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ABSTRACT 

Modern systems generates huge amounts of information 

right from areas like finance, telematics, healthcare, IOT 

devices to name a few, the modern day computing 

frameworks like Mapreduce needs an ever increasing  

amount of computing power to sort, arrange and generate 

insights from the data. 

This project is an attempt to harness the power of 

heterogeneous computing, more specifically take benefit of 

parallelism offered by modern day GPU‟s and accelerate 

data processing of Mappers and Reducers in the Mapreduce 

framework. In this regard, AMD‟s opensource APARAPI 

library was used as the foundation to develop a simple to 

use heterogeneous framework. The framework uses both the 

CPU and GPU to perform processing by translating 

sections of Mapreduce Java bytecodes to OpenCL and 

executing the same in parallel in AMD GPU‟s.  

Typical Mapreduce tasks were then run in this framework 

with various types of workloads and while no perceptible 

improvement in speedups were noticed the framework 

shows excellent promise in computing complicated parallel 

data in upcoming high performance computing workloads.  
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1. INTRODUCTION 
While the size and complexity of data processing keeps 

including from financial analytics, healthcare data and 

records, data from IOT devices the task of processing them 

normally falls to the Hadoop platform using  Mapreduce 

framework. The speed of computing using Mapreduce is 

limited by the amount of processor cores available in the 

compute/data nodes and with raising thermals/die space 

limitations makes increasing the compute power a costly 

proposition. To mitigate the scenario this project aims to 

investigate the feasibility to harness the growing and 

inherent parallel processing power of GPU‟s by developing 

a framework for current Big Data data systems namely 

Mapreduce. The solution developed involves seamless 

integration of Mapreduce with OpenCL GPU computing 

framework running on AMD video cards in Linux 

environment with Hadoop environment.  

The framework was then tested with IO intensive, Compute 

intensive and mixed workloads to measure the relative of 

performance of the system when compared with native 

implementation.   

1.1 Background Information: 

          In the current world of big data sciences where 

hardware is becoming extremely affordable with distributed 

systems especially the systems based on Hadoop storing all 

the data generated be complex and varied and systems, 

processing all the generated data still requires heavy 

amount of CPU processing with multiple worker nodes and 

high power consumption. In such a scenario this project 

attempts to bridge the performance of Hadoop clusters by 

leveraging the native parallelism of GPU‟s to increase the 

speed up of the cluster as a whole by developing a plugin 

for Hadoop and GPUGPU computing world. 

 OpenCL is a popular computing framework for 

HPC (High Performance Computing) which has the ability 

to run on AMD, Intel and Nvidia (till Femi architecture) 

platforms without the limitations of other for Vendor lock-

in for Nvidia GPU‟s like CUDA,  platform lock-in like C++ 

AMP along with inability to run on CPU‟s coupled with 

startup overheads which makes small tasks acceleration 

time consuming and difficult and finally OpenACC 

framework‟s lack of maturity and support by major players 

makes the OpenCL framework an viable and interesting 

framework for the project. OpenCL is primarly 

programmed using the OpenCL „C‟ wrappers. 

Mapreduce is the primary programming framework/model 

of Hadoop clusters and developed using the Java 

programming language.  

1.2 Motivation: 

There is an explosion of wearable devices and sensors in 

the market with tiny pedometers to advanced ECG sensors 

and body area networks which could be worn around the 

human body which generates humongous amounts of data. 

Example of such devices are American Megatrends 

(AMI),Inc B.O.L.T. and Vitals Fit product lines. AMI‟s 

healthcare group product is among the top 10 finalist team 

in Tricorder X-Prize competition run by the X-Prize 

foundation and the product named VitalsFit generates a 



heavy  amounts of data right from acting as activity tracker 

to ECG, Blood Oxygen, Glucose, Urine analysis and host of 

other sensor parameters from a single unit. 

Conventional way of storage of this type of data would be 

to use a Blade Server with SAN boxes and arrays of 

JBOD‟s running any server OS with a RDBMS. Since the 

amount of data generate and transmitted by these sensors is 

huge conventions RDBMS running SAN based blade 

solutions would prove to be prohibitively expensive to store 

and then to perform any analytics on the data which runs to 

the tune to hundreds of Terabytes of different type of 

structures, semi-structured and un-structured data which 

would keep growing. 

