable sections of the code while

maintaining the below points,

a. Seamless wrapper for Mapper class with little or

no re-write of the existing code except for inheritance and

class import to support running for java kernels.

b. Reducing of IO and communication layers

between Mapreduce and OpenCL to achieve minimum

latency and maximum use of bandwidth between the CPU

and the GPU.

OpenCL till current version of 2.0 does not support the

usage of managed code like JVM or .Net framework and

supports only C99 standard for programming. This places a

restriction on integrating with Hadoop Mapreduce since

vast majority of Mapreduce programs are written in Java

and in some cases Python with very less C99 programming

support.

For creating the wrapper to Mapreduce two approaches are

possible. The first is to develop Java Native Language

Interface (JNI) wrappers for the sections which the

programmer wishes to accelerate and develop the program

in OpenCL in C99 and finally push the data back to the

managed code sections.

Another approach is to support runtime translation of Java

bytecodes to OpenCL by leveraging the support provided

by translation libraries like „rootbear‟ for CUDA support or

Aparapi for OpenCL. These libraries provide support for

running managed code by invoking and building equivalent

OpenCL or CUDA compiles are developing JNI wrappers.

This framework attempts to achieve to provide seamless

integration with minimal code re-writes and hence uses the

Native translation library framework.

Hence the project objectives as below in addition to points

(a and b) are to,

c. Create a transparent framework to end user without

requirement on OpenCL knowledge and JNI experience.

d. Benchmark the new framework on IO Intensive,

Compute Intensive and Mixed workloads.

For reducing complexity the Hadoop system was limited to

a single node cluster though the system could be expanded

to multi-node setups.

2.1 Hardware and Software configuration of the

development and test setup:

The framework was developed and tested on a system

with the below Hardware configuration,

i. OS: Ubuntu 14.04 LTS

ii. CPU: 6-core Core™ i7-5820K @ 3.5Ghz

iii. RAM: Crucial DDR4-2133Mhz 8GB*2

iv. GPU: SAPPHIRE AMD R9 290X 4GB GDDR5

with core clock @ 1.0 GHZ. Cross-Fire disabled.

The complete list of software used for evaluation of the

system included,

i. Hadoop version: 2.6.0

ii. Aprapi version: GitHub version 1.0.

ii. AMD OpenCL Drivers V 2.9.

 iv. AMD OpenCL™ Accelerated Parallel Processing

(APP) V3.0.

v. Eclipse Mapreduce plugin for version 2.6.0

vi. Eclipse Kepler.

 vii. Joda time library to Datatime conversion

For development and testing Ubuntu 14.04 was the base

Operating System and used for creating a single node

Hadoop cluster.

Apache Hadoop version 2.6.0 source was downloaded from

hadoop‟s git repository and built and installed in Ubuntu

OS to create a single node cluster with One Name Node,

One Data node and other supporting wrappers.

AMD OpenCL drivers version 2.9 which support OpenCL

2.0 functionality and AMD OpenCL Accelerated Parallel

Processing (APP) SDK version 3.0 was installed with

provides path to the GPU via OpenCL drivers for

computation.

To ease programming development Eclipse Kepler was

used in place of Marven to provide support for source level

running and debugging and for faster development time.

For integrating Eclipse with Hadoop, Eclipse Mapreduce

plugin for Hadoop was built and integrated with Eclipse

IDE.

Finally Aparapi library v1.0 which was the first release after

the codebase moved to gitbase from google code was

downloaded and the paths setup in Eclipse and Hadoop to

allow Hadoop to access GPU space.

2.2 APARAPI Library:

*picture courtesy AMD APARAPI presentation

APARAPI or A Parallel API is a library for executing

Heterogeneous parallel work codes in Java initially

Developed by AMD.

This is achieved by converting JavaByte codes to a series of

expression trees to a series of if-else or if-then-else

statements and then converting the same to OpenCL

language using OpenCL compilers.

The programmer extends the kernel class and Java

Bytecode is compiled using conventional method.

