
JFusionFS
A Java Implementation of FusionFS

Eric Faurie

Dept. of Computer Science

Illinois Institute of Technology

Chicago, USA

efaurie@hawk.iit.edu

Chaitanya Reddy Chatla

Dept. of Computer Science

Illinois Institute of Technology

Chicago, USA

cchatla@hawk.iit.edu

Abstract – FusionFS is a node local distributed storage system that

was developed for High Performance Computing systems. FusionFS

disperses metadata to all available compute nodes through the use of

a distributed hash table (DHT), and thus overcomes the metadata

problem common in many storage systems. FusionFS also relies on

a parallel file system (PFS) which acts as a large file store (LFS) when

the files cannot fit on local devices. We propose to implement a DHT

and LFS agnostic implementation of FusionFS in the Java

programming language.

Index Terms – FusionFS, HPC, metadata, distributed file system

I. BACKGROUND INFORMATION

The existing architecture of high performance computing

systems is decades old and has its compute and storage resources

separated. This architecture is no longer feasible for modern data

intensive applications which require a lot of support from storage

subsystems [6].

FusionFS is a distributed file system which has been

designed to store large volumes of data reliably and stream those

datasets at high bandwidth to user applications [5]. FusionFS

stores metadata and application data separately. It stores metadata

in a distributed hash table and application data on node local disks

or a parallel file system. The distributed hash table allows

metadata availability on all active compute nodes and thus

achieves maximal concurrency of metadata operations. Because

FusionFS is implemented in C, and written for the HPC

environment, it supports legacy code through a POSIX interface.

It implements this interface through the FUSE libraries.

We propose the implementation of FusionFS in the Java

environment in such a way as to increase its scope of applicability,

ease of use, and flexibility.

II. PROBLEM STATEMENT

Large scale experimentation generates huge amounts of data

in both size and number. Typically clusters store these files in

some sort of central persistent storage. This not only introduces a

single point of failure, but also burdens the network with

unnecessary traffic.

In HPC applications where network bandwidth is a

commodity and datasets are considerably large, moving data

becomes unfeasible. FusionFS is a distributed file system

designed to tackle this problem. It has a proven ability to increase

performance by persisting data to local compute storage and

greatly reduce network traffic.

The widespread use of commodity cluster, cloud, and

distributed computing is increasing rapidly among hobbyists and

those in industry. This has been, in some part, caused by the

development of easy-to-deploy data management and analysis

stacks such as Hadoop. However, these applications suffer from

many of the same problems that the HPC environment does, that

is, the separation of data and compute, or the aggregation of

metadata on a single server.

These platforms would benefit from the use of FusionFS,

however, FusionFS is a C implementation written with the HPC

environment in mind. If one would like to increase the

performance of a Hadoop deployment with FusionFS, an adapter

would have to be written. Besides the adapter, FusionFS is also

tightly coupled to POSIX, FUSE, ZHT (a distributed hash table

implementation), and a Parallel File System. This means that if

one were to use FusionFS they must also use ZHT, FUSE, and

Parallel File Systems, and thus they cannot seamlessly integrate

FusionFS into an existing system. This is especially problematic

in industry deployments where certain application or

infrastructure restrictions may exist.

III. PROPOSED SOLUTION

We propose a Java native implementation of FusionFS called

JFusionFS. Our goal is to provide a dynamic implementation of

FusionFS that is dependency agnostic. That is, it allows users to

make infrastructure decisions while supplying the FusionFS

framework for file management. This implementation is designed

with as few environment assumptions as possible, which means it

is designed with few dependencies and architected in a modular

way.

A Java native implementation offers multiple benefits. It can

natively serve as a replacement to the Hadoop Distributed File

System without an adapter. It can be easily deployed on various

types of commodity clusters, whether that be in the cloud or

otherwise. Increasing FusionFS’s ease of deployment means we

widen its applicable user set.

A modular architecture allows us to implement the FusionFS

file management framework without making assumptions

concerning underlying distributed hash tables and large file stores

(LFS). This will allow users to decide on the underlying metadata

manager and create an LFS that effectively utilizes existing

resources. This will increase its appeal to industry users that may

have application or infrastructure requirements.

IV. ARCHITECTURE AND IMPLEMENTATION

The architecture of FusionFS can be divided into two general

components, File Management and File Transfer. The following

sections will discuss the responsibilities of these two components,

how they interact, and how they are realized in code.