Thus the storage and processing of this data falls to Hadoop 

based clusters since conventional systems could not handle 

such type of loads. Hadoop based cluster solution is 

proposed with HDFS file system, HBase NoSql database 

engine for datastore, Apache Storm for real time analytics 

of the data and Apache Ambari manager for management of 

the cluster. 

Apache Hadoop is a software framework for processing of 

huge volumes of data across cluster of machine with a 

single programming model. Hadoop include HDFS or the 

Hadoop Distributed file system which is a distributed file 

system with inbuilt fault tolerance, replication and high 

availability (from 2.0.0). 

In such a system the amount of mathematical processing 

required to computer each user‟s health-parameters, relating 

the trends pulled from the body with their physical activities 

and sleep patterns, designing mapping solution between 

their EMR (Electronic Medical Records) and current health 

status requires running of complicated computation 

intensive algorithms. 

While the current Big Data systems could handle such loads 

it requires heavy amount of computation nodes in-terms of  

data nodes and usage of alternate frameworks like Spark, 

Storm with huge amounts of RAM to perform In-Memory 

Processing to achieve with less latency and high 

throughput.  

The above approach is a financially costly proposition and 

also draws high power consumption owning to addition 

nodes added. Hence the reasoning to integrate the popular 

Mapreduce framework with GPU‟s to offload the 

processing to investigate the feasibility of such a system 

while measuring improvements to such a system. 

2. PROPOSED SOLUTION 
In Mapreduce the Map phase is fully parallel and the 

combiner phase is local to a machine and is semi-parallel 

and in a typical computation anywhere from 60% to 80% of 

the total time would be spent on these two phases of 

Hadoop execution. The objective was to create a plugin for 

which would be inhereited by Mappers and Reducers to 

accelerate the parallelizable sections of the code while 

maintaining the below points, 

a. Seamless wrapper for Mapper class with little or 

no re-write of the existing code except for inheritance and 

class import to support running for java kernels. 

b. Reducing of IO and communication layers 

between Mapreduce and OpenCL to achieve minimum 

latency and maximum use of bandwidth between the CPU 

and the GPU. 

OpenCL till current version of 2.0 does not support the 

usage of managed code like JVM or .Net framework and 

supports only C99 standard for programming. This places a 

restriction on integrating with Hadoop Mapreduce since 

vast majority of Mapreduce programs are written in Java 

and in some cases Python with very less C99 programming 

support. 

For creating the wrapper to Mapreduce two approaches are 

possible. The first is to develop Java Native Language 

Interface (JNI) wrappers for the sections which the 

programmer wishes to accelerate and develop the program 

in OpenCL in C99 and finally push the data back to the 

managed code sections. 

Another approach is to support runtime translation of Java 

bytecodes to OpenCL by leveraging the support provided 

by translation libraries like „rootbear‟ for CUDA support or 

Aparapi for OpenCL. These libraries provide support for 

running managed code by invoking and building equivalent 

OpenCL or CUDA compiles are developing JNI wrappers. 

This framework attempts to achieve to provide seamless 

integration with minimal code re-writes and hence uses the 

Native translation library framework.  

Hence the project objectives as below in addition to points 

(a and b) are to, 

c. Create a transparent framework to end user without 

requirement on OpenCL knowledge and JNI experience.         

d. Benchmark the new framework on IO Intensive, 

Compute Intensive and Mixed workloads.  

For reducing complexity the Hadoop system was limited to 

a single node cluster though the system could be expanded 

to multi-node setups.  

2.1 Hardware and Software configuration of the 

development and test setup: 

The framework was developed and tested on a system 

with the below Hardware configuration, 

i. OS: Ubuntu 14.04 LTS 

ii. CPU: 6-core Core™ i7-5820K @ 3.5Ghz 

iii. RAM: Crucial DDR4-2133Mhz 8GB*2 

iv. GPU: SAPPHIRE AMD R9 290X 4GB GDDR5 

with core clock @ 1.0 GHZ. Cross-Fire disabled.  