The Library then attempts to execute the code in the native

GPU and if execution in GPU fails the library falls back to

executing using Java Thread Pools (JTP).

While Aparapi does not support Mapreduce by itself the

library was used as part of larger framework to support

Mapreduce running on Accelerators by importing Aparapi

to Hadoop ecosystem.

2.3 System Design:

The architecture of the framework is given in the above

figure where mappers and reducers are inherited to create

custom mappers and reducers. For example our class would

extend the mapper class and reducer class. In addition

apaprapi.kernel base class is extended and run () method is

overloaded with the custom algorithm which the

programmer wants to use in the project.

While doing the same the below limitations needs to be

handed which are,

a. There is no support for Objects. All code needs to

be converted to parallelizable code before the

framework is called to execute the code.

b. Due to lack of object support only primitive types

restricted to short, int, float and double are

supported.

c. „char‟ data type is not supported and the

programmer needs to convert the String/Character

array to „short‟ or „int‟ before passing for

calculation.

d. Since OpenCL kernels require memory allocation

before the kernel is called, any buffers needs to be

pre-allocated before kernel execution is called.

The above Figure shows the flow of the framework with the

Maprunnable interface connected to OpenCl wrappers

which are in-turn converted to tuples and fed into the GPU

via OpenCl plugins.

2.4 System Implementation:

Some of the challenges while developing this system

includes very poor synchronization between Mapreduce

objects and Aparapi, lack of String handling support,

memory constraints where the mapper or reducer data is

bigger than GPU memory and Cluster support.

With the limitations the code flow and development of

programs to make use of the GPU framework is discussed

below with the below example of an addition program,

 In a typical Mapreduce application to add a series of

numbers to itself the mappers would perform the addition

while the reducer would be the aggregator. The code for

mapper would be like,

public class AdditionCPU extends Mapper<LongWritable, Text,

Text, FloatWritable> {

 public void map(LongWritable key, Text value, Context contex)

throws IOException, InterruptedException {

………………………………………………………..

 while (tokenizer.hasMoreTokens()) {

 String token = tokenizer.nextToken();

 Float F = Float.parseFloat(token);

 values.add(F);

 temp = F+F;

 addition.add(temp);

 }

…………………………………………………………….

 contex.write(word, val);

 …………………………………………………………………….

Example of CPU Mapper code for Adding a Number by itself

The above example is a generic Mapreduce code for adding

a number where the data comes from the input string array

which is then converted to float and the two numbers added.

The same program when developed with the current plugin

would entail changes like below,

public class AdditionGPU extends Mapper<LongWritable, Text,

Text, FloatWritable> {

 public void map(LongWritable key, Text value, Context contex)

 throws IOException, InterruptedException {

 final ArrayList<Float> tempValues = new

ArrayList<Float>();

………………………………………………………………………….

 while (tokenizer.hasMoreTokens()) {

 String token = tokenizer.nextToken();

 try{

 Float f = Float.parseFloat(token);

 tempValues.add(f);

 }

 catch(Exception e){

 System.out.println(e);

 }

 }

 size = tempValues.size();

 final float[] values = new float[size];

 final float[] addition = new float[size];

 Float temp;

 for(int i = 0; i<tempValues.size(); i++){

 temp = tempValues.get(i);

 values[i]=temp.floatValue();;

 }

 Kernel kernel = new Kernel() {

 @Override public void run() {

 int globalID = getGlobalId();

 addition[globalID] = values[globalID] *2;

 }

 };

 Range range = Range.create(size);

 kernel.setExecutionMode(Kernel.EXECUTION_MODE.GPU);

 kernel.execute(range);

 kernel.dispose();

………………………………………………………………………….

 contex.write(word, val);

………………………………………………………………………….

Example of GPU Mapper code for Adding a Number by itself

The above code example shows the changes required for

executing in the GPU. First the values which are converted

to float are stored in a temporary ArrayList whose size is

calculated. A series of final arrays are created onto which

the values are then copied from the ArrayList.

A new kernel is then created and the run method overloaded

with the program which in this scenario was the number

multiplied by 2.