The entire JFusionFS implementation is about 1000 lines of

Java code. This includes the Amazon S3 LFS and the Amazon

DynamoDB DHT interfaces.

Interestingly all of JFusionFS’s core is developed using

standard Java Libraries. This means that only vanilla java is

required to use JFusionFS and it requires the install of no other

packages. This eases deployment greatly. That being said, the

DHT and LFS implementations will most likely require a third

party library. In the case of the Amazon Cloud backend, the

Amazon AWS SDK is the only other dependency [2].

All of the code was developed using Eclipse with the

Amazon AWS SDK Toolkit and the code was version controlled

with a BitBucket hosted Git repository [7].

Sections A and B describe the overall architecture, and the

following sections describe other important components in detail.

A. File Management

The File Management component is responsible for handling

local file I/O, interaction with the LFS, metadata management,

and handling data locality decisions.

Perhaps most importantly, the data management component

handles metadata operations. It does this by interacting with the

Distributed Hash Table (DHT), or key value store.

The File Management component is composed of seven

components: the JFusionFS Instance, Dynamic Class Factory,

Distributed Hash Table, Large File Store, JFusion File Reader,

JFusion File Writer, and the JFusion Config Reader.

The JFusionFS Instance is the exposed API of JFusionFS and

will be discussed in more detail below.

The Dynamic Class Factory is the plugin handler. That is, it

is a class which utilizes Java generics and Java Reflection to

dynamically load a specified class from within the class path and

instantiate the class as an object that is returned to the JFusionFS

Instance [3,4]. This means that we can allow the user to configure

files that will be used as the DHT and LFS without changing the

JFusionFS codebase.

The Distributed Hash Table and Large File Store are

interfaces that are implemented by adapters written by the user.

These interfaces are discussed further below.

The JFusion File Reader and Writer are the low level logic

concerning IO. They handle all of the metadata operations, file

access, and network usage.

The JFusion Config Reader is a custom config reader

designed to allow important fields to be accessed easily and in a

readable way.

If the file is to be written, opened, or read locally, the IO is

handled within the File Management layers using typical Java File

IO calls. This simplifies the stack and reduces the number of

dependencies. If the file is to be written, opened, or read from the

LFS, an LFS adapter that implements the JFusionFS LFS

interface is used.

If the file is to be read from a remote node, the File

Management layer will submit a request to the File Transfer layer.

B. File Transfer

The File Transfer layer is a component used exclusively for

providing access to files on remote nodes. A JFusionFS daemon

process running on each participating node listens for incoming

requests and when a request is received, transfers the requested

file to the destination node.

This is achieved through the use of standard Java Net sockets

and the TCP protocol for guaranteed data delivery. These

connections are temporal, that is, the TCP connection is only kept

open for a single request. This reduces the number of idle network

connections and thus reduces unnecessary traffic.

Obviously, remote file requests must be processed

asynchronously and thus the file transfer daemon is designed with

multithreading. The daemon spins off individual connection

threads to handle the transfers.

The File Transfer component is composed of three modules:

the File Transfer Daemon, File Transfer Thread, and File Transfer

Client.

The file transfer daemon is a simple server process which

runs as a service on the participating node. This process listens on

a configurable socket for incoming connections.

Once a connection is received, the File Transfer Daemon will

spin off a new File Transfer Thread which handles the interaction

with the requesting node. This thread will receive commands

from the requesting node and transmit the locally stored file back

to it.

The File Transfer Client is the requesting nodes interface.

When the JFusionFS instance determines that a file is not stored

locally or within the LFS, it will use an instance of the File

Transfer Client to connect to the remote node’s File Transfer

Daemon to request it.

C. Interfaces

JFusionFS was developed with a plugin infrastructure. The

goal of the design was to allow users to decide how to implement

the underlying dependencies and to reduce assumptions

concerning the deployed environment. These configurable

dependencies are the Distributed Hash Table, and the Large File

Store.

The implementation of both the adaptors for DHT and LFS

can be done without changing the JFusionFS code. The user

simply writes an adapter class that implements the included

DistributedHashTable or LargeFileStore java interfaces, includes

the compiled code in the classpath, and inserts the name of these

classes in the JFusionFS configuration file. These classes will

then be loaded and instantiated by the Dynamic Class Factory

mentioned in the Data Management section above.

Both the distributed hash table and large file store will be

described in detail below.