The complete list of software used for evaluation of the 

system included, 

i. Hadoop version: 2.6.0 

ii. Aprapi version: GitHub version 1.0. 

ii. AMD OpenCL Drivers V 2.9. 

        iv.  AMD OpenCL™ Accelerated Parallel Processing 

(APP) V3.0. 

v.     Eclipse Mapreduce plugin for version 2.6.0 

vi.     Eclipse Kepler.   

      vii.     Joda time library to Datatime conversion    

For development and testing Ubuntu 14.04 was the base 

Operating System and used for creating a single node 

Hadoop cluster.  

Apache Hadoop version 2.6.0 source was downloaded from 

hadoop‟s git repository and built and installed in Ubuntu 

OS to create a single node cluster with One Name Node, 

One Data node and other supporting wrappers.  

AMD OpenCL drivers version 2.9 which support OpenCL 

2.0 functionality and AMD OpenCL Accelerated Parallel 

Processing (APP) SDK version 3.0 was installed with 

provides path to the GPU via OpenCL drivers for 

computation. 

To ease programming development Eclipse Kepler was 

used in place of Marven to provide support for source level 

running and debugging and for faster development time.  

For integrating Eclipse with Hadoop, Eclipse Mapreduce 

plugin for Hadoop was built and integrated with Eclipse 

IDE. 

Finally Aparapi library v1.0 which was the first release after 

the codebase moved to gitbase from google code was 

downloaded and the paths setup in Eclipse and Hadoop to 

allow Hadoop to access GPU space. 

 

2.2 APARAPI Library: 

 

 

*picture courtesy AMD APARAPI presentation 

 

APARAPI or A Parallel API is a library for executing 

Heterogeneous parallel work codes in Java initially 

Developed by AMD. 

This is achieved by converting JavaByte codes to a series of 

expression trees to a series of if-else or if-then-else 

statements and then converting the same to OpenCL 

language using OpenCL compilers.  

The programmer extends the kernel class and Java 

Bytecode is compiled using conventional method. 

The Library then attempts to execute the code in the native 

GPU and if execution in GPU fails the library falls back to 

executing using Java Thread Pools (JTP).  

While Aparapi does not support Mapreduce by itself the 

library was used as part of larger framework to support 

Mapreduce running on Accelerators by importing Aparapi 

to Hadoop ecosystem.  

2.3 System Design: 

 

The architecture of the framework is given in the above 

figure where mappers and reducers are inherited to create 

custom mappers and reducers. For example our class would 

extend the mapper class and reducer class.  In addition 

apaprapi.kernel base class is extended and run () method is 

overloaded with the custom algorithm which the 

programmer wants to use in the project. 

While doing the same the below limitations needs to be 

handed which are, 

a. There is no support for Objects. All code needs to 

be converted to parallelizable code before the 

framework is called to execute the code. 

b.  Due to lack of object support only primitive types 

restricted to short, int, float and double are 

supported.  

c. „char‟ data type is not supported and the 

programmer needs to convert the String/Character  



array to „short‟ or „int‟ before passing for 

calculation. 

d. Since OpenCL kernels require memory allocation 

before the kernel is called, any buffers needs to be 

pre-allocated before kernel execution is called. 

 

The above Figure shows the flow of the framework with the 

Maprunnable interface connected to OpenCl wrappers 

which are in-turn converted to tuples and fed into the GPU 

via OpenCl plugins.   

2.4 System Implementation: 

Some of the challenges while developing this system 

includes very poor synchronization between Mapreduce 

objects and Aparapi, lack of String handling support, 

memory constraints where the mapper or reducer data is 

bigger than GPU memory and Cluster support. 