The range and execution mode needs to be specified and

the maximum size of buffer should not exceed the video

memory which in the current system was 4GB and the

kernel is executed.

Once the execution is finished the kernel is disposed by

called the dispose function.

Internally during execute phase Aparapi converts the

Bytecode inside the Kernel method to OpenCL and run the

same in the GPU. If the execution mode specified is the

CPU then the program is executed in CPU using Java

Thread Pools (JTP).

A similar approach needs to be carried out in sections

where parallel programming is required and other sections

of the code remains a constant.

For example the below would be the implementation of

reducer which for the addition program does not require

any changes.

 public void reduce(Text key, Iterable<FloatWritable> values,

Context context) throws IOException, InterruptedException

 {

……………………………………………………………

 context.write(key, new FloatWritable(result));

 }

Example of reducer which is not changed since no parallel

computation is carried out.

The below would the example of the AdditionDriver which

is written like any conventional Mapreduce driver.

 public static void main(String[] args) throws Exception {

 String input = "Addition10kb.txt";

 String output = "out";

 Configuration conf = new Configuration();

………………………………………………………………………..

 job.setMapperClass(AdditionGPU.class);

 job.setReducerClass(AdditionReduceGPU.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(FloatWritable.class);

………………………………………………………………………..

 if (!job.waitForCompletion(true))

 return;

…………………………………………………………………………..

 System.out.println("Time taken for running="+

((double)elapsedTime/1000) +" Seconds");

 }

Example of Mareduce driver calling the new GPU calling convention

modified Mapper and Reducer.

As seen from example below, in the developed framework

only sections which require parallel programming is

modified and other sections could be re-used from existing

code repositories.

The complete system was developed in Java using Eclipse

IDE with Hadoop Mapreduce plugin. The total lines of

program including both CPU and GPU sections is around

5000 lines of code written in Java.

3. EVALUATION

3.1 Methodology:

The framework was evaluated against three specific type of

workloads which included IO Intensive, Memory Intensive

and Mixed workloads.

All the programs were run in pure CPU mode which did not

have any Aparapi classes and framework, GPU mode which

used Aparapi and finally in JTP mode which used Aparapi

but the execution mode was set to CPU which forced the

running in JTP with one thread per core.

In CPU mode considering that this was a single node

cluster, two mappers and one reducer was used and in GPU

and JTP modes one mapper and one reducer was used since

the parallelism was handed in the GPU section.

IO intensive workloads included Squares and Addition

program, memory intensive workloads included Kmeans

plus Blackscholes and finally for mixed workload the

program to find pi for a number.

Test cases like wordcount and sort was not document as a

part of this project since the use cases of GPU computing

would involve computation intensive workloads. The

reason is that the process of pushing the data from

Arraylists to final Arrays and passing the same to OpenCL

and executing in the GPU via PCIe interconnect would

have induced heavy latency that GPU was not be able to

compensate for the time lost. Since this framework supports

execution of both conventional and GPU code only

corresponding mathematical workloads could be

accelerated.

In all the above modes three trials were run and results

averaged and plotted.

3.2 Test cases:

The below charts shows the performance of the testcases on

the CPU, JTP and GPU systems.

3.2.1 Addition:

Typically most of Mapreduce programs falls with trying to

count the number of occurrences, aggregating and filtering

the data. Hence this program runs a simple addition code on

set of input data vectors from 10 Kb to 100 Mb on the

system.

This is an IO intensive operation the maximum impact of

offloading to GPU and addition arrays creation would be

seen this benchmark.

As expected there is a 15X to 20X drop in performance due

to offloading to GPU when compared to native execution.

3.2.2 Squares:

Mapreduce applications have a typically high requirement

for multiplication and squares calculation like least squares

method.

This was an IO intensive workload and GPU bottlenecks

are again clearly visible here with the same margin of

around 15X lesser performance when compared to CPU

execution.

3.2.3 Moving Average:

Mapreduce is heavily used in the Financial industry and

one of most common applications is to calculate moving

average of multiple stock prices and reduce the fluctuation

and volatility.