Distributed Hash Table

The original FusionFS implementation uses a distributed

hash table called ZHT. While ZHT is a great fit for FusionFS and

is highly optimized, the goal of JFusionFS was to maintain

flexibility and reduce dependency coupling. It should be noted,

that ZHT can still be used in JFusionFS if an adapter was written.

The Distributed Hash Table java interface requires only two

operations, put and get. In our case study we implement a

Distributed Hash Table using a key-value store hosted in

Amazon’s DynamoDB. The adapter for this DynamoDB DHT is

just 20 lines of code.

This plugin gives the user the power to decide how the

underlying DHT is implemented. It also allows FusionFS to be

easily integrated into existing systems that may already use

Distributed Hash Tables.

Large File Store

FusionFS assumes that a parallel file system exists in the

environment. JFusionFS aims to allow the handling of very large

files without the assumption of a parallel file system. This is why

this adapter is named the large file store. It acts as an overflow

when the file cannot be stored on the local node’s disk. It can be

implemented any way the user sees fit by writing an adapter that

implements the JFusionFS LargeFileStore interface. Only three

functions are required, write, open, and read.

Realize that the large file store can be implemented using a

parallel file system, in which case the adapter would simply

reroute requests to the parallel mounted volume and essentially

use standard Java IO calls. However, we don’t assume this

architecture. Also realize that if one chooses, an adapter can be

written that routes these files to a predefined node with vast

amounts of disk storage using TCP. If this is done, it is essentially

no different than the remote read and in fact can even be written

using the underlying JFusionFS file read code. However, we will

still route through the adapter code when the LFS is used because

we do not assume this naïve implementation.

In our case study, we implement the LFS using the Amazon

S3 cloud storage system. This is done in ~40 lines of code and

thus demonstrates the simplicity of such an implementation. The

LFS being used can easily be changed by simply changing the

configuration of JFusionFS. No code changes within the system

are required.

D. JFusionFS API

The JFusionFS API is kept as similar to the FusionFS API as

possible while keeping within typical Java naming conventions.

The API is defined in the Java Object JFusionFSInstance and

these calls are ffsOpen(), ffsRead(), and ffsWrite(). For the sake of

usability JFusionFS also includes an ffsAppend() operation. The

append operation will become useful if JFusionFS is used to

enhance the Hadoop stack. Note that in the Java implementation

ffsClose() is not included as the Java garbage collector will

automatically destroy file descriptors when they are no longer

used.

These operations behave much as expected. The ffsOpen()

call returns a Java File object, while ffsRead() returns a

BufferedInputStream. ffsWrite() and ffsAppend() simply outputs

provided data from a byte array or an output stream.

Note that these calls only require a file path and data to be

written (if a write call). All metadata, locality, and retrieval

operations are handled in the background.

For JFusionFS to be used, unfortunately application code will

have to be changed. However, the changes are straightforward.

Simply changing the individual file IO lines from the Java File IO

library to JFusionFS will suffice.

V. FLOW OF CONTROL

This section will describe logical decisions throughout

execution. More specifically, how the JFusionFS instance handles

a typical read or write call.

A. ffsRead()

When a user reads a file, it first looks up the desired file in

the DHT. If the file exists, various metadata will be returned. This

metadata contains the location of the file as well as other file

information. The location of each file may be one of three

locations, the local node, a remote node, or the large file store

(LFS).

Once the location of the file is determined JFusionFS will

read the file. Obviously if the file is stored locally it simply opens

the file and returns a BufferedInputStream where the data can be

accessed. However, if the file is on a remote node, it uses the File

Transfer Client to first pull the file and write it to the local disk

before opening it and returning the stream. If it’s stored on the

LFS it uses the dynamically loaded LargeFileStore to read the file

and return a stream.

B. ffsOpen()

The open command follows the same exact logic pattern as

the ffsRead(). However, instead of returning a data stream, it

returns the file handle itself.

C. ffsWrite()

When a file write call is made, the File Management

component determines whether the file should be stored to local

disk or stored in the LFS. The LFS is used for files deemed too

large for the local disk either because the free space on the local

node is less than required or the size of the file is above a file size

threshold defined in the JFusionFS configuration file. The file

manager, in this way, handles data locality decisions while

writing.

Obviously if the file is to be written locally the JFusionFS

File Writer writes it to the workspace with the specified path using

standard Java File IO calls. If it is to be written to the Large File

Store it uses the Dynamically Loaded LargeFileStore.

After the file is written, the DHT is updated with the file path,

location (the local node’s IP, or ‘LFS’ if stored in the LFS), and

metadata. This is all handled by the File Management layers.