With the limitations the code flow and development of 

programs to make use of the GPU framework is discussed 

below with the below example of an addition program, 

 In a typical Mapreduce application to add a series of 

numbers to itself the mappers would perform the addition 

while the reducer would be the aggregator. The code for 

mapper would be like, 

public class AdditionCPU extends Mapper<LongWritable, Text, 

Text, FloatWritable> { 

    public void map(LongWritable key, Text value, Context contex)                   

throws IOException, InterruptedException { 

……………………………………………………….. 

            while (tokenizer.hasMoreTokens()) { 

                    String token = tokenizer.nextToken(); 

                    Float F = Float.parseFloat(token); 

                    values.add(F); 

                    temp = F+F; 

                    addition.add(temp); 

              } 

……………………………………………………………. 

                    contex.write(word, val); 

  …………………………………………………………………….         

Example of CPU Mapper code for Adding a Number by itself 

The above example is a generic Mapreduce code for adding 

a number where the data comes from the input string array 

which is then converted to float and the two numbers added. 

The same program when developed with the current plugin 

would entail changes like below, 
 

public class AdditionGPU extends Mapper<LongWritable, Text, 

Text, FloatWritable> { 

 

     public void map(LongWritable key, Text value, Context contex) 

                    throws IOException, InterruptedException { 

            final ArrayList<Float> tempValues = new 

ArrayList<Float>(); 

…………………………………………………………………………. 

            while (tokenizer.hasMoreTokens()) { 

                    String token = tokenizer.nextToken(); 

                    try{ 

                    Float f = Float.parseFloat(token); 

                    tempValues.add(f); 

                    } 

                    catch(Exception e){ 

                            System.out.println(e); 

                    } 

            } 

            

            size = tempValues.size(); 

            final float[] values = new float[size]; 

            final float[] addition = new float[size]; 

  Float temp; 

            for(int i = 0; i<tempValues.size(); i++){ 

                    temp = tempValues.get(i); 

                    values[i]=temp.floatValue();; 

            } 

             

            Kernel kernel = new Kernel() { 

                @Override public void run() { 

                        int globalID = getGlobalId(); 

                            addition[globalID] = values[globalID] *2; 

                    } 

            }; 

        Range range = Range.create(size);  

                kernel.setExecutionMode(Kernel.EXECUTION_MODE.GPU); 

       kernel.execute(range); 

       kernel.dispose(); 

………………………………………………………………………….           

                    contex.write(word, val); 

………………………………………………………………………….   

Example of GPU Mapper code for Adding a Number by itself 

 

The above code example shows the changes required for 

executing in the GPU. First the values which are converted 

to float are stored in a temporary ArrayList whose size is 

calculated. A series of final arrays are created onto which 

the values are then copied from the ArrayList. 

 

A new kernel is then created and the run method overloaded 

with the program which in this scenario was the number 

multiplied by 2.  

 

The range and execution mode needs to be specified and 

the maximum size of buffer should not exceed the video 

memory which in the current system was 4GB and the 

kernel is executed.  

 

Once the execution is finished the kernel is disposed by 

called the dispose function.  

 



Internally during execute phase Aparapi converts the 

Bytecode inside the Kernel method to OpenCL and run the 

same in the GPU. If the execution mode specified is the 

CPU then the program is executed in CPU using Java 

Thread Pools (JTP). 

 

A similar approach needs to be carried out in sections 

where parallel programming is required and other sections 

of the code remains a constant.  
 

For example the below would be the implementation of 

reducer which for the addition program does not require 

any changes. 
 

        public void reduce(Text key, Iterable<FloatWritable> values, 

Context context)  throws IOException, InterruptedException 

        { 

…………………………………………………………… 

                context.write(key, new FloatWritable(result)); 

        } 

Example of reducer which is not changed since no parallel 

computation is carried out. 

 

The below would the example of the AdditionDriver which 

is written like any conventional Mapreduce driver. 
 

 public static void main(String[] args) throws Exception { 

   

     String input = "Addition10kb.txt"; 

     String output = "out"; 

  Configuration conf = new Configuration(); 

……………………………………………………………………….. 

  job.setMapperClass(AdditionGPU.class); 

  job.setReducerClass(AdditionReduceGPU.class); 

 

  job.setOutputKeyClass(Text.class); 

  job.setOutputValueClass(FloatWritable.class); 

………………………………………………………………………..

   

  if (!job.waitForCompletion(true)) 

   return; 

………………………………………………………………………….. 