Here yahoo‟s daily closing stock data was used from

November 1996 till May 2015 and moving average

performed over a 60 day interval. Since it is only one

dataset the calculation time is represented in a bar chart.

In this benchmark GPU had even higher Gap to CPU with a

40X drop in performance during calculation.

This goes to show in typical, simple IO related operations

or arithmetic even if the code is parallelizable the IO

overheads does not allow the GPU system to be any faster

than CPU.

 3.2.4 Kmeans:

Kmeans is a popular cluster analytics tool which is used in

Datamining which is also used in unsupervised learning and

classification. Due to its popularity in datamining kmeans is

a popular benchmark to run in Hadoop clusters.

Kmeans is a memory intensive workload and was ideal case

of higher end arithemetic operation which would be run on

Hadoop cluster. For this test sample points of 100, 1000,

10,000 and 100,000 random 1-D points were given as input

from a text file like used for IO intensive test-cases sample

set.

GPU performance is good for this testcase but the CPU

performance is still higher by around 20%. Another

interesting observation is that JTP (Java Thread Pool) is

still faster than GPU pointing to the fact that pushing data

from Java to OpenCL and passing it via PCIe is causing

bottlenecks.

3.2.5 Blackscholes:

Blackscholes is popular financial tool benchmark with full

mapper stage but no calculation in the reducer stage. This

benchmark should also be able to make maximum use of

GPU computation power. Similar to addition test case, a

sample of 10Kb to 100MB file was used for simulation.

Performance in Blackscholes is very similar to the one

achieved in Kmeans though the performance of GPU and

JTP is similar while GPU having the additional overhead of

passing to the GPU to execute showing the increase in

performance of GPU‟s.

Still native CPU execution still holds a healthy 20% lead

over GPU section.

3.2.6 Pi:

A common hadoop bechmarking program used to calculate

the value of Pi by creating random 2D input and calculating

whether the points are inside or outside a circle to calculate

the value of Pi.

For Pi benchmark, the number of tasks was kept as 10 and

number of points generated varied from 1000 to100,000.

Native CPU in benchmark also has a health lead of 25%

though the GPU processing is faster than executing in JTP.

3.3 Analysis of results:

The results Preliminary analysis points to the fact the results

and speedup are not as expected when compared to

competing analysis made on the subject.

From doing the timing calculation it is clear the cost of

pushing data to GPU and retrieving it back via the use of

additional buffers and across native and managed code is

not compensated by the increase in parallel performance

offered by the GPU. This is particularly visible in IO

intensive workloads where the performance of CPU was on

average 20X faster than GPU computation.

Another possible reason would the cost of creating buffers

to push to the GPU space. It is to be noted in the

performance graphs that the performance penalty between

pure CPU execution (JTP) and pushing the data to GPU

was similar. This shows that while GPU is able to compute

the data inspite of passing data through PCIe interconnect

the cost of creating final buffers to pre-allocate memory and

conversion from objects to native data types and pushing

the same to OpenCL space takes a heavy performance

penalty. Also calling the OpenCL compiler run-time could

be another possible factor in reduced performance.

Still GPU computation was able to come close to CPU

benchmark‟s in computationally intensive workloads like

Black Scholes and Kmeans hence showing a wide

difference in actual performance depending on workloads.

Another difference in lack of performance could be due to

the usage of AMD video cards which are primarily

designed for Desktop Gaming compared to dedicated GPU

accelerator‟s like Nvidia Tesla and XeonPhi.

4. RELATED WORK

 There have been quite a number of studies on

suitability of integrating Hadoop with GPU primarily with

CUDA, most of the work deals with interfacing in C99

level.

 MARS (Map Reduce Framework for Graphics

Processors) proposed by Bingsheng He et al proposed a

framework where CUDA code is written in backend and the

corresponding JNI wrappers would be called from

Mapreduce and algorithms implemented in CUDA.

 GPMR proposed by Stuart et al proposed and

implemented a dedicated framework based on C++ which

interfaces Mapreduce and C99.