Note that this simple flow is always the same. If a user wishes

to overwrite a file in JFusionFS a simple write will suffice.

Because the DHT is updated only after the file is completely

written all subsequent reads will request the latest file stored on

the new nodes system even if the host of the latest file has

changed.

D. ffsAppend()

The append operation is a little more interesting than a simple

write. This is because the file being appended may not reside on

the local system. To circumvent this problem, we internally make

an ffsRead() call which will guarantee that the latest file is pulled

to the local node. Once this occurs, the data is appended and the

DHT is updated with the local nodes address so subsequent reads

acquire the latest information.

VI. DEPLOYMENT

A. Choose a DHT and LFS

The first stage of deployment is choosing a DHT and an LFS

to use. Note that the use case adapters for the Amazon

DynamoDB implementation of a DHT and the Amazon S3 store

of the LFS are included in the JFusionFS code. If these will

suffice than no additional adapters are required.

However, if the user wishes to use, for example, a CleverSafe

system for the LFS a simple adapter can be written.

Once an adapter is chosen for each, simply insert the name of

the adapter into the config file under the distributed hash table and

large file store fields.

B. Define Your Workspace

Define a workspace within the config file. This workspace is

the location on the local node where all files will be stored. Note

that all file paths passed to JFusionFS are relative to this location.

C. Start the File Transfer Daemon

Start the file transfer daemon by executing the JFusionFS

executable. This can be ran with or without a GUI. The simple

GUI displays node information such as the disk space in use, the

local hostname, the JFusionFS version in place, and a console

window that displays the log.

Once this service is running the node is ready for incoming

network requests for files.

D. Run Your Application

Run the custom application that writes, reads, and opens files

using the JFusionFS API.

VII. USE CASE – EVALUATION

The use case for JFusionFS is a simple benchmark program

that writes randomly generated binary files of a given size. The

backend of JFusionFS in our use case, is implemented with the

Amazon DynamoDB based Distributed Hash Table, and an

Amazon S3 Large File Store. The adapters for these two

interfaces are dynamically loaded using the JFusionFS

configuration.

We chose the Amazon cloud platform backend because of its

accessibility. Also, storing the DHT and LFS on an internet

accessible cloud gives us some interesting benefits. This means

that JFusionFS can essentially be used as a distributed file storage

system in a platform similar to SETI At Home. That is,

heterogeneous systems scattered throughout the world can all

store files in a shared JFusionFS instance and communicate as if

they were in a single rack cluster.

This being said, JFusionFS cannot be effectively compared

to FusionFS without an implementation of a ZHT adapter and a

parallel file system. However, we did test JFusionFS against

typical Java IO operations to ensure that the added layers from

JFusionFS don’t throttle local IO.

We compare the use of JFusionFS with the Amazon backend,

to an instance of JFusionFS with a dummy in-memory metadata

table, and a small program using vanilla Java File IO calls. The

results are as follows. The values in the tables below are the time

required to complete the creation of all files in seconds.

1 KB Files

Files Created Vanilla In-Memory Amazon

10 0.000514 0.00585 1.02955

50 0.00694 0.01157 1.59134

100 0.006681 0.02183 1.91594

500 0.032554 0.09117 272.4555

1000 0.086502 0.14197 765.3909

10 MB Files

Files Created Vanilla In-Memory Amazon

10 0.41824 0.10565 1.08924

20 3.58339 0.53326 1.4364

30 5.97167 2.38985 2.93544

40 7.17528 4.60932 5.25945

50 8.65251 5.6584 7.66778

One can see when comparing the creation of 1KB files, that

the In-Memory dummy DHT adds little overhead over the Vanilla

Java file creation. The Amazon implementation does introduce a

sizeable delay especially when file creation volume is high.

However, this is mostly due to Amazon DynamoDB requests

being throttled. One can raise the cost of the Amazon DynamoDB

instance and increase the thresholds if required. This is also

evidence that the performance of JFusionFS is greatly dependent

on the implementation of the DHT and LFS. If a true Distributed

Hash Table, such as ZHT were implemented, it will increase the

speed over the DynamoDB instance.

Interestingly when creating larger files, JFusionFS tends to

perform better than Vanilla java calls with both the in-memory

and Amazon implementations.

VIII. RELATED WORK

The idea of distributed metadata has been around for a while.