  System.out.println("Time taken for running="+ 

((double)elapsedTime/1000) +" Seconds"); 

  

 } 

Example of Mareduce driver calling the new GPU calling convention 

modified Mapper and Reducer. 

 

As seen from example below, in the developed framework 

only sections which require parallel programming is 

modified and other sections could be re-used from existing 

code repositories.  

 

The complete system was developed in Java using Eclipse 

IDE with Hadoop Mapreduce plugin. The total lines of 

program including both CPU and GPU sections is around 

5000 lines of code written in Java.  

 

 
 

3. EVALUATION 
 

3.1 Methodology: 

The framework was evaluated against three specific type of 

workloads which included IO Intensive, Memory Intensive 

and Mixed workloads.   

All the programs were run in pure CPU mode which did not 

have any Aparapi classes and framework, GPU mode which 

used Aparapi and finally in JTP mode which used Aparapi 

but the execution mode was set to CPU which forced the 

running in JTP with one thread per core.  

In CPU mode considering that this was a single node 

cluster, two mappers and one reducer was used and in GPU 

and JTP modes one mapper and one reducer was used since 

the parallelism was handed in the GPU section. 

IO intensive workloads included Squares and Addition 

program, memory intensive workloads included Kmeans 

plus Blackscholes and finally for mixed workload the 

program to find pi for a number. 

Test cases like wordcount and sort was not document as a 

part of this project since the use cases of GPU computing 

would involve computation intensive workloads. The 

reason is that the process of pushing the data from 

Arraylists to final Arrays and passing the same to OpenCL 

and executing in the GPU via PCIe interconnect would 

have induced heavy latency that GPU was not be able to 

compensate for the time lost. Since this framework supports 

execution of both conventional and GPU code only 

corresponding mathematical workloads could be 

accelerated.  

In all the above modes three trials were run and results 

averaged and plotted. 

3.2 Test cases: 

The below charts shows the performance of the testcases on 

the CPU, JTP and GPU systems. 

3.2.1 Addition: 

Typically most of Mapreduce programs falls with trying to 

count the number of occurrences, aggregating and filtering 

the data. Hence this program runs a simple addition code on 

set of input data vectors from 10 Kb to 100 Mb on the 

system. 

This is an IO intensive operation the maximum impact of 

offloading to GPU and addition arrays creation would be 

seen this benchmark.  

 

 

 

 



As expected there is a 15X to 20X drop in performance due 

to offloading to GPU when compared to native execution.  

3.2.2 Squares: 

Mapreduce applications have a typically high requirement 

for multiplication and squares calculation like least squares 

method.  

This was an IO intensive workload and GPU bottlenecks 

are again clearly visible here with the same margin of 

around 15X lesser performance when compared to CPU 

execution. 

3.2.3 Moving Average: 

Mapreduce is heavily used in the Financial industry  and 

one of most common applications is to calculate moving 

average of multiple stock prices and reduce the fluctuation 

and volatility. 

Here yahoo‟s daily closing stock data was used from 

November 1996 till May 2015 and moving average 

performed over a 60 day interval.  Since it is only one 

dataset the calculation time is represented in a bar chart. 

In this benchmark GPU had even higher Gap to CPU with a 

40X drop in performance during calculation. 

This goes to show in typical, simple IO related operations 

or arithmetic even if the code is parallelizable the IO 

overheads does not allow the GPU system to be any faster 

than CPU. 

 3.2.4 Kmeans: 

Kmeans is a popular cluster analytics tool which is used in 

Datamining which is also used in unsupervised learning and 

classification. Due to its popularity in datamining kmeans is 

a popular benchmark to run in Hadoop clusters. 

Kmeans is a memory intensive workload and was ideal case 

of higher end arithemetic operation which would be run on 

Hadoop cluster. For this test sample points of 100, 1000, 

10,000 and 100,000 random 1-D points were given as input 

from a text file like used for IO intensive test-cases sample 

set. 

 

GPU performance is good for this testcase but the CPU 

performance is still higher by around 20%. Another 

interesting observation is that JTP (Java Thread Pool) is 

still faster than GPU pointing to the fact that pushing data 

from Java to OpenCL and passing it via PCIe is causing 

bottlenecks. 