 JavaCL is another Mapreduce OpenCL framework

proposed which provides JNI wrappers to be embedded

into Java/Mapreduce codebase and the algorithms written in

OpenCL.

 Finally MapCG is another framework similar to MARS

designed for CUDA uses a GPU based hash table to remove

sorts before reduce on key-value pairs.

 All the above frameworks are based on Java to CUDA

or OpenCL integration by usage of two different

programming languages by developing and passing the

buffers in Java via JNI and then developing the program in

CUDA/OpenCL separately while the current framework

attempts at seamless integration by run time compiling and

linking.

 In the paper namely “A Research of MapReduce with

GPU Acceleration” in which the authors have implemented

a custom wrapper around Mapreduce to accelerate the same

into GPU for computation but actual implementation details

are not given and source code is not available in the

Opensource domain for comparison.

 A system implementation very similar to the

proposed design is presented in the paper “HadoopCL” by

Max Grossman et al where the implementation uses the

similar approach of using Aparapi wrapper and creates

Mapreduce to GPU calls using which the authors have

achieved impressive speedup of 3.5X over non accelerated

tasks but the source code is not available/provided in the

Opensource domain and key implementations details are

not elaborated in the paper to either implement or to

evaluate and benchmark against the proposed solution.

 While the proposed framework uses the similar

approach of HadoopCL which is using Aparapi , the

proposed framework differs from „HadoopCL‟ in flowing

methods which are,

 a) Only the required parallel sections are accelerated and

not the full program to allow the programmer to decide on

which section he/she wants to accelerate.

b) While „HadoopCL‟ is designed to run Mapreduce in a

single node system while the proposed solution could run

typical Hadoop clusters in all the Data nodes if GPU is

available or would fall back to CPU mode if unavailable.

 There are multiple commercial implementation of

Mapreduce-GPU integration an example is from

SteamComputing.eu where there are solutions for GPU

acceleration for both Mapreduce and Storm which could be

beneficial to speedup both real-time data using Strom and

for data mining using Mapreduce but being proprietary

closed source implementation it is not feasible to get

implementation or speedup details for comparison and

benchmarking.

 The final implementation of Hadoop-OpenCL

computation is from a commercial entity named ParallelX

where the implementation includes a Mapreduce to

OpenCL running on Amazon AWS cloud and claimed to

have an extremely high speedup 5X to 5000X on

Mapreduce tasks. Similar to the above example the solution

being commercial closed source implementation, it is not

possible to get further details about the implementation or

the workloads where the suggested speedups where

achieved.

5. CONCLUSION
 A framework was developed integrating Mapreduce

with OpenCL and successfully tested in Hadoop Mapreduce

framework proving the feasibility of such a system. The

system was then tested with mixture of IO intensive,

memory intensive and mixed workloads performance

measured running in both CPU mode and GPU mode.

 While the overall performance offered by AMD

GPU‟s was not better than pure CPU calculations, some of

the performance deficit could be attributed to executing lot

of double precision operations on Desktop CPU card

optimized for single precision operations. Also the video

card was used for rendering Display and other related video

related operations while performing operations which could

cause bottlenecks in the PCIe lane.

 From the results it is clear that GPU shows

tremendous performance gains when executing

computationally intensive tasks like Blackscholes and

Kmeans when compared to pure IO bound operations thus

demonstrating the power and potential usability of GPU‟s

in Big Data space.

 Some of the key learning included cementing existing

knowledge of Mapreduce and while provide a good

introduction into GPGPU computing world along with

challenges and advantages of integrating GPU‟s in Big Data

space. This project has given more insight into computation

of data and the knowledge to use different computing

frameworks based on data input.

 To conclude while a pure GPU based solution may

not be the perfect solution for Big Data, a symbiosis of

GPU and CPU solution as shown by the proposed

framework where the programmer would take advantage of

respective solutions would be the best solution for future

computing requirements.