Fault datacenter storage (FDS) is a high performance, fault

tolerant, large scale, locality oblivious blob store which maintains

a lightweight metadata server and offloads the metadata to

available nodes in a distributed manner [6]. Salus is a block store

that seeks to maximize simultaneously both scalability and

robustness. It provides strong end to end correct guarantees despite

a wide range of server failures [11]. It collocates compute and

storage resources.

A file system which is similar to our version of JFusionFS is

XtreemFS. XtreemFS is an object-based, distributed file system

which has been written in Java. It has full and real fault tolerance

while maintaining POSIX file system semantics [10]. We discard

POSIX compliance but introduce a plugin architecture where the

backend handling of metadata is customizable.

While these systems apply a general rule to deal with data I/O,

FusionFS is optimized for write-intensive workloads that are

particularly important for HPC systems [5].

0

2

4

6

8

10

10 20 30 40 50

Ti
m

e
R

eq
u

ir
ed

 (
s)

Files Created

10 MB File Creation

Vanilla

In-Memory

Amazon

IX. FUTURE WORK

In the future, we would like to implement a full ZHT adapter

and write a benchmark application that can run on both JFusionFS

and FusionFS. This would allow us to truly compare the

performance of the Java and C implementations.

We would also like to write a Hadoop Interface and use

JFusionFS as a replacement for HDFS. We can benchmark typical

Hadoop applications with the HDFS backend and JFusionFS

using various Distributed Hash Table implementations.

X. CONCLUSION

The goal of JFusionFS was to translate FusionFS into an

extensible Java Framework that is modular and dynamic. The

results of our case study show that most of the performance

impact is dependent on the implementation of the DHT. However,

because the framework works as expected, we can now explore

various DHT implementations and push the boundaries of

distributed Java IO. The resulting JFusionFS implements the

ideals of FusionFS in a way that opens up its range of applicability

and greatly increases its ease of use.

REFERENCES

[1] Amazon EC2,

http://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Clo

ud

[2] Amazon AWS SDK, http://aws.amazon.com/sdk-for-java/

[3] Bellia, Marco, and M. Eugenia Occhiuto. "Higher order

programming through Java reflection." Concurrency,

Specification and Programming CS&P 3 (2004): 447-459.

[4] Chiba, Shigeru. "Load-time structural reflection in

Java." ECOOP 2000—Object-Oriented Programming.

Springer Berlin Heidelberg, 2000. 313-336.

[5] Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li,

Ke Wang, Dries Kimpe, Philip Carns, Robert Ross, and Ioan

Raicu. "FusionFS: Towards Supporting Data-Intensive

Scientific Applications on Extreme-Scale HighPerformance

Computing Systems", IEEE International Conference on Big

Data, 2014.

[6] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell,

and Y. Suzue,“Flat datacenter storage,” in Proceedings of

USENIX Symposium on Operating Systems Design and

Implementation, 2012.

[7] JFusionFS, https://bitbucket.org/efaurie/jfusionfs

[8] P. Freeman, D. Crawford, S. Kim, and J. Munoz,

“Cyberinfrastructure for science and engineering: Promises

and challenges,” Proceedings of the IEEE, vol. 93, no. 3,

2005.

[9] Shvachko, Konstantin and Kuang, Hairong and Radia,

Sanjay and Chansler, Robert. The Hadoop Distributed File

System, IEEE 26th Symposium on Mass Storage Systems

and Technologies, 2000.

[10] XtreemFS, http://en.wikipedia.org/wiki/XtreemFS

[11] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J.

Kirubanandam, L. Alvisi, and M. Dahlin, “Robustness in the

salus scalable block store,” in Proceedings of USENIX

conference on Networked Systems Design and

Implementation, 2013.

APPENDIX

Work was broken down into two general parts. The first

part was implementation of the Use Case and exploring

JFusionFS’s coexistence with existing DHTs and LFSs. The

second part was the implementation of JFusionFS itself.

Eric Faurie had part two and implemented JFusionFS, wrote

the interfaces, and implemented dummy DHT and LFS plugins.

He later assisted Chaitanya in implementing the Amazon Cloud

based adapters for a DHT and LFS using Amazon AWS tools,

and helped deploy the system on Amazon EC2 Micro instances

for some simple benchmark tests that Eric wrote as well.

Chaitanya was in charge of part one, that is, looking into

connecting JFusionFS with existing DHT and LFS instances as

well as working on an API for JFusionFS to act as a replacement

for Hadoop HDFS.