3.2.5 Blackscholes: 

Blackscholes is popular financial tool benchmark with full 

mapper stage but no calculation in the reducer stage. This 

benchmark should also be able to make maximum use of 

GPU computation power. Similar to addition test case, a 

sample of 10Kb to 100MB file was used for simulation. 

Performance in Blackscholes is very similar to the one 

achieved in Kmeans though the performance of GPU and 

JTP is similar while GPU having the additional overhead of 

passing to the GPU to execute showing the increase in 

performance of GPU‟s.  



Still native CPU execution still holds a healthy 20% lead 

over GPU section. 

3.2.6 Pi: 

A common hadoop bechmarking program used to calculate 

the value of Pi by creating random 2D input and calculating 

whether the points are inside or outside a circle to calculate 

the value of Pi. 

For Pi benchmark, the number of tasks was kept as 10 and 

number of points generated varied from 1000 to100,000. 

Native CPU in benchmark also has a health lead of 25% 

though the GPU processing is faster than executing in JTP. 

3.3 Analysis of results: 

The results Preliminary analysis points to the fact the results 

and speedup are not as expected when compared to 

competing analysis made on the subject.  

From doing the timing calculation it is clear the cost of 

pushing data to GPU and retrieving it back via the use of 

additional buffers and across native and managed code is 

not compensated by the increase in parallel performance 

offered by the GPU. This is particularly visible in IO 

intensive workloads where the performance of CPU was on 

average 20X faster than GPU computation.  

Another possible reason would the cost of creating buffers 

to push to the GPU space. It is to be noted in the 

performance graphs that the performance penalty between 

pure CPU execution (JTP) and pushing the data to GPU 

was similar. This shows that while GPU is able to compute 

the data inspite of passing data through PCIe interconnect 

the cost of creating final buffers to pre-allocate memory and 

conversion from objects to native data types and pushing 

the same to OpenCL space takes a heavy performance 

penalty.  Also calling the OpenCL compiler run-time could 

be another possible factor in reduced performance. 

Still GPU computation was able to come close to CPU 

benchmark‟s in computationally intensive workloads like 

Black Scholes and Kmeans hence showing a wide 

difference in actual performance depending on workloads. 

Another difference in lack of performance could be due to 

the usage of AMD video cards which are primarily 

designed for  Desktop Gaming compared to dedicated GPU 

accelerator‟s like Nvidia Tesla and XeonPhi. 

4. RELATED WORK 

             There have been quite a number of studies on 

suitability of integrating Hadoop with GPU primarily with 

CUDA, most of the work deals with interfacing in C99 

level.  

     MARS (Map Reduce Framework for Graphics 

Processors) proposed by Bingsheng He et al proposed a 

framework where CUDA code is written in backend and the 

corresponding JNI wrappers would be called from 

Mapreduce and algorithms implemented in CUDA. 

      GPMR proposed by Stuart et al proposed and 

implemented a dedicated framework based on C++ which 

interfaces Mapreduce and C99. 

       JavaCL is another Mapreduce OpenCL framework 

proposed which provides JNI wrappers to be embedded 

into Java/Mapreduce codebase and the algorithms written in 

OpenCL. 

       Finally MapCG is another framework similar to MARS 

designed for CUDA uses a GPU based hash table to remove 

sorts before reduce on key-value pairs. 

        All the above frameworks are based on Java to CUDA 

or OpenCL integration by usage of two different 

programming languages by developing and passing the 

buffers in Java via JNI and then developing the program in 

CUDA/OpenCL separately while the current framework 

attempts at seamless integration by run time compiling and 

linking.  

         In the paper namely “A Research of MapReduce with 

GPU Acceleration” in which the authors have implemented 

a custom wrapper around Mapreduce to accelerate the same 

into GPU for computation but actual implementation details 

are not given and source code is not available in the 

Opensource domain for comparison.  