6. FUTURE WORK
 While Mapreduce-GPU integration could be

investigated further to improve the performance the below

would be the list of improvements which could be carried

out in the framework

a. Aparapi tends to add heavy amount of latency and

lack of support for Objects and multiple datatypes.

Hence Aparapi could be replaced with the

upcoming Project Sumatra from OpenJDK which

provides support for OpenCL, CUDA, Intel Phi,

PTX and HSA with full support for objects and

data types. This would make the framework more

flexible and portable across platforms with

different GPU types.

b. While Mapreduce is useful for iterative batch

processing workloads to handle the new set of IOT

devices, Spark is the framework of choice. Hence

the framework could be ported to Spark along with

providing support for Scala programming

language for more wide spread adoption.

With the above proposed work, Mapreduce-GPU and

Spark-GPU would be able to able to make use of

different types of GPU cards and remove the

limitations of the current architecture.

7. REFERENCES
[1] Pieloth, C:- GPU-basierte Beschleunigung von MapReduce

am Beispiel von OpenCL und Hadoop

[2] b. Jie Zhu, Jonesboro, Juanjuan Li ; Hardesty, E. ; Hai

Jiang ; Kuan-Ching Li:- GPU-in-Hadoop: Enabling

MapReduce across distributed heterogeneous platforms, In:

Computer and Information Science (ICIS), 2014 IEEE/ACIS

13th International Conference.

[3] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K.

Govindaraju, and Tuyong Wang :-Mars: a MapReduce

framework on graphics processors. In: PACT 2008.

[4] Shirahata.K, Sato, H. ; Matsuoka, S :- Hybrid Map Task

Scheduling for GPU-Based Heterogeneous Cluster In: Cloud

Computing Technology and Science (CloudCom), 2010

IEEE Second International Conference Tavel, P. 2007.

Modeling and Simulation Design. AK Peters Ltd., Natick,

MA.

[5] Max Grossman, Mauricio Breternitz, Vivek Sarkar :-

HadoopCL: MapReduce on Distributed Heterogeneous

Platforms through Seamless Integration of Hadoop and

OpenCL , In: International Workshop on High Performance

Data Intensive Computing 2013

[6] f. Miao Xin, Hao Li :- An Implementation of GPU

Accelerated MapReduce: Using Hadoop with OpenCL for

Data- and Compute-Intensive Jobs, In:- Service Sciences

(IJCSS), 2012 International Joint Conference

[7] Elteir, M. Heshan Lin ; Wu-chun Feng ; Scogland, T. :-

StreamMR: An Optimized MapReduce Framework for AMD

GPUs , In: Parallel and Distributed Systems (ICPADS), 2011

IEEE 17th International Conference

[8] Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka.

"Hybrid Map Task Scheduling for GPU-based

Heterogeneous Clusters" In Proceedings of the 1st

International Workshop on Theory and Practice of

MapReduce (MAPRED'2010).

[9] A. Stuart, John D. Owens, Multi-GPU MapReduce on GPU

Clusters, in: Proceedings of the 25th IEEE International

Parallel and Distributed Processing Symposium, 2011

[10] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.

Kozyrakis. Evaluating mapreduce for multi-core and

multiprocessor systems. In HPCA ‟07: Proceedings of the

2007 IEEE 13th International Symposium on High

Performance

[11] Computer Architecture, pages 13–24, Washington, DC,

USA, 2007. IEEE Computer Society.

[12] F. Ji and X. Ma. Using shared memory to accelerate

mapreduce on graphics processing units. IPDPS,2011.

[13] A. Leung, O. Lhot´ak, and G. Lashari, “Automatic

parallelization for graphics processing units,” in Proceedings

of the 7th International Conference on Principles and

Practice of Programming in Java, ACM 2009.

[14] F. Jacob, D. Whittaker, S. Thapaliya, P. Bangalore, M.

Mernik, and J. Gray, “Cudacl: A tool for cuda and opencl

programmers,” in HIPC 2010.

[15] ParallelX: Bridging the gap between Big Data and GPU

acceleration In:-http://www.parallelx.com/

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708524
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708524