          A system implementation very similar to the 

proposed design is presented in the paper “HadoopCL”  by 

Max Grossman et al where the implementation uses the 

similar approach of using  Aparapi wrapper and creates 

Mapreduce to GPU calls using which the authors have 

achieved impressive speedup of 3.5X over non accelerated 

tasks but the source code is not available/provided in the 

Opensource domain and key implementations details are 

not elaborated in the paper to either implement or to 

evaluate and benchmark against the proposed solution. 

           While the proposed framework uses the similar 

approach of HadoopCL which is using Aparapi , the 

proposed  framework differs from „HadoopCL‟ in flowing 

methods which are, 

 a) Only the required parallel sections are accelerated and 

not the full program to allow the programmer to decide on 

which section he/she wants to accelerate.  

b) While „HadoopCL‟ is designed to run Mapreduce in a 

single node system while the proposed solution could run 



typical Hadoop clusters in all the Data nodes if GPU is 

available or would fall back to CPU mode if unavailable.  

          There are multiple commercial implementation of 

Mapreduce-GPU integration an example is from 

SteamComputing.eu where there are solutions for GPU 

acceleration for both Mapreduce and Storm which could be 

beneficial to speedup both real-time data using Strom and 

for data mining using Mapreduce but being proprietary 

closed source implementation it is not feasible to get 

implementation or speedup details for comparison and 

benchmarking. 

               The final implementation of Hadoop-OpenCL 

computation is from a commercial entity named ParallelX 

where the implementation includes a Mapreduce to 

OpenCL running on Amazon AWS cloud and claimed to 

have an extremely high speedup 5X to 5000X on 

Mapreduce tasks. Similar to the above example the solution 

being commercial closed source implementation, it is not 

possible to get further details about the implementation or 

the workloads where the suggested speedups where 

achieved. 

 

5.  CONCLUSION 
          A framework was developed integrating Mapreduce 

with OpenCL and successfully tested in Hadoop Mapreduce 

framework proving the feasibility of such a system. The 

system was then tested with mixture of IO intensive, 

memory intensive and mixed workloads performance 

measured running in both CPU mode and GPU mode. 

         While the overall performance offered by AMD 

GPU‟s was not better than pure CPU calculations, some of 

the performance deficit could be attributed to executing lot 

of double precision operations on Desktop CPU card 

optimized for single precision operations. Also the video 

card was used for rendering Display and other related video 

related operations while performing operations which could 

cause bottlenecks in the PCIe lane.  

          From the results it is clear that GPU shows 

tremendous performance gains when executing 

computationally intensive tasks like Blackscholes and 

Kmeans when compared to pure IO bound operations thus 

demonstrating the power and potential usability of GPU‟s 

in Big Data space.  

         Some of the key learning included cementing existing 

knowledge of Mapreduce and while provide a good 

introduction into GPGPU computing world along with 

challenges and advantages of integrating GPU‟s in Big Data 

space. This project has given more insight into computation 

of data and the knowledge to use different computing 

frameworks based on data input. 

         To conclude while a pure GPU based solution may 

not be the perfect solution for Big Data, a symbiosis of 

GPU and CPU solution as shown by the proposed 

framework where the programmer would take advantage of 

respective solutions would be the best solution for future 

computing requirements.    

6. FUTURE WORK 
         While Mapreduce-GPU integration could be 

investigated further to improve the performance the below 

would be the list of improvements which could be carried 

out in the framework 

a. Aparapi tends to add heavy amount of latency and 

lack of support for Objects and multiple datatypes. 

Hence Aparapi could be replaced with the 

upcoming Project Sumatra from OpenJDK which 

provides support for OpenCL, CUDA, Intel Phi, 

PTX and HSA with full support for objects and 

data types. This would make the framework more 

flexible and portable across platforms with 

different GPU types. 

b. While Mapreduce is useful for iterative batch 

processing workloads to handle the new set of IOT 

devices, Spark is the framework of choice. Hence 

the framework could be ported to Spark along with 

providing support for Scala programming 

language for more wide spread adoption. 

With the above proposed work, Mapreduce-GPU and 

Spark-GPU would be able to able to make use of 

different types of GPU cards and remove the 

limitations of the current architecture. 
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